1. $[2+2+2+2]$
(a) Prove that the set of natural number \mathbb{N} is not bounded above.
(b) Let A be a non-empty subset of \mathbb{R} that is bounded below, and $\alpha=\inf A$. Show that:

$$
\forall \epsilon>0, \quad \exists a \in A \quad \text { such that } \quad a<\alpha+\epsilon
$$

(c) Prove that if $\lim _{n \rightarrow \infty} x_{n}=x>0$, then there exists a natural number N such that

$$
x_{n} \geq \frac{x}{2}, \quad \forall n \geq N
$$

(d) Let $0<b<1$. Prove that:

$$
\lim _{n \rightarrow \infty} n b^{n} \rightarrow 0
$$

2. $[(2+2)+3]$
(a) Prove that the following limits do not exist in \mathbb{R} :
3. $\lim _{x \rightarrow 0} \sin \frac{1}{x}$
4. $\lim _{x \rightarrow 0} \frac{x}{|x|}$
(b) Prove by using the definition that $\lim _{x \rightarrow 1} \frac{2 x+1}{x+2}=1$.
5. $[2+(2+2+2)]$
(a) Show that if a series $\sum a_{n}$ is convergent, then $\lim _{n \rightarrow \infty} a_{n}=0$.
(b) Test the following series for convergence:

6. ${ }_{k=1}^{\infty} \frac{\cos k}{3^{k}}$.

7. $[2.5+2.5]$
(a) Prove that, if a function f is increasing on (a, b) and not bounded above, then $\lim _{x \rightarrow b^{-}} f(x)=\infty$.
(b) Suppose the functions f and g are uniformly continuous on a subset D of the real numbers \mathbb{R}. Prove that $f+g$ is uniformly continuous on D.
8. $[2+2+2]$
(a) Let $a, b \in \mathbb{R}$. Show that

$$
|\sin b-\sin a| \leq|b-a|
$$

(b) If the function f satisfies $|f(x)| \leq|x|^{4}$, for all $x \in[-1,1]$, prove that f is differentiable at 0 and find $f^{\prime}(0)$.
(c) Approximate the number $e^{0.05}$ with 4 decimal places after the decimal point.
6. $[(2+1)+3]$
(a) Let $f:[a, b] \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\left\{\begin{array}{l}
2, x \in \mathbb{Q} \cap[a, b] \\
0, x \notin \mathbb{Q} \cap[a, b]
\end{array}\right.
$$

1. Find the upper and the lower integral of f over $[a, b]$.
2. Is f integrable on $[a, b]$?
(b) Use Riemann sums, to evaluate $\int_{0}^{1}(2 x-1) d x$.
