Math 111

Text book: Calculus, the Classic edition, Fifth Ed. By Earl W. Swokowski. Chapters: 5, 6, 7, 8, 9, 10 \& 13.

Chapter 5:

5.1 All except (Examples 6, 7, 8, 9).

5.2 All.

5.3 Summation notation (5.9), Example 1, Theorem (5.10), Example 2, Theorems (5.11) \& (5.12), Examples 3 \& 4, Restate Example 6: Find the area using limit of Riemann sum and right endpoints (This could be solved after Section 5.4). Also the following question: Find the value of α that satisfies the following equation:
$1-\sum_{k=1}^{5}\left(\alpha k^{2}+2\right)=120$
2- $\sum_{k=1}^{3}(\alpha-k)=\alpha$
5.4 All except (Definition 5.15, Example 1 \& 3).
5.5 All except (Definition 5.29, Example 6). (Proof of Theorem 5.28 included).

For Corollary (5.27): Solve extra examples using algebraic methods.
Without solving the integral prove that:
(a) $\int_{1}^{3} \frac{1}{x^{2}+6} d x \leq \int_{1}^{3} \frac{1}{x+4} d x$
(b) $\int_{2}^{6} \frac{x}{x+8} d x \leq \int_{2}^{6} \frac{x}{10} d x$
(c) $\int_{0}^{1} x d x \geq \int_{0}^{1} x^{2} d x$
(d) $\int_{1}^{2} x d x \leq \int_{1}^{2} x^{2} d x$
5.6 Fundamental theorem of calculus(5.30), Corollary (5.31), Examples 1,2,3 \& 4,Theorem (5.33), Examples 5 \& 6, Theorem (5,35), Example 8, Exercises
($51,52,53,55$), (Prqof of Theorem 5.30 is included).

Chapter 6:

6.1 All.
6.2 All except Example 4.
6.3 All except Example 2.
6.5 Definition (6.14), Example 1. Definition (6.15), Example 2 part (a). Definition (6.19) and the formula of the surface generated by revolving a graph about y-axis (at the end of page (340)), Example 4.

Chapter 7:

7.2 All except Example 7, (Proof of Theorem 7.12 (i) \& (ii) is included).
7.3 All except Examples 3\&4.
7.4 All except Example 5.
7.5 All except Example 3, Theorem 7.32 not included.

Chapter 8:

8.2 All except Example 1.
8.3 All (With graph of 8.10) . (Proof of Theorem 8.14 (i) \& (ii) is included). But Example 2 not included.
8.4 All, (Proof of Theorems 8.16 (i) \& 8.17 (i) \&(ii) included).

Chapter 9:

9.1 All.
9.2 All except 7.
9.3 All.
9.4 All.
9.5 All.
9.6 All, also $\int \sqrt{1+\sqrt{x}} d x$ and Exercise 6 .

Chapter 10:
10.1 All except Cauchy formula 10.1 and Example 7
10.2 All except Example 5
10.3 Definition (10.5) Examples 1 \& 2,Definition (10.6), Example 3.
10.4 Definitions (10.7) \& (10.8). Examples 1, 2, 3 \& 4.

Chapter 13:

13.3 All except ((13.9), Theorem 13.10, Examples 3, 4, 5 and 9), Exercise 14 is included.

Test of symmetry:

1. The graph of the polar equation $r=f(\theta)$ is symmetric with respect to the polar axis if $f(\theta)=f(-\theta)$
2. The graph of the polar equation $r=f(\theta)$ is symmetric with respect to the vertical line $\theta=\frac{\pi}{2}$ if $f(\theta)=-f(-\theta)$
3. The graph of the polar equation $r=f(\theta)$ is symmetric with respect to the pole if $f(\theta)=-f(\theta)$.
13.4 Theorem (13.11) Examples 1 \& 2 and Exercise 19.

Exercise Sheet

5.1	$1,6,7,9,12,14,15,16,18,20,23,24,26,27,28,29,30,31,32,33,34,35,38,39,42$, $43,44,45,46,47,48$
5.2	$3,8,13,15,20,21,22,23,26,28,30,31,33,34,35,37,38,39,40,41,42,43,44,45$, $46,47,48$.
5.3	$1,5,6,7,9,11,15,17,31,32$. Solve 31 \& 32 using limit of Riemann sum and right and left endpoints.
5.4	$5,7,10,17,18,19,20,21,22,28,30,31,34,35,36$
5.5	$5,9,10,13,15,17,20,23,27,28,30$
5.6	$9,12,16,17,18,22,24,26,29,32,33,35,36,37,40,41,42,43,44,54,56$
6.1	$6,10,11,12,13,27,29,30,32,35$
6.2	$6,7,13,15,21,23$
6.3	$7,9,12,18,28,30$
6.5	$5,6,7,9,11,12,13,30,32,35,36$
7.2	$4,6,12,16,18,20,35,40,44$
7.3	$4,8,11,16,18,20,22,24,30,32$
7.4	$3,6,8,9,13,16,18,19,22,26,30,33,36,37$
7.5	$4,6,12,14,16,17,28,32,34,36,40,43,44$
8.2	$1,4,10,13,15,24,29,31,34,37,38,41,43$
8.3	$3,6,7,8,10,15,20,24,28,29,31,32,34,35,36,37,39,42,43,44$.
8.4	$4,6,8,10,11,13,15,18,19,20,21,22,23,24,25$
9.1	$4,6,7,11,13,14,16,17,19,22,24,39,42,43$
9.2	$1,2,3,6,9,10,11,12,13,16,17,21,25,27,29$
9.3	$1,3,4,5,6,7,9,11,12,19,21,22$
9.4	$1,2,9,13,14,16,19,25$
9.5	$1,3,5,7,9,15,17$
9.6	$1,5,7,19,21,24$
10.1	$2,4,5,7,9,11,15,17,19,20,23,24,28,29,33,35,47$
10.2	$1,4,5,8,11,13,15,16,18,19,23,25,26,27,29$
10.3	$2,3,6,10,13,14,15,17,19,21,24$
10.4	$1,4,5,6,8,9,11,14,16,18,21,22,25,27,30$
13.3	$1,3,5,6,13,27,28,30,33,37,41,46$
13.4	$1,3,4,18,20,22$

