

**KING SAUD UNIVERSITY
COLLEGE OF SCIENCES
DEPARTMENT OF MATHEMATICS**

MATH-244 (Linear Algebra); Final Exam; Semester 1 (1443 H)

Max. Marks: 40

Max. Time: 3 hours

Note: Attempt all the five questions!

Question 1 [4+2+2 marks]:

- Find adjoint of the matrix $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 6 & 2 \\ -2 & 3 & 6 \end{bmatrix}$ and then find A^{-1} .
- Evaluate $\det(\det(A) B^2 A^{-1})$, where A and B are square matrices of order 3 with $\det(A) = 3$ and $\det(B) = 2$.
- Let $A = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 6 & 3 \\ 0 & 2 & 6 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 4 \\ -1 & 0 & 8 \end{bmatrix}$. Explain why the matrices A and B are not row equivalent to each other?

Question 2 [5+3 marks]:

- Find the values of α and β such that the following linear system:

$$\begin{aligned} x - 2y + 3z &= 4 \\ 2x - 3y + \alpha z &= 5 \\ 3x - 4y + 5z &= \beta \end{aligned}$$

has:

- No solution;
- Infinitely many solutions.

- Let $s_1 = 3 - 2x$, $s_2 = 2 + x$, $s_3 = 1 + x - x^2$, $s_4 = x + x^2 - x^3$. Find the values of a, b, c and d such that $1 - 6x - 3x^2 - 4x^3 = as_1 + bs_2 + cs_3 + ds_4$.

Question 3 [4+4 marks]:

- Let $F = \text{span}\{u_1 = (1,1,1,1), u_2 = (0,1,2,1), u_3 = (1,0,-2,3), u_4 = (1,1,2,-2)\}$ in the Euclidean space \mathbb{R}^4 . Then:

- Find $\dim(F)$
- Show that $(1,1,0,1) \notin F$.

- Let $B = \{v_1 = (1,1,2), v_2 = (3,2,1), v_3 = (2,1,5)\}$ and $C = \{u_1, u_2, u_3\}$ be two bases for \mathbb{R}^3 such that

$${}_B P_C = \begin{bmatrix} 1 & 2 & 1 \\ 1 & -1 & 0 \\ -1 & 1 & 1 \end{bmatrix}$$

is the transition matrix from C to B . Find the vectors u_1, u_2 and u_3 .

Question 4 [4+2+2 marks]:

a) Let $w_1 = (0,0,1)$, $w_2 = (0,1,1)$, $w_3 = (1,1,1)$ be vectors in the Euclidean space \mathbb{R}^3 . Then:

- i) Find the angle between w_1 and w_3 .
- ii) By applying the Gram-Schmidt process on $\{w_1, w_2, w_3\}$ to find an orthonormal basis of the Euclidean space \mathbb{R}^3 .

b) Let $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the linear transformation given by $T(x, y) = (x + 4y, 2x + 3y)$. Find:

- i) $\text{Ker}(T)$
- ii) $\dim \text{Im}(T)$

c) Let the linear transformation $T: \mathbb{R}^2 \rightarrow \mathbb{R}^3$ be defined by:

$$T(x, y) = (x + 2y, x - y, 3x + y).$$

Find matrix of the transformation $[T]_B^C$, where B and C are the standard bases of \mathbb{R}^2 and \mathbb{R}^3 , respectively.

Question 5 [4 + 4 marks]:

a) Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$. Find eigenvalue/s of the matrix A and determine one basis of the corresponding eigenspace/s. Then, give reason for the non-diagonalizability of A .

b) Show that the matrix $P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & -1 & -1 \end{bmatrix}$ diagonalizes the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & -1 \\ 1 & 0 & 2 \end{bmatrix}$ and then use this fact to compute A^{-1} .

***!

King Saud University
College of Sciences
Department of Mathematics

Math-244 (Linear Algebra); Mid-term Exam; Semester 2 (1442)

Max. Marks: 30

Time: 2 hours

Note: Attempt all the five questions!

Question 1: [Marks: 3+3]

a) Let $\mathbf{A} = \begin{bmatrix} -1 & 1 & 3 & 0 \\ 1 & 2 & 3 & -2 \\ 0 & -1 & -2 & 7 \\ 2 & 1 & 0 & 6 \end{bmatrix}$. Then:

- i) Find the reduced row echelon form of the matrix \mathbf{A} .
- ii) Use the reduced row echelon form to show that the matrix \mathbf{A} is not invertible.

b) Let $\mathbf{X} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & \sqrt{2} \end{bmatrix}$. Find the value of λ such that $\mathbf{X}^8 - 4\lambda\mathbf{I} = \mathbf{0}$.

Question 2: [Marks: 3+3]

a) Let $\mathbf{X} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$. Find the matrix \mathbf{Y} such that $(2\mathbf{X} + \mathbf{Y})^{-1} = \text{adj}(\mathbf{X})$.

b) Let $\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{bmatrix}$ and $\mathbf{B} = \begin{bmatrix} 1 & bc & a \\ 1 & ca & b \\ 1 & ab & c \end{bmatrix}$. Show that $\det(\mathbf{B}) = -\det(\mathbf{A})$.

Question 3: [Marks: 3+3].

a) Find the value/s of α such that the following linear system

$$\begin{aligned} x + y + \frac{\alpha}{3}z &= 1 \\ x + y + z &= 1 \\ x + \alpha y + z &= 2 \end{aligned}$$

has: (i) no solution (ii) unique solution (iii) infinitely many solutions.

b) Solve the following homogeneous linear system. Why this system cannot be solved by Cramer's Rule?

$$\begin{aligned} x - 2y + 3z &= 0 \\ 3x + y - 2z &= 0 \\ 2x - 4y + 6z &= 0. \end{aligned}$$

Question 4: [Marks: 3+3]

a) Show that $\{1 - x, 1 - x^2, 1 + x + x^2\}$ is a basis of the vector space P_2 of all polynomials in real variable x with degree ≤ 2 .

b) Let $S = \{(1, 0, 1, 1), (1, -1, 2, 1), (1, -2, 3, 1)\}$ generates the vector subspace F of the Euclidean space \mathbb{R}^4 . Find a basis of F contained in S and show that $(0, -2, 7, 6) \notin F$.

Question 5: [Marks: 3+3]

a) Let $B = \{(2, 1), (1, 0)\}$ and $C = \{(1, -2), (0, 1)\}$ be bases of the Euclidean space \mathbb{R}^2 and $v = (1, 2)$. Find the coordinate vector $[v]_B$ and the transition matrix cP_B . Then use the transition matrix to find $[v]_C$.

b) Let $A = \begin{bmatrix} 1 & 1 & 0 & 2 & 3 \\ 2 & 1 & 1 & 1 & 0 \\ -1 & -2 & 1 & 0 & 1 \\ -2 & -2 & 0 & 1 & 4 \end{bmatrix}$. Find:

(i) a basis of $col(A)$ (ii) $rank(A)$ (iii) $nullity(A)$.

####

King Saud University
College of Sciences
Department of Mathematics

Math-244 (Linear Algebra); Mid-term Exam; Semester 1 (1442)

Max. Marks: 30

Time: 2 hours

Note: Attempt all the five questions!

Question 1: [Marks: 2+3]

a) Let $A = \begin{bmatrix} 1 & -1 & 4 & 5 \\ -2 & 1 & -11 & -8 \\ -1 & 2 & 2 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 & 3 & 2 \\ 0 & 1 & 4 & 1 \\ 1 & 0 & 8 & 6 \end{bmatrix}$. Then show that the matrices A and B are row equivalent to each other.

b) Give any two matrices A and B that satisfy:

$$\text{trace}(A+B) = \text{trace}(A) + \text{trace}(B) \quad \text{and} \quad \text{trace}(AB) = \text{trace}(A) \text{trace}(B).$$

Question 2: [Marks: 2+3]

a) Let $A, B \in M_2(\mathbb{R})$ with $|A| = 3$ and $|B| = 6$. Then evaluate $||A|A^t B^2 \text{adj}(A^2)|$.

b) Let $A = \begin{bmatrix} 1 & 0 & \delta \\ 2 & 1 & 2 + \delta \\ 2 & 3 & \delta^2 \end{bmatrix}$. Find the values of δ if the matrix A is not invertible.

Question 3: [Marks: 2+4]

a) Find the values of x and y if $A = \begin{bmatrix} - & 2 & - \\ - & x & - \\ - & y & - \end{bmatrix}$ and $A^{-1} = \begin{bmatrix} 3 & -1 & 2 \\ 2 & 1 & 1 \\ - & - & - \end{bmatrix}$.

b) Find the value/s of α such that the following linear system:

$$\begin{array}{rcl} x + 2y - z & = & 2 \\ x - 2y + 3z & = & 1 \\ x + 2y - (\alpha^2 - 3)z & = & \alpha \end{array}$$

has:

(i) no solution (ii) unique solution (iii) infinitely many solutions.

Question 4: [Marks: 2+3+3]

a) Let $\mathbf{S} = \{(1,1,1,0), (1,2,3,1), (2,0,1,1)\}$ generates the subspace \mathbf{F} of Euclidean space \mathbb{R}^4 . Show that $(1, 1, 1, 1) \notin \mathbf{F}$.

b) Let $\mathbf{B} = \{(1,0,0), (0,1,0), (0,0,1)\}$ and $\mathbf{C} = \{(1,1,1), (1,2,2), (1,1,2)\}$ be bases of the Euclidean space \mathbb{R}^3 and $[\mathbf{v}]_{\mathbf{B}} = [1 \ 2 \ 3]^T$. Find the transition matrix ${}_{\mathbf{C}}\mathbf{P}_{\mathbf{B}}$ and $[\mathbf{v}]_{\mathbf{C}}$.

c) Let $\mathbf{A}^T = \begin{bmatrix} 1 & 2 & 2 & 0 & 0 \\ 2 & 4 & 5 & 2 & 2 \\ 1 & 2 & 3 & 2 & 2 \\ 3 & 6 & 4 & -3 & -4 \end{bmatrix}$. Then find:

(i) a basis of $col(\mathbf{A})$ (ii) $rank(\mathbf{A})$ (iii) $nullity(\mathbf{A})$.

Question 5: [Marks: 2+1+3]

Let $\mathbf{S} = \{\mathbf{v}_1 = (1, -1, 0, 1), \mathbf{v}_2 = (1, 1, 1, 0), \mathbf{v}_3 = (0, 1, 1, 1)\}$ generates the subspace \mathbf{W} of the Euclidean space \mathbb{R}^4 . Then:

a) Show that \mathbf{S} is a basis of \mathbf{W} .

b) Find the angle θ between the vectors \mathbf{v}_1 and \mathbf{v}_2 .

c) Apply the Gram-Schmidt process on \mathbf{S} to obtain an orthonormal basis of \mathbf{W} .

###!

KING SAUD UNIVERSITY
COLLEGE OF SCIENCES
DEPARTMENT OF MATHEMATICS

MATH-244 (Linear Algebra); Final Exam; Semester 1 (1442 H)

Max. Marks: 40

Max. Time: 3 hours

Note: Attempt all the five questions!

Question 1 [3+2+3 marks]:

a) If $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 3 \\ 2 & 1 & 3 \end{bmatrix}$, then find A^{-1} .

b) Evaluate $\det(\det(\det(A) A^2) A) A^{-1}$, where A is a square matrix of order 3 with $\det(A) = 3$.

c) Let $\begin{bmatrix} 1 & 0 & 2 & 0 & b_1 \\ 0 & 1 & 5 & 0 & b_2 \\ 0 & 0 & 0 & 1 & b_3 \end{bmatrix}$ be reduced row echelon form of the augmented matrix of linear system $AX = B$. Explain! Why this system has a solution for any $B \in \mathbb{R}^3$?

Question 2 [5+3 marks]:

a) Find the values of α such that the following linear system:

$$\begin{aligned} x + y + z &= 0 \\ x + \alpha y + z &= 1 \\ x + y + (\alpha-2)^2 z &= 0 \end{aligned}$$

has:

i) No solution;
 ii) Unique solution;
 iii) Infinitely many solutions.

b) Let $v_1 = (1, 2, 0, 3, -1)$, $v_2 = (2, 4, 3, 0, 7)$, $v_3 = (1, 2, 2, 0, 9)$, $v_4 = (-2, -4, -2, -2, -3)$.
 Find a basis of the Euclidean space \mathbb{R}^5 which includes the vectors v_1, v_2, v_3, v_4 .

Question 3 [2+3+3 marks]:

Question 3 [2+3+3 marks]:

- Let $\{x, y\}$ be linearly independent set of vectors in vector space V . Determine whether the set $\{2x, x + y\}$ is linearly independent or not?
- Suppose G is a subspace of the Euclidean space \mathbb{R}^{15} of dimension 3, $S = \{u, v, w\}$

and \mathbf{Q} are two bases of the space \mathbf{G} and ${}_{\mathbf{Q}}\mathbf{P}_{\mathbf{S}} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 1 \end{bmatrix}$ be the transition matrix

Change the basis S to the basis Q . Find $[g]_Q$ where $g = 3v - 5u + 7w$.

from the basis S to the basis Q . Find $[B]_Q$ where S is a basis of degree ≤ 2 with the inner product:

c) Let P_2 be the vector space of polynomials of degree ≤ 2 with the inner product $\langle p, q \rangle = aa_1 + 2bb_1 + cc_1$ for all $p = a + bx + cx^2$, $q = a_1 + b_1x + c_1x^2 \in P_2$. Find $\cos \theta$, where θ is the angle between the polynomials $1 + x + x^2$ and $1 - x + 2x^2$.

Question 4 [3+1+4 marks]:

a) Find an orthonormal basis for the subspace $\mathbf{F} = \text{span}(\mathbf{A})$ of Euclidean space \mathbb{R}^4 , where $\mathbf{A} = \{x_1 = (1, 2, 3, 0), x_2 = (1, 2, 0, 0), x_3 = (1, 0, 0, 1)\}$.

b) Let $\mathbf{S}, \mathbf{T}: \mathbb{R}^n \rightarrow \mathbb{R}^n$ be the linear transformations such that:

$$\mathbf{S}(\mathbf{u}) = \mathbf{T}(\mathbf{u}), \mathbf{S}(\mathbf{v}) = \mathbf{T}(\mathbf{v}) \text{ and } \mathbf{S}(\mathbf{w}) = \mathbf{T}(\mathbf{w}).$$

Show that $\mathbf{S}(\mathbf{x}) = \mathbf{T}(\mathbf{x})$ for all $\mathbf{x} \in \text{span}(\{\mathbf{u}, \mathbf{v}, \mathbf{w}\})$.

c) Let the linear transformation $\mathbf{T}: \mathbb{R}^2 \rightarrow \mathbb{R}^3$ be defined by:

$$\mathbf{T}(\mathbf{x}, \mathbf{y}) = (\mathbf{x} + 2\mathbf{y}, \mathbf{x} - \mathbf{y}, 3\mathbf{x} + \mathbf{y})$$

for all $\mathbf{v} = (\mathbf{x}, \mathbf{y}) \in \mathbb{R}^2$. Find $[\mathbf{T}]_{\mathbf{B}}^{\mathbf{C}}$, $[\mathbf{v}]_{\mathbf{B}}$ and $[\mathbf{T}(\mathbf{v})]_{\mathbf{C}}$, where $\mathbf{B} = \{(1, -2), (2, 3)\}$ and $\mathbf{C} = \{(1, 1, 1), (2, 1, -1), (3, 1, 2)\}$ are bases of \mathbb{R}^2 and \mathbb{R}^3 , respectively.

Question 5 [2× 4 marks]:

Let $\mathbf{A} = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ -3 & 0 & -2 \end{bmatrix}$. Then:

i) Show that 1 and -1 are the eigenvalues of \mathbf{A} and find their algebraic and geometric multiplicities.

ii) Find an invertible matrix P such that $P^{-1}\mathbf{A}P$ is a diagonal matrix.

iii) Show that \mathbf{A}^{-1} exists and it is also diagonalizable.

iv) Compute the matrix \mathbf{A}^{2020} .

***!