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1. Introduction

In [?], Mansour proved the existence and uniqueness of positive con-
tinuous solutions of the nonlinear Fredholm q-integral equations

(1.1) φ(x) = λ(x)

∫ 1

0

(qt/x; q)α−1φ
p(t) dqt (0 ≤ x ≤ 1)

and

(1.2) φ(x) = f(x) + λ(x)

∫ 1

0

(qt/x; q)α−1φ
p(t) dqt (0 ≤ x ≤ 1)

where both of λ and f are positive continuous functions on [0, 1] and
0 < |p| < 1. S Replace p, and φ by 1

m
, and φm on (1.1) and (1.2),

respectively, where m 6∈ {0,−1,−2, . . .}. This yields the Fredholm
q-integral equations

(1.3) φm(x) = λ(x)

∫ 1

0

(qt/x; q)α−1φ(t) dqt (0 ≤ x ≤ 1)

and

(1.4) φm(x) = f(x) + λ(x)

∫ 1

0

(qt/x; q)α−1φ(t) dqt (0 ≤ x ≤ 1)

In this paper, we investigate the asymptotics of solutions of (1.3) and
(??) when f and λ have following power asymptotic near zero

(1.5) λ(x) ∼ xαpm
∞∑

k=−l

λkx
αk,

with λ−l 6= 0 and

(1.6) f(x) ∼ xαpm
∞∑

k=−n

fkx
αk

1
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2. Preliminaries and q-notations

Let q be a positive number which is less than 1, N be the set of
all positive integers, and N0 be the set of all nonnegative integers. In
the following, we follow the notations and notions of q-hypergeometric
functions, the q-gamma function Γq(x), Jackson q-exponential func-
tions eq(x), and the q-shifted factorial as in [3, 4]. By a q-geometric
set A we mean a set that satisfies if x ∈ A then qx ∈ A. Let f be a
function defined on a q-geometric set A. The q−difference operator is
defined by

(2.1) Dqf(x) :=
f(x)− f(qx)

x− qx
, x 6= 0.

Jackson [5] introduced an integral denoted by∫ b

a

f(x) dqx

as a right inverse of the q-derivative. It is defined by

(2.2)

∫ b

a

f(t) dqt :=

∫ b

0

f(t) dqt−
∫ a

0

f(t) dqt, a, b ∈ C,

where

(2.3)

∫ x

0

f(t) dqt := (1− q)
∞∑
n=0

xqnf(xqn), x ∈ C,

provided that the series at the right-hand side of (2.3) converges at
x = a and b. A q-analogue of the Riemann-Liouville fractional integral
operator is introduced in [1] by Al-Salam through

(2.4) Iαq f(x) :=
xα−1

Γq(α)

∫ x

0

(
qt/x; q

)
α−1

f(t) dqt,

α 6∈ {−1,−2, . . .}. Using (2.3), we obtain

(2.5) Iαq f(x) := xα(1− q)α
∞∑
k=0

(qα; q)k
(q; q)k

f(xqk),

which is valid for all α. Let f : A → R be a function. We say that f
is q-decreasing on A if

f(x) ≤ f(qx) for all x ∈ A.
If

f(x) ≥ f(qx) for all x ∈ A
then we call f q-increasing on A. If

Dqf(x) ≥ 0 for all x ∈ A ∩ R+ and Dqf(x) ≤ 0 for all x ∈ A ∩ R−,
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then f is q-increasing on A. Similarly, if

Dqf(x) ≤ 0 for all x ∈ A ∩ R+ and Dqf(x) ≥ 0 for all x ∈ A ∩ R−,

then f is q-decreasing on A. Let B[0, a] be the space of all bounded
functions defined on [0, a] and B+[0, a] be the space of all functions
f ∈ B[0, 1] such that

inf {f(x) : x ∈ [0, a]} > 0.

The q-translation operator is introduced by Ismail in [4] and is defined
on monomials by

(2.6) εyxn := xn(−y/x; q)n,

and it is extended to polynomials as a linear operator.

3. Asymptotic Solutions Near Zero

The following theorem is proved in [7]. Therefore we introduce it
without a proof.

Theorem 3.1. Let p ∈ Z, α ∈ R and {ϕk}∞k=p be a sequence of real
numbers. If the function ϕ(x) has the asymptotic relation

(3.1) φ(x) ∼
∞∑
k=p

ϕkx
αk (x→ 0),

then for m ∈ R with m 6= 0,−1,−2, ......, there holds the asymptotic

(3.2) φm(x) ∼ xαpm
∞∑
k=0

Φp,kx
αk (x→ 0)

where the coefficients Φp,k are expressed in terms of the coefficients ϕk:

Φp,0 =

(
m

0

)
ϕmp ,

Φp,1 =

(
m

1

)
ϕm−1
p ϕp+1,

Φp,2 =

(
m

1

)
ϕm−1
p ϕp+2 +

(
m

2

)
ϕm−2
p ϕ2

p+1,

(3.3)

Φp,3 =

(
m

1

)
ϕm−1
p ϕp+3 +

(
m

2

)(
2

1

)
ϕm−2
p ϕp+1ϕp+2 +

(
m

3

)
ϕm−3
p ϕ3

p+1,
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Φp,4 =

(
m

1

)
ϕm−1
p ϕp+4 +

(
m

2

)
ϕm−2
p

[
ϕ2
p+2 +

(
2

1

)
ϕp+1ϕp+3

]
+

(
m

3

)(
3

1

)
ϕm−3
p ϕ2

p+1ϕp+2 +

(
m

4

)
ϕm−4
p ϕ4

p+1,

etc.

In [7], Kilbas and Saigo proved that if in Theorem 3.1 m ∈ {2, 3, . . .},
then

Φp,k =
m−1∑
i0=0

∑
i1,i2,...,ij

m!

i0!i1!i2! . . . ij!
φi0p φ

i1
p+1 . . . φ

ij
p+j

where the summation is taken over all non-negative integers i1, i2, . . . , ij
such that

0 ≤ i1 ≤ i2 ≤ . . . ≤ ij ≤ k,

i0 + i1 + . . .+ ij = m, i1 + 2i2 + . . .+ jij = k.

Theorem 3.2. Let p ∈ Z and α ∈ R be such that αp > −1. If

(3.4) φ(x) ∼
∞∑
j=p

ϕjx
αj (x→ 0),

then

Iαq φ(x) ∼ xα
∞∑
j=p

ϕjx
jα Γq(jα + 1)

Γq(jα + α + 1)
(x→ 0).

Proof. First we consider (1.4), where λ(x) and f(x) have the asymp-
totics (1.5) and (1.6), respectively. We will seek an asymptotic solution
ϕ(x) of (1.4) in the form (3.4). From (2.5)

Iαq φ(x) = xα(1− q)α
∞∑
k=0

qk
(qα; q)k
(q; q)k

φ(xqk).

Hence, applying (3.1) we have

Iαq φ(x) ∼ xα(1− q)α
∞∑
k=0

qk
(qα; q)k
(q; q)k

∞∑
j=p

ϕjx
αjqkαj

= xα(1− q)α
∞∑
j=p

ϕjx
jα

∞∑
k=0

qk(αj+1) (qα; q)k
(q; q)k

= xα(1− q)α
∞∑
j=p

ϕjx
jα (qαj+α+1)

(qαj + 1)
,
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where we applied the q-binomial theorem in the last step, cf. [3, xvii].
Consequently,

Iαq φ(x) ∼ xα
∞∑
j=p

ϕjx
jα Γq(jα + 1)

Γq(jα + α + 1)
,

and the theorem follows.
�

In view of the asymptotic (1.5) and the general properties of asymp-
totic expansions, see [8, Chapter 1], we have

λ(x)xα−1

Γq(α)

∫ x

0

(qt/x; q)α−1φ(t) dqt

∼ xαpm
∞∑

k=−n

(
l+k−1∑
i=l−n−1

Γq(αi+ 1)

Γq(αi+ α + 1)
λk−i−1ϕi

)
xαk (x→ 0).

Then, taking into account Theorem 3.1 and Lemma 1.6, we obtain
(3.5)

xα(l−n−1)m

∞∑
k=0

Φl−n−1,kx
αk ∼

xαpm
∞∑

k=−n

(
l+k−1∑
i=l−n−1

Γq(αi+ 1)

Γq(αi+ α + 1)
λk−i−1ϕi

)
xαk + xαpm

∞∑
k=−n

fkx
αk (x→ 0).

Theorem 3.3. Let α > 0, p, m ∈ R (m 6= 0,−1,−2, .....) be such
that αp > −1. Assume that as well as l, n, r := (l − n − p − 1)m ∈ Z
such that l − n− 1 > −1/α and r ≥ −n. Let λ(x) and f(x) have the
asymptotics (1.5) and (1.6) and the coefficients ϕk satisfy

(3.6)
l+k−1∑
i=l−n−1

Γq(αi+ 1)

Γq(αi+ α + 1)
λk−i−1ϕi + fk = 0

(k = −n,−n+ 1, ..., r − 1),

and

(3.7) Φl−n−1,k−r =
l+k−1∑
i=l−n−1

Γq(αi+ 1)

Γq(αi+ α + 1)
λk−i−1ϕi + fk

(k = r, r + 1, ....).

Then (1.4) is asymptotically solvable in L1
q(0, a) for some a > 0 and

its asymptotic solution near zero has the form (3.1).
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Proof. Suppose r = (l−n−p−1)m ∈ Z for m ∈ R, (m 6= 0,−1,−2, .....)
such that r ≥ −n. Then (3.5) is equivalent to

xα(r+pm)

∞∑
k=0

Φl−n−1,kx
αk ∼ xαpm

∞∑
k=−n

(
l+k−1∑
i=l−n−1

Γq(αi+ 1)

Γq(αi+ α + 1)
λk−i−1ϕi

)
xαk

+ xαpm
∞∑

k=−n

fkx
αk.

(3.8)

Make the substation µ = k + r on the left hand side of the last
relation and then replace µ by k, this gives

xαpm
∞∑
k=r

Φl−n−1,k−rx
αk ∼ xαpm

∞∑
k=−n

(
l+k−1∑
i=l−n−1

Γq(αi+ 1)

Γq(αi+ α + 1)
λk−i−1ϕi

)
xαk

+ xαpm
∞∑

k=−n

fkx
αk.

(3.9)

Hence, it follows from (3.9) that the coefficients ϕk satisfy (3.6) and
(3.7). Then (1.4) is asymptotically solvable and its asymptotic solution
near zero is given by (3.1). �

Theorem 3.4. Let α > 0,m > 0 and let p, l, n ∈ Z be such that n =
l−p−1 < 0 and (p−l+1)/m ∈ Z and set r = p+(p−l+1)/m > −1/α.
Let λ(x) and f(x) have the asymptotics (1.5) and (1.6), respectively.
Moreover, let the coefficients ϕk satisfy the relations

(3.10) Φr,k+l−p−1 = fk

(k = p− l + 1, p− l + 2, ..., r − l),
and

(3.11) Φr,k+l−p−1 =
l+k−1∑
i=r

Γq(αi+ 1)

Γq(αi+ α + 1)
λk−i−1ϕi + fk

(k = r − l + 1, r − l + 2, ....).

Then (1.4) is asymptotically solvable in L1
q(0, a) and its asymptotic

solution near zero has the form

(3.12) φ(x) ∼
∞∑
k=r

ϕkx
αk (x→ 0).
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Proof. We assume

φ(x) ∼
∞∑
k=r

ϕkx
αk (x→ 0),

and we shall prove that the coefficients ϕk are given by (3.10), (3.11).
Applying the same arguments as in Theorem 3.3, we came to the as-
ymptotic relation
(3.13)

xαrm
∞∑
k=0

Φr,kx
αk ∼ xαpm

∞∑
k=−n

(
l+k−1∑
i=r

Γq(αi+ 1)

Γq(αi+ α + 1)
λk−i−1ϕi

)
xαk

+xαpm
∞∑

k=p−l−1

fkx
αk.

Since m(r − p) ∈ N, the left hand side of (3.13) can be written as

xαrm
∞∑
k=0

Φr,kx
αk = xαpm+α(r−p)m

∞∑
k=0

Φr,kx
αk

= xαpm
∞∑
k=0

Φr,kx
α(k+(r−p)m).

Make the substation µ = k + (r − p)m on the last series and then
replace µ by k, this gives
(3.14)

xαpm
∞∑

k=(r−p)m

Φr,k−(r−p)mx
αk ∼ xαpm

∞∑
k=−n

(
l+k−1∑
i=r

Γq(αi+ 1)

Γq(αi+ α + 1)
λk−i−1ϕi

)
xαk

+xαpm
∞∑

k=p−l+1

fkx
αk.

Equating the coefficients of xαk on (3.14) give (3.10) and (3.11). Then
(1.4) is asymptotically solvable in L1

q(0, a) for some a > 0 and its
asymptotic solution is in the form (3.12). �

Corollary 3.5. Let α > 0, m > 0 and let l be a positive integer such
that l/m ∈ Z and set r = −1 + l/m. Let

λ(x) ∼ x−αm
∞∑
k=l

λkx
αk, f(x) ∼ x−αm

∞∑
k=l

fkx
αk (x→ 0),

with λl 6= 0, fl 6= 0. Then (1.4) is asymptotically solvable and its
asymptotic solution near zero has form (3.12).
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Proof. The proof follows from Theorem 3.4 by substituting with p =
−1, n = l and fk = 0 (k = −l,−l + 1, ....,−l + r) in equations (1.5)
and (1.6). Hence, the coefficients ϕk satisfy

(3.15) Φr,k+l = fk

(k = −l,−l + 1, ....,−l + r),

and

(3.16) Φr,k+l =
l+k−1∑
i=r

Γq(αi+ 1)

Γq(αi+ α + 1)
λk−i−1ϕi + fk

(k = r − l + 1, r − l + 2, .....).

Then (1.4) is asymptotically solvable in L1
q(0, a) for some a > 0 and its

asymptotic solution near zero has the form (3.12). �

Theorem 3.6. Let α > 0,m < 1 (m 6= 0,−1,−2, .....) and let p, l, n ∈
Z be such that n = l − p− 1 < 0 and (p− l + 1)/(1−m) ∈ Z and let
r = p−(p− l+1)/(1−m) > −1/α. Let λ(x)and f(x) have asymptotics
(1.5) and (1.6) and the coefficients ϕk satisfy

(3.17) Φr,k+l−r−1 =
l+k−1∑
i=r

Γq(αi+ 1)

Γq(αi+ α + 1)
λk−i−1ϕi

(k = r − l + 1, r − l + 2, ...., p− l),
and

(3.18) Φr,k+l−r−1 =
l+k−1∑
i=r

Γq(αi+ 1)

Γq(αi+ α + 1)
λk−i−1ϕi + fk

(k = p− l + 1, p− l + 2, .......).

Then (1.4) is asymptotically solvable and its asymptotic solution near
zero has the form (3.12).

Proof. Applying Theorem (3.4) we have

xαpm
∞∑

k=r−l+1

Φr,k−(r−l+1)x
αk ∼ xαpm

∞∑
k=−n

(
l+k−1∑
i=r

Γq(αi+ 1)

Γq(αi+ α + 1)
λk−i−1ϕi

)
xαk

+xαpm
∞∑

k=p−l+1

fkx
αk.

Then the coefficients ϕk satisfy (3.17) and (3.18). Then (1.4) is asymp-
totically solvable and its asymptotic solution near zero has the form
(3.12) �
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4. Asymptotic of the Solution in Some Special Cases

In this section we give asymptotic solutions of (1.4) when λ(x) and
f(x) have the special case:

λ(x) = λxα(pm−l) and f(x) = −xαpm
N∑

k=−n

fkx
αk.

Hence (1.4) takes the form
(4.1)

φm(x) =
λxα(pm−l)

Γq(α)
xα−1

∫ x

0

(qt/x; q)α−1 φ(t) dqt − xαpm
N∑

k=−n

fkx
αk,

where 0 < x < a ≤ ∞, λ 6= 0 and N ≥ −n.

Theorem 4.1. Let α > 0, p, m ∈ R (m 6= 0,−1,−2, ....) and let
l, n, (l − n − p − 1)m ∈ Z be such that l − n − 1 > −1/α and
(l − n− p− 1)m ≥ −n.

(1) When r = (l− n− p− 1)m > N and the coefficients ϕk satisfy

(4.2) ϕk = 0 (k = N + l, N + l + 1, ..., r + l − 2),

(4.3) ϕk =
−fk−l+1Γq(αk + α + 1)

λΓq(αk + 1)

(k = −n+ l − 1,−n+ l, ...., N + l − 1),

and

(4.4) Φl−n−1,k−l+1−r =
λΓq(αk + 1)

Γq(αk + α + 1)
ϕk

(k = r + l − 1, r + l, ......).

Then (4.1) is asymptotically solvable in L1
q(0, a) for some a > 0

and its asymptotic solution near zero has the form

(4.5) φ(x) ∼
l+N−1∑
k=l−n−1

Γq(αk + α + 1)

λΓq(αk + 1)
fk−l+1x

αk +
∞∑

k=r+l−1

ϕkx
αk.

(2) When −n < r ≤ N and the coefficients ϕk satisfy

(4.6) Φl−n−1,k−l+1−r =
λΓq(αk + 1)

Γq(αk + α + 1)
ϕk − fk−l+1

(k = r + l − 1, r + l, ..., N + l − 1),
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(4.7) Φl−n−1,k−l+1−r =
λΓq(αk + 1)

Γq(αk + α + 1)
ϕk

(k = N + l, N + l + 1, .....).

Then (4.1) is asymptotically solvable in L1
q(0, a) for some a > 0

and its asymptotic solution near zero has the form

(4.8) φ(x) ∼
r+l−2∑

k=l−n−1

Γq(αk + α + 1)

λΓq(αk + 1)
fk−l+1x

αk +
∞∑

k=r+l−1

ϕkx
αk.

(3) When r = −n and the coefficients ϕk satisfy

(4.9) Φl−n−1,k−l+1+n =
λΓq(αk + 1)

Γq(αk + α + 1)
ϕk − fk−l+1

(k = −n+ l − 1,−n+ l, ..., N + l − 1),

(4.10) Φl−n−1,k−l+1+n =
λΓq(αk + 1)

Γq(αk + α + 1)
ϕk

(k = N + l, N + l + 1, .....).

Then (4.1) is asymptotically solvable in L1
q(0, a) and its asymp-

totic solution near zero has the form (3.1).

Proof. From (1.5) and (1.6) we obtain λ−l = λ, λj = 0 for j > l,
and fk = 0 for k > N. Hence, conditions (4.2)-(4.4) imply that the
conditions (3.6) and (3.7) of Theorem 3.3 are satisfied. Hence φ has
the asymptotic (3.1) where the coefficients are given by (4.2)- (4.4).
That is φ has the asymptotic (4.5). This proves (1) of the Theorem.
The proofs of the points (2), (3) are similar to the proof of (1) and so
they are omitted. �

Corollary 4.2. Under the assumptions (4.2)- (4.4) of Theorem 4.1(1),
the solution φ(x) of (4.1) has the asymptotic

φ(x) =
l+N−1∑
k=l−n−1

Γq(αk + α + 1)

λΓq(αk + 1)
fk−l+1x

αk

(4.11) +ϕr+l−1x
α(r+l−1) +O(xα(r+l)) (x→ 0),

where

(4.12) ϕr+l−1 =
Γq(α(r + l) + 1)

λΓq(α(r + l − 1) + 1)
×
(

Γq(α(l − n) + 1)f−n
λΓq(α(l − n− 1) + 1)

)m
.
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Furthermore, if N > −n, we have

φ(x) =
l+N−1∑
k=l−n−1

Γq(αk + α + 1)

λΓq(αk + 1)
fk−l+1x

αk

(4.13) +ϕr+l−1x
α(r+l−1) + ϕr+lx

α(r+l) +O(xα(r+l+1)) (x→ 0),

where ϕr+l−1 is given by (4.12) and

ϕr+l =
mΓq(α(r + l + 1) + 1)

λΓq(α(r + l) + 1)

(
Γq(α(l − n) + 1)f−n
λΓq(α(l − n− 1) + 1)

)m−1

× Γq(α(l − n+ 1) + 1)f−n+1

λΓq(α(l − n) + 1)
.

(4.14)

Proof. Substitute with k = r + l − 1 in (4.4). This gives

ϕr+l−1 =
Γq(α(r + l) + 1)

λΓq(α(r + l − 1) + 1)
Φl−n−1,0

=
Γq(α(r + l) + 1)

λΓq(α(r + l − 1) + 1)
ϕml−n−1.

Then put k = −n in (3.6) we get

ϕl−n−1 =
Γq(α(l − n) + 1)

λΓq(α(l − n− 1) + 1)
f−n.

Then we are done. Similarly if N > −n. �

Corollary 4.3. Under the assumptions of Theorem 4.1(2), the solution
φ(x) of (4.1) has the asymptotic

φ(x) =
r+l−2∑

k=l−n−1

Γq(αk + α + 1)

λΓq(αk + 1)
fk−l+1x

αk

(4.15) +ϕr+l−1x
α(r+l−1) +O(xα(r+l)) (x→ 0),

where
(4.16)

ϕr+l−1 =
Γq(α(r + l) + 1)

λΓq(α(r + l − 1) + 1)
×
{
fr +

(
Γq(α(l − n) + 1)f−n
λΓq(α(l − n− 1) + 1)

)m}
.

Furthermore, if N ≥ r > −n+ 1, we have

φ(x) =
r+l−2∑

k=l−n−1

Γq(αk + α + 1)

λΓq(αk + 1)
fk−l+1x

αk
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(4.17) +ϕr+l−1x
α(r+l−1) + ϕr+lx

α(r+l) +O(xα(r+l+1)) (x→ 0),

where ϕr+l−1 is given by(4.16) and

ϕr+l =
mΓq(α(r + l + 1) + 1)

λΓq(α(r + l) + 1)
×
(

Γq(α(l − n) + 1)f−n
λΓq(α(l − n− 1) + 1)

)m−1

× Γq(α(l − n+ 1) + 1)f−n+1

λΓq(α(l − n) + 1)
.

(4.18)

Proof. Substitute with k = r + l − 1 in (4.7). This gives

ϕr+l−1 =
Γq(α(r + l) + 1)

λΓq(α(r + l − 1)− 1)
Φl−n−1,0

=
Γq(α(r + l) + 1)

λΓq(α(r + l − 1) + 1)
ϕml−n−1

=
Γq(α(r + l) + 1)

λΓq(α(r + l − 1) + 1)

{
fr +

(
Γq(α(l − n) + 1)f−n
λΓq(α(l − n− 1) + 1)

)m}
.

Similarly if N ≥ r > −n+ 1 �

Corollary 4.4. Under the assumptions of Theorem 4.1(3), the solution
φ(x) of (4.1) has the asymptotic

(4.19) φ(x) = Axα(l−n−1) +O(xα(l−n)) (x→ 0),

where ξ = A is a solution of the equation

(4.20) ξm − λΓq(α(l − n− 1) + 1)

Γq(α(l − n) + 1)
ξ + f−n = 0.

Furthermore, if N ≥ −n+ 1 and

λΓq(α(l − n) + 1)

Γq(α(l − n− 1) + 1)
6= mAm−1,

we have

(4.21) φ(x) = Axα(l−n−1) +Bxα(l−n) +O(xα(l−n+1)) (x→ 0),

where

B =

[
λΓq(α(l − n) + 1)

Γq(α(l − n− 1) + 1)
−mAm−1

]−1

f−n+1.

Proof. Substitute with k = l − n− 1 in (4.9). This gives

Φl−n−1,0 =
λΓq(α(l − n− 1) + 1)

Γq(α(l − n) + 1)
ϕl−n−1 − f−n,
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ϕml−n−1 −
λΓq(α(l − n− 1) + 1)

Γq(α(l − n) + 1)
ϕl−n−1 + f−n = 0.

Then ϕl−n−1 = A is a solution of equation (4.20). Now we prove (4.21)
if N ≥ −n+ 1 and

λΓq(α(l − n) + 1)

Γq(α(l − n− 1) + 1)
6= mAm−1,

put k = l − n in (4.9). We obtain

Φl−n−1,1 =
λΓq(α(l − n) + 1)

Γq(α(l − n+ 1) + 1)
ϕl−n − f−n+1,

mϕm−1
l−n−1ϕl−n =

λΓq(α(l − n) + 1)

Γq(α(l − n+ 1) + 1)
ϕl−n − f−n+1,

where we used (3.3). Since A = ϕl−n−1 and B = ϕl−n, then we have

B =

[
λΓq(α(l − n) + 1)

Γq(α(l − n− 1) + 1)
−mAm−1

]−1

f−n+1.

�

In the remaining of this section we derive an exact solution of the
equation

(4.22) φm(x) =
λxα(pm−l)

Γq(α)
xα−1

∫ x

0

(qt/x; q)α−1 φ(t) dqt − bxα(pm−n)

(0 < x < a ≤ ∞).

From Corollary 4.4, the solution φ(x) of (4.22) has the asymptotic
(4.19) near zero, where ξ = A is a solution of equation

ξm − λΓq(α(l − n− 1) + 1)

Γq(α(l − n) + 1)
ξ + b = 0.

Theorem 4.5. Let α > 0, β > −1 (β 6= 0), and l ∈ R with l 6= −α
and l 6= −α− β. For a, b ∈ R (a 6= 0) let the equation

(4.23) ξ1+(l+α)/β − λΓq(β + 1)

Γq(β + α + 1)
ξ − b = 0,

be solvable and let ξ = c be its solution. Then the nonlinear integral
equation

(4.24) φ1+(l+α)/β(x) =
λxl

Γq(α)
xα−1

∫ x

0

(qt/x; q)α−1 φ(t) dqt+ bxα+β+l

(0 < x < a ≤ ∞)
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is solvable and its solution is given by

(4.25) φ(x) = cxβ.

Proof. We apply Corollary 4.4 with m = 1 + α+γ
β
, γ = α(pm − l),

and α(pm − n) = α + β + γ. Then the solution is given by φ(x) =
cxβ + O(xβ+α). But a direct substitution verifies that φ(x) = cxβ is a
solution of

ξm − λΓq(l − n− α + 1)

Γq(n− l + 1)
ξ − b = 0.

�

Now we consider the homogeneous equation associated with (4.24)
which is

(4.26)

φ1+(l+α)/β(x) =
λxl

Γq(α)
xα−1

∫ x

0

(qt/x; q)α−1 φ(t) dqt (0 < x < a ≤ ∞).

According to Theorems 3.1 and (??) we obtain the following result

Theorem 4.6. Let the conditions of Theorem 4.5 are satisfied and let
ξ = c be the unique solution of (4.23).

(i) If −1 < (l + α)/β < 0, then (4.25) is the unique solution of
(4.26) in the space C[0, a] for some a > 0. If in additionally,
λ, b, and C are positive numbers, then this solution belongs to
C+[0, d].

(ii) If (α + l)/β > 0, a, b, and c are positive numbers, then (4.25)
is the unique solution of (4.26) in C+[0, 1].

Remark 4.7. In [6, PP. 441–442] Karapetyants et al. studied the exis-
tence of positive solutions of the algebraic equation

(4.27) ξm − dξ − b = 0,

with m > 0, m 6= 1 and a, b ∈ R−{0}. They investigated the positive
solvability of (4.27) by using the properties of the function

f(ξ) = ξm − dξ − b.

Set

(4.28) c0 :=

(
d

m

) 1
m−1

, E := f(c0).

The authors of [6] obtained the following result which we state with-
out proof.
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Theorem 4.8. Let m > 0, m 6= 1 and a, b ∈ R − {0}. Let E and c0

be as in (4.28). Equation (4.27)

(i) does not have positive solutions if either d < 0, b < 0 or d >
0, b < 0, m > 1, E > 0 or d > 0, b > 0, 0 < m < 1, E < 0;

(ii) has a unique positive solution
ii.1 ξ = c1 > 0 if d < 0, b > 0;
ii.2 ξ = c1 > c0 > 0 if either d > 0, b < 0, 0 < m < 1 or

d > 0, b > 0, m = 1;
ii.3 ξ = c0 > 0 if E = 0 c1 > c0 > 0 if either and either

d > 0, b < 0, m > 1 or d > 0, b > 0, 0 < m < 1
(iii) has two positive solutions ξ = c2 and ξ = c3, 0 < c2 < c0 < c3, if

either d > 0, b < 0, m > 1, E < 0 or d > 0, b > 0, 0 < m < 1,
E > 0.

5. Asymptotic solution of linear equation in general case

In this section we investigate the special case m = 1 of (1.4) when
0 < α < 1. In other words, we give the asymptotic of the equation

(5.1) φ(x) =
λ(x)

Γq(α)
xα−1

∫ x

0

(qt/x; q)α−1 φ(t) dqt + f(x)

(0 < x <∞, 0 < α < 1).

In [2, P.214], the authors studied (1.4) for all α > 0 when λ(x) = λ for
all x ∈ (0, a], and f ∈ L1

q[0, a] where a is a positive number satisfying
the inequality

|λ|aα(1− q)α < 1.

They proved that the q-integral equation (5.1) under the previous con-
ditions has a unique solution

φ(x) = f(x) + λxα−1

∫ x

0

(qt/x; q)α−1ε
−qαteα,α(λtα; q)f(t) dqt,

in the space L1
q[0, a] where ε is the q-translation operator defined in (2.6).

Theorem 5.1. Let f(x) and λ(x) have the asymptotics as x→ 0

(5.2) f(x) ∼
∞∑

k=−1

fkx
αk,

and

(5.3) λ(x) ∼
∞∑

k=−1

λkx
αk.
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Assume that

(5.4) λ−1 6=
Γq(αk + α + 1)

Γq(αk + 1)
(k = −1, 0, 1, ....).

Then the unique power asymptotic solution φ(x) of (5.1) near zero
in the space of all continuous functions is given by the form φ(x) ∼∑∞

k=−1 ϕkx
αk, where ϕk is given by

(5.5)

ϕk =

[
1− Γq(αk + 1)

Γq(αk + α + 1)
λ−1

]−1

×

[
k−1∑
i=−1

Γq(αi+ 1)λk−i−1

Γq(αi+ α + 1)
ϕi + fk

]

(k = −1, 0, 1, 2, ......).

Proof. Using (3.11) we obtain

Φ−1,k+1 =
k∑

i=−1

Γq(αi+ 1)

Γq(αi+ α + 1)
λk−i−1ϕi + fk (k = −1, 0, 1, ...).

Substitute with p = −1 in (3.4) yields

(5.6) φ(x) ∼
∞∑

j=−1

ϕjx
αj,

and from (3.2) with p = −1 and m = 1

(5.7) φ(x) ∼ x−α
∞∑
k=0

Φ−1,kx
αk =

∞∑
j=−1

Φ−1,j+1x
αj.

Compared to coefficients of xαj in (5.6) and (5.7) we obtain

Φ−1,j+1 = ϕj (j = −1, 0, 1, ....).

So, we have the following formulas for the coefficients ϕk

ϕk =
k∑

i=−1

Γq(αi+ 1)λk−i−1

Γq(αi+ α + 1)
ϕi + fk (k = −1, 0, 1, ...),

equivalently
(5.8)[
1− Γq(αk + 1)

Γq(αk + α + 1)
λ−1

]
ϕk =

k−1∑
i=−1

Γq(αi+ 1)λk−i−1

Γq(αi+ α + 1)
ϕi+fk (k = −1, 0, 1, ...).

Hence if (5.4) satisfied, asymptotic solution φ(x) of equation (5.1) is
given by the form (5.6) where ϕk given by (5.5). �
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Theorem 5.2. Let f(x) and λ(x) have the asymptotics (5.2) and
(5.3), respectively as x → 0. Assume that there exists a number j ∈
{−1, 0, 1, ....} such that

(5.9) λ−1 =
Γq(αj + α + 1)

Γq(αj + 1)
.

If the coefficients fk (k = −1, 0, 1, ...., j) in the asymptotic expansion
(5.2) satisfy the relation

(5.10)

j−1∑
i=−1

Γq(αj + 1)λj−i−1

Γq(αi+ α + 1)
ϕi + fj = 0,

then the unique power asymptotic solution φ(x) of equation (5.1) is
given by

(5.11) φ(x) ∼ cxαj
∞∑

k=−1
k 6=j

ϕkx
αk,

where c is an arbitrary constant. If the condition (5.10) is not satisfied,
then equation (5.1) does not have any asymptotic solution of the form
(5.6).

Proof. Using Theorem 5.1 and suppose (5.4) is not valid. This means
there exists a number j ∈ {−1, 0, 1, ....} such that (5.9) holds. In this
case the coefficients fk (k = −1, 0, 1, ...., j) in the asymptotic expansion
(5.2) satisfy the relation (5.10), where ϕi (i = −1, 0, 1, ..., j − 1) are
expressed via fi (i = −1, 0, 1, ..., j−1) by means of (5.5). For example,
when j = −1, 0, 1, the relations (5.9) and (5.10) have the form

λ−1 =
1

Γq(1− α)
f−1 = 0 for j = −1

λ−1 = Γq(α + 1) λ0ϕ−1 + f0 = 0 for j = 0

λ−1 =
Γq(2α + 1)

Γq(α + 1)
Γq(α + 1)λ1ϕ−1 + λ0ϕ0 + f1 = 0 for j = 1.

Thus if condition (5.10) is satisfied, then the asymptotic solution of
(5.1) has the form (5.11), where c is an arbitrary constant and ϕk (k 6=
j) are given by (5.5). If condition (5.10) is not satisfied, equation (5.1)
does not have any asymptotic solution of the form (5.6) �

Theorem 5.3. Let

(5.12) f(x) ∼
∞∑
k=0

fkx
αk,
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and λ(x) has the asymptotic (5.3),as x→ 0, and let condition (5.4) be
satisfied. Then the unique power asymptotic solution φ(x) of equation
(5.1) is given by the form

(5.13) φ(x) ∼
∞∑
k=0

ϕkx
αk,

where ϕk (k ∈ N0) are given by
(5.14)

ϕk =

[
1− Γq(αk + 1)

Γq(αk + α + 1)
λ−1

]−1

×

[
k−1∑
i=0

Γq(αk + 1)λk−i−1

Γq(αi+ α + 1)
ϕi + fk

]
.

Proof. If λ(x) has the asymptotic (5.2), then (5.8) takes the form

(1− Γq(1− α)λ−1)ϕ−1 = 0,

(5.15)[
1− Γq(αk + 1)

Γq(αk + α + 1)
λ−1

]
ϕk =

k−1∑
i=−1

Γq(αk + 1)λk−i−1

Γq(αi+ α + 1)
ϕi+fk (k = 0, 1, ...).

When condition (5.4) holds, ϕ−1 = 0 and hence the asymptotic solution
(5.6) of equation (5.1) has the form (5.13), where ϕk (k = 0, 1, 2, ...) are
given by (5.14). �

Theorem 5.4. Assume that the functions f(x) and λ(x) have the
asymptotics (5.12) and (5.3), respectively, as x → 0. If λ−1 = 1, then
the unique power asymptotic solution φ(x) of equation (5.1) in the space
L1
q[0, a] for some a > 0 is given by

(5.16) φ(x) ∼ cx−α +
∞∑
k=0

ϕkx
αk,

where c is an arbitrary constant and ϕk (k ∈ N0) are found from (5.14).
Assume there exists a number j ∈ {−1, 0, 1, ....} such that

(1− Γq(1− α)λ−1)ϕ−1 = 0 (j = −1)

and

(5.17)

j−1∑
i=−1

Γq(αj + 1)λj−i−1

Γq(αi+ α + 1)
ϕi + fj = 0 (j ∈ N0).

If the coefficients fk (k = 0, 1, ...., j) in the asymptotic expansion (5.12)
satisfy the relation

(5.18)
k−1∑
i=0

Γq(αk + 1)λk−i−1

Γq(αi+ α + 1)
ϕi + fk = 0,
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then the unique power asymptotic solution φ(x) of equation (5.1) is
given by

(5.19) φ(x) ∼ cxαj +
∞∑
k=0
k 6=j

ϕkx
αk,

where c is an arbitrary constant.

Proof. If condition (5.4) is not valid, then there exists a number j ∈
{−1, 0, 1, ....} such that (5.9) holds. Then (5.10) has the form (5.17).
When λ−1 = 1, the asymptotic solution φ(x) of equation (5.1) has the
form (5.16), where c is an arbitrary constant and ϕk (k = 0, 1, 2, ...)
are found from (5.14). If λ−1 6= 1 and (5.17) holds, then ϕ−1 = 0
and coefficients fk (k = 0, 1, ...., j) in the asymptotic expansion (5.12)
satisfy the relation (5.18), where ϕi (i = 0, 1, 2, ..., j − 1) are expressed
via fi (i = 0, 1, ...., j − 1) by formulas (5.14). In this case the the
asymptotic solution φ(x) of equation (5.1) has the form (5.19), where
c is an arbitrary constant. �

Theorem 5.5. Let the functions f(x) and λ(x) have asymptotic of the
forms (5.12) and (5.3), respectively. Then the unique power asymptotic
solution φ(x) of equation (5.1) with any α > 0 is given by (5.13), where
ϕk (k = 0, 1, ....) are found from

(5.20) ϕ−1 = 0, ϕ0 = f0, ϕk =
k−1∑
i=0

λk−1−iΓq(αi+ 1)

Γq(α(i+ 1) + 1)
ϕi + fk.

Proof. This proof according to Theorem 5.4. �

Now, we use Theorem 5.5 to give asymptotics of φ(x) as x→ 0 when
f(x) has the asymptotic (5.12).

Corollary 5.6. The asymptotic solution of the linear Volterra q-integral
equation

φ(x) =
λxα−1

Γq(α)

∫ x

0

(qt/x; q)α−1φ(x) dqt+ f(x) (x > 0)

is given by

φ(x) =
∞∑
n=0

λn

Γq(αn+ 1)

[
n∑
k=0

fkλ
−kΓq(αk + 1)

]
xαn.

Proof. We apply Theorem 5.5 with λ(x) = λ. That is in (5.3)

λk = 0 for all k 6= 0 and λ0 = 1.
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Hence, the coefficients ϕk of the solution (5.13) satisfy the first order
difference equation

ϕk −
λ

Γq(αk + 1)
ϕk−1 = fk (k ∈ N), ϕ0 = f0.

Set ψk = ϕkλ
−kΓq(αk + 1) (k ≥ 1). Then ψk satisfies the difference

equation

ψk − ψk−1 = fkλ
−kΓq(αk + 1).

Hence ψn =
∑n

k=0 fkλ
−kΓq(αk + 1). Consequently,

ϕn =
λn

Γq(αn+ 1)

n∑
k=0

fkλ
−kΓq(αk + 1),

which proves the Corollary. �

Example 5.7. Equation (5.1) with λ(x) = λxα(m−1)

(5.21) φ(x) =
λxαm−1

Γq(α)

∫ x

0

(qt/x; q)α−1 φ(t) dqt + f(x)

(0 < x < ∞, 0 < α < 1, m = 1, 2, ...; λ 6= 0) and f(x) has the
asymptotic (5.2). In this case f(x) has the form

f(x) = f−1x
−α + f0(xα),

f0(z) :=
∑∞

k=0 fkz
k is an entire function in zα. Hence,

(5.22) λm−1 = λ, λk = 0 (k = −1, 0, 1, ....; k 6= m− 1),

in (5.3) and therefore the relation (5.20) takes the form

(5.23) ϕk = fk (k = −1, 0, 1, ...,m− 2),

ϕk =
Γq(αk + 1)λ

Γq[α(k −m+ 1) + 1]
ϕk−m + fk (k = m− 1,m, ....).

Thus we obtain for k = −1, 0, 1, ...,m− 2;n = 1, 2, ..., that

ϕnm+k =
Γq[α(nm+ k) + 1]

Γq[α(nm+ k −m+ 1) + 1]
λϕ(n−1)m+k + fnm+k.

The asymptotic of solution φ(x) of equation (5.21)

φ(x) ∼
m−2∑
k=−1

∞∑
n=0

[
n∑
j=1

λn−j

(
n∏

i=j+1

Γq(α(im+K) + 1)

Γq(α(im−m+K + 1) + 1)

)]
×

xα(nm+k)

Γq(α(nm+ k) + 1)
.
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Example 5.8. The equation

(5.24) φ(x) =
λxαm−1

Γq(α)

∫ x

0

(qt/x; q)α−1 φ(t) dqt +
d

xα
+ beq(x

α(1− q))

(0 < xα(1− q) < 1; 0 < α < 1;m = 1, 2, . . .).

Hence,

f−1 = d, fk =
b

Γq(k + 1)
(k = 0, 1, 2, ...).

Consequently, equation (5.24) has the asymptotic solution, as x→ 0,

φ(x) ∼ d
∞∑
n=0

λn
n−1∏
i=0

Γq[α(im− 1) + 1]

Γq(αim+ 1)
xα(mn−1)

+ b
m−2∑
k=−1

∞∑
n=1

[
n∑
j=1

λn−j

Γq(jm+ k + 1)

n−1∏
i=j

Γq(α(im+K) + 1)

Γq(α(im+K + 1) + 1)

]
xα(nm+k).

6. Exact solutions of linear equations

In the section we show that in some cases the asymptotic solution
φ(x) of the linear equation (5.1) with certain conditions on λ(x) and
f(x) gives the exact solution. This result is a q-analogue of the result
introduced by Saigo and Kilbas in [9]. Consider (5.1) with λ(x) = λx−α

and

f(x) = f1x
−α + f0(xα)

where f0(z) :=
∑∞

k=0 fkz
k is an analytic function of zα in a disk around

zero, say |zα| < R . In this case we have the integral equation

(6.1) φ(x) =
λ

xΓq(α)

∫ x

0

(qt/x; q)α−1 φ(t) dqt + f(xα)

(0 < xα < R, 0 < α < 1, λ 6= 0),

That is

λ−1 = λ, λk = 0 (k ∈ N0)

in (5.3) and therefore the relation in (5.8) can be simplified to

(6.2)

[
1− Γq(αk + 1)

Γq(αk + α + 1)
λ

]
ϕk = fk (k = −1, 0, 1, ...).

Condition (5.4) takes the form

(6.3) λ 6= Γq(αk + α + 1)

Γq(αk + 1)
(k = −1, 0, 1, ....).
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Let (6.3) hold. Then from (6.2) we obtain

ϕk =

[
1− Γq(αk + 1)

Γq(αk + α + 1)
λ

]−1

fk (k = −1, 0, 1, ...),

and the asymptotic solution (5.6) has the form

(6.4) φ(x) ∼
∞∑

k=−1

[
1− Γq(αk + 1)

Γq(αk + α + 1)
λ

]−1

fkx
αk as x→ 0.

Since[
1− Γq(αk + 1)

Γq(αk + α + 1)
λ

]−1

∼ (1− λ(1− q)α)−1 (k →∞) ,

the power series on the left hand side of (6.4) is an analytic function
in zα for |zα < R| and the asymptotic solution give an exact solution.
If (6.3) does not hold and there exists a number j ∈ {−1, 0, 1, ...} such
that

(6.5) λ =
Γq(αj + α + 1)

Γq(αj + 1)
,

the condition of the asymptotic solvability (5.10) takes the simple form

(6.6) fj = 0,

and the asymptotic solution of equation (6.1) has the form

(6.7) φ(x) ∼ cxαj +
∞∑

k=−1
k 6=j

[
1− Γq(αk + 1)Γq(αj + α + 1)

Γq(αk + α + 1)Γq(αj + 1)

]−1

fkx
αk.

Similarly, the power series on the right hand side of (6.7) represents an
analytic function in zα for |zα| < R and it is the exact solution in this
case.

In the following examples we get exact solutions of (6.1) for certain
choices of the function f0(xα).

Example 6.1. The equation

(6.8) φ(x) =
λ

xΓq(α)

∫ x

0

(qt/x; q)α−1 φ(t) dqt + bxαl

(0 < x <∞, 0 < α < 1, λ 6= Γq(αl + α + 1)

Γq(αl + 1)
)

and l ∈ {−1, 0, 1, .....} has the solution

φ(x) =

[
1− Γq(αl + 1)

Γq(αl + α + 1)
λ

]−1

bxαl.
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It is worth noting that the homogeneous equation

Γq(αl + 1)

Γq(αl + α + 1)
φ(x) =

1

xΓq(α)

∫ x

0

(qt/x; q)α−1 φ(t) dqt

(0 < x <∞, 0 < α < 1),

for l = −1, 0, 1, ..... has the solution φ(x) = cxαl with c is an arbitrary
constant.

Example 6.2. The equation

(6.9) φ(x) =
λ

xΓq(α)

∫ x

0

(qt/x; q)α−1 φ(t) dqt +
d

xα
+ beq(x

α(1− q))

(0 < xα(1− q) < 1, 0 < α < 1),

eq(x
α(1− q)) =

∑∞
j=0

xαj

Γq(j+1)
, has the solution

φ(x) =
d

1− Γq(1− α)λ
x−α+b

∞∑
k=0

[
1− Γq(αk + 1)

Γq(αk + α + 1)
λ

]−1
xαk

Γq(k + 1)
.

If (6.3) holds, the equation

φ(x) =
1

xΓq(α)Γq(1− α)

∫ x

0

(qt/x; q)α−1 φ(t) dqt + beq(x
α(1− q))

(0 < xα(1− q) < 1, 0 < α < 1),

and

φ(x) =
Γq(αj + α + 1)

xΓq(αj + 1)Γq(α)

∫ x

0

(qt/x; q)α−1 φ(t) dqt+
d

xα
+b

[
eq(x

α(1− q))− xαj

Γq(j + 1)

]
(0 < x <∞, 0 < α < 1, j ∈ {0, 1, 2, ....}) have solution

φ(x) = cx−α + b
∞∑
k=0

[
1− Γq(αk + 1)

Γq(αk + α + 1)Γq(1− α)

]−1
xαk

Γq(k + 1)
,

and

φ(x) = cx−αj +
dΓq(αj + 1)x−α

Γq(αj + 1)− Γq(1− α)Γq(αj + α + 1)

+ b

∞∑
k=0
k 6=j

[
1− Γq(αk + 1)Γq(αj + α + 1)

Γq(αk + α + 1)Γq(αj + 1)

]−1
xαk

Γq(k + 1)
,

respectively, where c is an arbitrary constant.
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