

King Saud University Department of Mathematics

MATH 244 (Linear Algebra) 1st Midterm Exam

1st Semester 1432 Duration: 105 Minutes

Student's Name	Student's ID	Group No.	Lecturer's Name		

1	11	III	IV	Total
	1	1 11	1 11 111	1 11 111 1V

1	[T]	Determine	whether	the fo	ollowing i	s True or	False.	Justify	vour	answer.
		Doorning	WIICUIICI	UIIC IC		J II UC OI	i dibc.	o about y	your	COLLO W CI.

(1	1) If the linear system $A\mathbf{x} = \mathbf{b}$ has a unique solution, then the system $A\mathbf{x} = \mathbf{c}$ also has a unique solution.	(
(1	1) If the inteal system $Ax = b$ has a unique solution, then the system $Ax = c$ also has a unique solution.	(

(2) If
$$A = [a_{ij}]_{n \times n}$$
 is a matrix for which $A^2 - 2A = -I_n$ and $\det(A) \neq 0$, then $A^{-1} = 2I_n - A$.

(3) If
$$A = [a_{ij}]_{n \times n}$$
 is invertible then its inverse A^{-1} is unique. (

(4) $A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$, $a \neq 0$ is invertible with $A^{-1} = \frac{1}{a^2 + b^2} \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$. (

(5) The matrices $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 2 & 2 & 7 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & -2 & 1 \end{bmatrix}$ are equivalent. (

[II] Choose the correct answer.

(1) If $A = [a_{ij}]_{3\times3}$ and $B = [b_{ij}]_{3\times3}$ is obtained from A by multiplying the first row by 4 and multiplying the third row by $\frac{3}{4}$. Then

(a)
$$|A| = |B|$$

(b)
$$|B| = 3|A|$$

(c)
$$|B| = 3^3 |A|$$

(d) None

(2) If $A = [a_{ij}]_{n \times n}$, then

(a)
$$Aadj(A) = |A|I_n$$

(b)
$$Aadj(A) \neq |A|I$$

(c)
$$adj(A) = |A|$$

- (d) None
- (3) If $A = \begin{bmatrix} 2 & -1 & 0 \\ 1 & 0 & -3 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -4 & 0 & 1 \\ 2 & -1 & 3 & -1 \\ 4 & 0 & -2 & 0 \end{bmatrix}$, then a_{23} in AB equals
 - (a) -6

(b) -5

(c) 6

(d) None

- (4) If A and B are square matrices of the same size and AB is invertible, then
 - (a) A must be invertible
- **(b)** B must be invertible
- (c) A and B must be invertible
- (d) None

- (5) If the reduced row Echelon form of $A = [a_{ij}]_{n \times n}$ is I_n , then
 - (a) Ax = 0 has infinitely many solutions
- (b) $A\mathbf{x} = \mathbf{b}$ is inconsistent for some $n \times 1$ matrix \mathbf{b}
- (c) $|A| \neq 0$

[III]

(1) Prove the following equality where the inverses exist.

$$(C + DD^{T})^{-1}D = C^{-1}D(I_n + D^{T}C^{-1}D)^{-1}$$

- (2) Let $A = \begin{bmatrix} 3 & 0 \\ 0 & 5 \end{bmatrix}$, $B = \begin{bmatrix} 2 & -2 & 1 \\ 0 & 2 & 0 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 2 \\ 3 & 5 \\ 5 & 6 \end{bmatrix}$, $D = \begin{bmatrix} 0 & -3 \\ -2 & 1 \end{bmatrix}$. Compute the following if possible. Justify your answer.
- (i) B-C
- (ii) AB^T
- (iii) tr(D)
- (iv) A^4
- (vi) det(A), det(A + 2D), det(AD).

[IV]

(1) Solve the following system for y only using Cramer's Rule.

$$x + 2y - 3z = 9$$

$$2x - y + z = 0$$

$$4x - y + z = 4$$

(2) Find the values of x, y and z for which $A = \begin{bmatrix} 2 & x - 2y + 2z & 2x + y + z \\ 3 & 5 & x + z \\ 0 & -2 & 7 \end{bmatrix}$ is symmetric.