Math 244-Syllabus

<u>Text book</u>: Elementary Linear Algebra with Supplemental Applications, 11th Edition By Howard Anton and Chris Rorres

Chapter 1

<u>1.1</u> Introduction to Systems of Linear Equations

<u>1.2</u> Gaussian Elimination. (Example 9 on page 22 is NOT included).

1.3 Matrices and Matrix Operations

<u>1.4</u> Inverses and Algebraic Properties of Matrices (Proofs of Theorems 1.4.4, 1.4.6, and 1.4.9 are included)

<u>1.5</u> Elementary Matrices and a Method for Finding A^{-1}

<u>1.6</u> More on Linear Systems and Invertible Matrices

<u>1.7</u> Diagonal, Triangular and Symmetric Matrices

<u>1.8</u> Matrix Transformations (From Definition 1 to the end of example 1 and from page 80

"A procedure for Finding Standard Matrices" to the end of Example 4)

Chapter 2

<u>2.1</u> Determinants by Cofactor Expansion

2.2 Evaluating Determinants by Row Reduction

2.3 Properties of the Determinants and Cramer's Rule

Chapter 3

3.1 Vectors in 2-Space, 3-Space and n-Space (From Definition1, Page 136).

<u>3.2</u> Norm, Dot Product and Distance in R^n (The proof of Theorem 3.2.6 and Theorem 3.2.7 is included).

<u>3.3</u> Orthogonality (Definition1, Example1 (a), Theorem 3.3.3, Example 6)

Chapter 4

4.1 Real Vector Spaces (Exercise 11 is solved in the lecture)

<u>4.2</u> Subspaces (All except Example 12, the proof of Theorem 4.2.4 is included)

<u>4.3</u> Linear Independence (Proof of Theorem 4.3.3 is included)

<u>4.4</u> Coordinates and Basis (From Definition 1)

<u>4.5</u> Dimension (Exercise 7 (d) is solved in the lecture)

<u>4.7</u> Row Space, Column Space and Null space

<u>4.8</u> Rank, Nullity and the Fundamental Matrix Spaces (The proof of theorem 4.8.5 is included). (The concept of orthogonal complement is NOT included).

<u>4.9</u> Basic Matrix Transformations in R^2 and R^3 (From page 265 to the end of the section is NOT included)

<u>4.10</u> Properties of Matrix Transformations

Chapter 5

<u>5.1</u> Eigenvalues and Eigenvectors