```
King Saud University: Mathematics Department Math-254 Second Semester Maximum Marks \(=30\)

Question 1: Find a bound for the number of iterations needed to achieve an approximation with accuracy \(10^{-1}\) to the solution of \(x^{2}-2.6 x=2.31\) lying in the interval [3.0,3.5] using the bisection method. Find the approximations to the root with this degree of accuracy. [5 Marks]

Solution. Here \(a=3.0, b=3.5\) and \(k=1\), then by using error bound formula of the bisection method, we get
\[
n \geq \frac{\ln \left[10^{1}(3.5-3.0)\right]}{\ln 2}=2.3219 \approx 3 .
\]

So no more than three iterations are required to obtain an approximation accurate to within \(10^{-1}\).
The given function \(f(x)=x^{2}-2.6 x-2.31\) is continuous on [3.0,3.5], so starting with \(a_{1}=3.0\) and \(b_{1}=3.5\), we compute:
\[
a_{1}=3.0: \quad f(3.0)=-1.1100 \quad \text { and } \quad b_{1}=3.5: \quad f(3.5)=0.8400,
\]
since \(f(3.0) f(3.5)<0\), so that a root of \(f(x)=0\) lies in the interval [3.0, 3.5]. Using bisection formula (when \(n=1\) ), we get:
\[
c_{1}=\frac{a_{1}+b_{1}}{2}=\frac{3.0+3.5}{2}=3.2500 ; \quad f\left(c_{1}\right)=-0.1975 .
\]

Hence the function changes sign on \(\left[c_{1}, b_{1}\right]=[3.2500,3.5]\). To continue, we squeeze from right and set \(a_{2}=c_{1}\) and \(b_{2}=b_{1}\). Then the bisection formula gives
\[
c_{2}=\frac{a_{2}+b_{2}}{2}=\frac{3.2500+3.5}{2}=3.3750 ; \quad f\left(c_{2}\right)=0.3056 .
\]

Finally, the function changes sign on \(\left[c_{1}, c_{2}\right]=[3.25,3.375]\), gives
\[
c_{3}=\frac{a_{3}+b_{3}}{2}=\frac{3.25+3.375}{2}=3.3125,
\]
the value of the third approximation which is accurate to within \(10^{-1}\).

Question 2: Find smallest interval \([a, b]\) with \(a\) and \(b\) are integers and \(b=a+1\) such that the root \((25)^{1 / 3}\) lies in the interval. Use \(x_{0}=a\) to compute second approximation to the root by using Newton's formula. Show that the developed formula converges faster to the root. Marks]

Solution. Let \(x=(25)^{1 / 3}(=2.9240)\) which gives \(f(x)=x^{3}-25\) and let \(a=2\), then \(b=3\) and
\[
f(2)=2^{3}-25=-17 \quad \text { and } \quad f(3)=3^{3}-25=2,
\]
so \(f(2) f(3)<0\). Hence we have the interval \([2,3]\).
Since \(f(x)=x^{3}-25\), so \(f^{\prime}(x)=3 x^{2}\). Using the Newton's iterative formula, we get
\[
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}^{3}-25}{3 x_{n}^{2}}=g\left(x_{n}\right) .
\]

Now using \(x_{0}=2\), we have
\[
x_{1}=x_{0}-\frac{x_{0}^{3}-25}{3 x_{0}^{2}}=3.4167,
\]
and
\[
x_{2}=x_{1}-\frac{x_{1}^{3}-25}{3 x_{1}^{2}}=2.9916,
\]
the second approximation.
The fixed-point form of Newton's formula for this problem is
\[
g(x)=x-\frac{x^{3}-25}{3 x^{2}},
\]
and by taking the derivative, we have
\[
g^{\prime}(x)=1-\frac{\left(3 x^{2}\right)\left(3 x^{2}\right)-\left(x^{3}-25\right) 6 x}{3 x^{2}}=\frac{\left(6 x^{3}-150\right)}{9 x^{3}},
\]
and at \(x=(25)^{1 / 3}\), we get
\[
g^{\prime}\left((25)^{1 / 3}\right)=\frac{\left(6\left((25)^{1 / 3}\right)^{3}-150\right)}{9\left((25)^{1 / 3}\right)^{3}}=0 .
\]

Thus Newton's formula gives faster convergence to the root.

Question 3: Show that the x -value of the intersection point \((x, y)\) of the graphs \(y=x^{3}+2 x-1\) and \(y=\sin x\) is lying in the interval \([0.5,1]\). Then use Secant method to find its second approximation, when \(x_{0}=0.5\) and \(x_{1}=0.55\). Also, find the intersection point.
[5 Marks]

Solution. For the intersection of the graphs, we mean that \(x^{3}+2 x-1=\sin x\) and it gives, \(x^{3}+2 x-1-\sin x=0\). Thus, \(f(x)=x^{3}+2 x-\sin x-1\). Since \(f(x)\) is continuous on \([0.5,1.0]\) and \(f(0.5)=-0.3544, f(1.0)=1.1585\), which shows that \(f(0.5) f(1.0)<0\). Hence the x -value (or root of \(f(x)=0\) ) lies in the interval \([0.5,1.0]\). Applying Secant iterative formula to find the approximation of this root of the equation, we have
\[
x_{n+1}=x_{n}-\frac{\left(x_{n}-x_{n-1}\right)\left(x_{n}^{3}+2 x_{n}-\sin x_{n}-1\right)}{\left(x_{n}^{3}+2 x_{n}-\sin x_{n}-1\right)-\left(x_{n-1}^{3}+2 x_{n-1}-\sin x_{n-1}-1\right)}, \quad n \geq 1
\]

Finding the first approximation using the initial approximations \(x_{0}=0.5\) and \(x_{1}=0.55\), we get
\[
x_{2}=0.55-\frac{(0.55-0.5)\left((0.55)^{3}-2(0.55)-\sin (0.55)-1\right)}{\left((0.55)^{3}-2(0.55)-\sin (0.55)-1\right)-\left((0.5)^{3}-2(0.5)-\sin (0.5)-1\right)}=0.6806
\]
and the second approximation using the initial approximations \(x_{1}=0.55\) and \(x_{2}=0.6806\), we get
\(x_{3}=0.6806-\frac{(0.6806-0.55)\left((0.0 .6806)^{3}-2(0.6806)-\sin (0.6806)-1\right)}{\left((0.0 .6806)^{3}-2(0.6806)-\sin (0.6806)-1\right)-(0.55-0.5)\left((0.55)^{3}-2(0.55)-\sin (0.55)-1\right)}\),
So \(x_{3}=0.6603\) is the second approximation of the x -value of the intersection point \((0.6603,0.61)\).

Question 4: Use the simple Gaussian elimination method, find all values of \(k_{1}\) and \(k_{2}\) for which the following linear system is consistent or inconsistent. Find the solutions when the system is consistent.
\[
\begin{aligned}
x_{1}-2 x_{2}+3 x_{3} & =4 \\
2 x_{1}-3 x_{2}+k_{1} x_{3} & =5 \\
3 x_{1}-4 x_{2}+5 x_{3} & =k_{2}
\end{aligned}
\]

Solution. Writing the given system in the augmented matrix form
\([A \mid b]=\left(\begin{array}{rrrr}1 & -2 & 3 & 4 \\ 2 & -3 & k_{1} & 5 \\ 3 & -4 & 5 & k_{2}\end{array}\right) \equiv\left(\begin{array}{rrrr}1 & -2 & 3 & 4 \\ 0 & 1 & k_{1}-6 & -3 \\ 0 & 2 & -4 & k_{2}-12\end{array}\right) \equiv\left(\begin{array}{rrrr}1 & -2 & 3 & 4 \\ 0 & 1 & \left(k_{1}-6\right) & -3 \\ 0 & 0 & \left(-2 k_{1}+8\right) & k_{2}-6\end{array}\right)\).
CASE I. Inconsistent system (no solution), if we take \(k_{1}=4\) and \(k_{2} \neq 6\), gives
\[
\begin{array}{rlrlr}
x_{1}-2 x_{2} & + & 3 x_{3} & = & 4 \\
x_{2} & + & \left(k_{1}-6\right) x_{3} & = & -3 \\
& & \left(-2 k_{1}+8\right) x_{3} & = & \left(k_{2}-6\right)
\end{array}
\]

CASE II. Consistent system (infinitely many solutions), if we take \(k_{1}=4\) and \(k_{2}=6\), gives
\[
\begin{array}{rlrlr}
x_{1}-2 x_{2}+ & 3 x_{3} & = & 4 \\
x_{2} & + & \left(k_{1}-6\right) x_{3} & = & -3 \\
& & \left(-2 k_{1}+8\right) x_{3} & = & \left(k_{2}-6\right)
\end{array}
\]
gives
\[
\begin{aligned}
& x_{1}-2 x_{2}+\quad 3 x_{3}=4 \\
& x_{2}+\left(k_{1}-6\right) x_{3}=-3 \\
& 0 x_{3}=0
\end{aligned}
\]

Thus the infinitely many solutions
\[
x_{1}=-2+t, \quad x_{2}=-3+2 t, \quad x_{3}=t, \quad t \in R .
\]

CASE III. Consistent system (exactly one solution), if we take \(k_{1} \neq 4\) and \(k_{2} \in R\), gives
\[
\begin{array}{rlrlr}
x_{1}-2 x_{2} & + & 3 x_{3} & = & 4 \\
x_{2} & + & \left(k_{1}-6\right) x_{3} & = & -3 \\
& & \left(-2 k_{1}+8\right) x_{3} & = & \left(k_{2}-6\right)
\end{array}
\]
\(x_{1}=\frac{16 k_{1}+9 k_{2}-2 k_{1} k_{2}-70}{-2 k_{1}+8}, \quad x_{2}=\frac{12 k_{1}+6 k_{2}-k_{1} k_{2}-60}{-2 k_{1}+8}, \quad x_{3}=\frac{k_{2}-6}{-2 k_{1}+8}\), the unique solution.

Question 5: Use LU decomposition by Dollittle's method to find the value(s) of \(\alpha\) for which the following matrix
\[
A=\left(\begin{array}{lll}
1 & 1 & \alpha \\
1 & \alpha & 1 \\
\alpha & 1 & 1
\end{array}\right)
\]
is singular. Compute the unique solution of the linear system \(A \mathbf{x}=[1,-1,-1]^{T}\) by using the largest negative integer value of \(\alpha\).

Solution. Since we know that
\[
A=\left(\begin{array}{rrr}
1 & 1 & \alpha \\
1 & \alpha & 1 \\
\alpha & 1 & 1
\end{array}\right)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
m_{21} & 1 & 0 \\
m_{31} & m_{32} & 1
\end{array}\right)\left(\begin{array}{rrr}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right)=L U
\]

Using \(m_{21}=1=l_{21}, m_{31}=\alpha=l_{31}\), and \(m_{32}=-1=l_{32}\), gives
\[
A \equiv\left(\begin{array}{rrr}
1 & 1 & \alpha \\
0 & \alpha-1 & 1-\alpha \\
0 & 1-\alpha & 1-\alpha^{2}
\end{array}\right) \equiv\left(\begin{array}{rrr}
1 & 1 & \alpha \\
0 & \alpha-1 & 1-\alpha \\
0 & 0 & 2-\alpha^{2}-\alpha
\end{array}\right)=U
\]

Obviously, the original set of equations has been transformed to an upper-triangular form. Thus
\[
A=\left(\begin{array}{rrr}
1 & 1 & \alpha \\
1 & \alpha & 1 \\
\alpha & 1 & 1
\end{array}\right)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
1 & 1 & 0 \\
\alpha & -1 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 1 & \alpha \\
0 & \alpha-1 & 1-\alpha \\
0 & 0 & 2-\alpha^{2}-\alpha
\end{array}\right)=L U
\]
which is the required decomposition of \(A\). The matrix will be singular if
\[
\operatorname{det}(A)=\operatorname{det}(U)=(1)(\alpha-1)\left(2-\alpha^{2}-\alpha\right)=(\alpha-1)(\alpha+2)(1-\alpha)=0
\]
gives, \(\alpha=1\) and \(\alpha=-2\).
To find the unique solution of the given system we take \(\alpha=-1\) and it gives
\[
A=\left(\begin{array}{rrr}
1 & 1 & -1 \\
1 & -1 & 1 \\
-1 & 1 & 1
\end{array}\right)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
1 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 1 & -1 \\
0 & -2 & 2 \\
0 & 0 & 2
\end{array}\right)=L U
\]

To find unique solution we have to take \(\alpha=-1\), and then solve the lower-triangular system
\[
L \mathbf{y}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
1 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right)=\mathbf{b}
\]
and it gives, \(y_{1}=1, \quad y_{2}=-2, \quad y_{3}=-2\). Now solve the upper-triangular system
\[
U \mathbf{x}=\left(\begin{array}{rrr}
1 & 1 & -1 \\
0 & -2 & 2 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{r}
1 \\
-2 \\
-2
\end{array}\right)=\mathbf{y}
\]
and we obtained \(\mathbf{x}=[0,0,-1]^{T}\), the solution of the given system.

Question 6: Which method, Jacobi method or Gauss-Seidel method converges faster, for the solution of following system
\[
\begin{array}{rr}
10 x_{1}-2 x_{2}+x_{3}=9 \\
-2 x_{1}+10 x_{2}-2 x_{3}=12 \\
-2 x_{1}-5 x_{2}+10 x_{3}=18
\end{array}
\]

If \(x^{(0)}=[0,0,0]^{T}\), then using Gauss-Seidel method to find the number of iterations to get an accuracy within \(10^{-4}\).

Solution. Here we will show that the \(l_{\infty}\)-norm of the Gauss-Seidel iteration matrix \(T_{G}\) is less than the \(l_{\infty}\)-norm of the Jacobi iteration matrix \(T_{J}\), that is
\[
\left\|T_{G}\right\|_{\infty}<\left\|T_{J}\right\|_{\infty} .
\]

The Jacobi iteration matrix \(T_{J}\) can be obtained from the given matrix \(A\) as follows
\[
T_{J}=-D^{-1}(L+U)=\left(\begin{array}{rrr}
0 & 1 / 5 & -1 / 10 \\
1 / 5 & 0 & 1 / 5 \\
1 / 5 & 1 / 2 & 0
\end{array}\right)
\]

Thus the \(l_{\infty}\)-norm of the matrix \(T_{J}\) is
\[
\left\|T_{J}\right\|_{\infty}=\max \left\{\frac{3}{10}, \frac{4}{10}, \frac{7}{10}\right\}=\frac{7}{10}=0.7
\]

Similarly, Gauss-Seidel iteration matrix \(T_{G}\) can be obtained as
\[
T_{G}=-(D+L)^{-1} U==\left(\begin{array}{rrr}
0 & 0.2 & -0.10 \\
0 & 0.04 & 0.18 \\
0 & 0.06 & 0.07
\end{array}\right),
\]

So the matrix form of Gauss-Seidel iterative method is and the \(l_{\infty}\)-norm of the matrix \(T_{G}\) is
\[
\left\|T_{G}\right\|_{\infty}=\max \{0.3,0.22,0.13\}=0.3
\]

Since \(\left\|T_{G}\right\|_{\infty}<\left\|T_{J}\right\|_{\infty}\), which shows that Gauss-Seidel method will converge faster than Jacobi method for the given linear system.
Since the Gauss-Seidel iterative method for the given system can be written as
\[
\begin{aligned}
x_{1}^{(k+1)} & =0.1\left(9+2 x_{2}^{(k)}-r x_{3}^{(k)}\right) \\
x_{2}^{(k+1)} & =0.1\left(12+2 x_{1}^{(k+1)}+2 x_{3}^{(k)}\right) \\
x_{3}^{(k+1)} & =0.1\left(18+2 x_{1}^{(k+1)}+5 x_{2}^{(k+1)}\right)
\end{aligned}
\]

Starting with initial approximation \(\mathbf{x}^{(0)}=[0,0,0]^{T}\), we get first approximation \(\mathbf{x}^{(0)}=[0.9,1.38,2.67]^{T}\). To find the number of iterations, we use the error bound formula as
\[
\left\|\mathbf{x}-\mathbf{x}^{(k)}\right\| \leq \frac{\left\|T_{G}\right\|^{k}}{1-\left\|T_{G}\right\|}\left\|\mathbf{x}^{(1)}-\mathbf{x}^{(0)}\right\| \leq 10^{-4}
\]
and it gives
\[
\frac{(0.3)^{k}}{0.7}(2.67) \leq 10^{-4}
\]

Taking \(\ln\) on both sides, we obtain, \(k \geq 8.7619\), that is, \(k=9\).```

