Math 316

Final Exam 1440/1441, 1st semester
Exam Time: 3 hours

Q1. (a) Prove that if L is a self-adjoint differential operator of second order, then the eigenvalues of the equation

$$
L u+\lambda u=0
$$

are all real.
(b) Consider the eigenvalue problem

$$
\begin{gather*}
5 x^{3} u^{\prime \prime}+15 x^{2} u+\lambda u=0, \quad x \in[1,2] \tag{1}\\
u(1)=0, \quad u(2)=0
\end{gather*}
$$

i. Put equation (1) in the standard form: $L u+\lambda u=0$.
ii. Show that L in part (i) is a self-adjoint operator.

Q2. Consider the function

$$
f(x)=\left\{\begin{array}{cc}
1, & -\pi \leq x \leq 0 \\
-1, & 0<x<\pi
\end{array}\right.
$$

and

$$
f(x+2 \pi)=f(x), x \in \mathbb{R} .
$$

(a) Find the Fourier series representation for f.
(b) Find a series representation for $\frac{\pi}{4}$.
(c) Redefine the function f so that the Fourier series converges to f at every $x \in \mathbb{R}$.

Q3. (a) Consider the Laguerre Polynomials

$$
L_{n}(x)=\frac{e^{x}}{n!} \frac{d^{n}}{d x^{n}}\left(x^{n} e^{-x}\right), n \in \mathbb{N}_{0}, x \in(0, \infty)
$$

i. Show that

$$
\left\langle x^{m}, L_{n}\right\rangle_{e^{-x}}=\left\{\begin{array}{cl}
0, & m<n \\
(-1)^{n} n!, & m=n
\end{array} .\right.
$$

ii. Using part (i), show that for all $n \in \mathbb{N}_{0}$,

$$
\left\|L_{n}\right\|_{e^{-x}}^{2}=1
$$

(b) Prove that

$$
\int_{0}^{x} t J_{0}(t) d t=x J_{1}(x),
$$

for all $x>0$, where J_{0}, J_{1} are Bessel functions of the first kind of orders zero and one, respectively.

Q4. (a) Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)=\left\{\begin{array}{cc}
1, & -\pi<x \leq 0 \\
-1, & 0<x<\pi \\
0, & \text { otherwise }
\end{array}\right.
$$

i. Show that $f \in \mathcal{L}^{1}(\mathbb{R})$.
ii. Find the Fourier integral of f.
iii. Redefine the function f so that the Fourier integral converges to f at every $x \in \mathbb{R}$.
(b) Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)=e^{-x^{2}}
$$

i. Find the derivative of the Fourier transform \hat{f} of f.
ii. Find a closed form of the Fourier transform \hat{f}.

Good Luck
Eyman Alahmadi

