ASYMPTOTICS OF SOLUTIONS OF NONLINEAR ABEL-VOLTERRA q-INTEGRAL EQUATIONS NEAR ZERO

ZEINAB.S.I. MANSOUR AND NUHA MUATAZ

Abstract. lalalal

1. INTRODUCTION

In [?], Mansour proved the existence and uniqueness of positive continuous solutions of the nonlinear Fredholm q-integral equations

(1.1)
$$\phi(x) = \lambda(x) \int_0^1 (qt/x;q)_{\alpha-1} \phi^p(t) d_q t \quad (0 \le x \le 1)$$

and

(1.2)
$$\phi(x) = f(x) + \lambda(x) \int_0^1 (qt/x;q)_{\alpha-1} \phi^p(t) d_q t \quad (0 \le x \le 1)$$

where both of λ and f are positive continuous functions on [0, 1] and 0 < |p| < 1. S Replace p, and ϕ by $\frac{1}{m}$, and ϕ^m on (1.1) and (1.2), respectively, where $m \notin \{0, -1, -2, \ldots\}$. This yields the Fredholm q-integral equations

(1.3)
$$\phi^m(x) = \lambda(x) \int_0^1 (qt/x;q)_{\alpha-1} \phi(t) \, d_q t \quad (0 \le x \le 1)$$

and

(1.4)
$$\phi^m(x) = f(x) + \lambda(x) \int_0^1 (qt/x;q)_{\alpha-1} \phi(t) d_q t \quad (0 \le x \le 1)$$

In this paper, we investigate the asymptotics of solutions of (1.3) and (??) when f and λ have following power asymptotic near zero

(1.5)
$$\lambda(x) \sim x^{\alpha pm} \sum_{k=-l}^{\infty} \lambda_k x^{\alpha k},$$

with $\lambda_{-l} \neq 0$ and

(1.6)
$$f(x) \sim x^{\alpha pm} \sum_{k=-n}^{\infty} f_k x^{\alpha k}$$

ZEINAB.S.I. MANSOUR AND NUHA MUATAZ

2. Preliminaries and q-notations

Let q be a positive number which is less than 1, \mathbb{N} be the set of all positive integers, and \mathbb{N}_0 be the set of all nonnegative integers. In the following, we follow the notations and notions of q-hypergeometric functions, the q-gamma function $\Gamma_q(x)$, Jackson q-exponential functions $e_q(x)$, and the q-shifted factorial as in [3,4]. By a q-geometric set A we mean a set that satisfies if $x \in A$ then $qx \in A$. Let f be a function defined on a q-geometric set A. The q-difference operator is defined by

(2.1)
$$D_q f(x) := \frac{f(x) - f(qx)}{x - qx}, \quad x \neq 0.$$

Jackson [5] introduced an integral denoted by

$$\int_{a}^{b} f(x) \, d_q x$$

as a right inverse of the q-derivative. It is defined by

(2.2)
$$\int_{a}^{b} f(t) d_{q}t := \int_{0}^{b} f(t) d_{q}t - \int_{0}^{a} f(t) d_{q}t, \ a, b \in \mathbb{C},$$

where

(2.3)
$$\int_0^x f(t) \, d_q t := (1-q) \sum_{n=0}^\infty x q^n f(xq^n), \ x \in \mathbb{C},$$

provided that the series at the right-hand side of (2.3) converges at x = a and b. A q-analogue of the Riemann-Liouville fractional integral operator is introduced in [1] by Al-Salam through

(2.4)
$$I_q^{\alpha} f(x) := \frac{x^{\alpha-1}}{\Gamma_q(\alpha)} \int_0^x \left(qt/x; q\right)_{\alpha-1} f(t) d_q t$$

 $\alpha \notin \{-1, -2, \ldots\}$. Using (2.3), we obtain

(2.5)
$$I_q^{\alpha} f(x) := x^{\alpha} (1-q)^{\alpha} \sum_{k=0}^{\infty} \frac{(q^{\alpha};q)_k}{(q;q)_k} f(xq^k),$$

which is valid for all α . Let $f: A \to \mathbb{R}$ be a function. We say that f is q-decreasing on A if

$$f(x) \le f(qx)$$
 for all $x \in A$.

If

 $f(x) \ge f(qx)$ for all $x \in A$

then we call f q-increasing on A. If

$$D_q f(x) \ge 0$$
 for all $x \in A \cap \mathbb{R}^+$ and $D_q f(x) \le 0$ for all $x \in A \cap \mathbb{R}^-$,

then f is q-increasing on A. Similarly, if

 $D_q f(x) \leq 0$ for all $x \in A \cap \mathbb{R}^+$ and $D_q f(x) \geq 0$ for all $x \in A \cap \mathbb{R}^-$,

then f is q-decreasing on A. Let B[0, a] be the space of all bounded functions defined on [0, a] and $B^+[0, a]$ be the space of all functions $f \in B[0, 1]$ such that

$$\inf \{ f(x) : x \in [0, a] \} > 0.$$

The q-translation operator is introduced by Ismail in [4] and is defined on monomials by

(2.6)
$$\varepsilon^y x^n := x^n (-y/x; q)_n$$

and it is extended to polynomials as a linear operator.

3. Asymptotic Solutions Near Zero

The following theorem is proved in [7]. Therefore we introduce it without a proof.

Theorem 3.1. Let $p \in \mathbb{Z}, \alpha \in \mathbb{R}$ and $\{\varphi_k\}_{k=p}^{\infty}$ be a sequence of real numbers. If the function $\varphi(x)$ has the asymptotic relation

(3.1)
$$\phi(x) \sim \sum_{k=p}^{\infty} \varphi_k x^{\alpha k} \ (x \to 0),$$

then for $m \in \mathbb{R}$ with $m \neq 0, -1, -2, \dots$, there holds the asymptotic

(3.2)
$$\phi^m(x) \sim x^{\alpha pm} \sum_{k=0}^{\infty} \Phi_{p,k} x^{\alpha k} \ (x \to 0)$$

where the coefficients $\Phi_{p,k}$ are expressed in terms of the coefficients φ_k :

$$\Phi_{p,0} = \binom{m}{0}\varphi_p^m,$$

$$\Phi_{p,1} = \binom{m}{1}\varphi_p^{m-1}\varphi_{p+1},$$

$$\Phi_{p,2} = \binom{m}{1}\varphi_p^{m-1}\varphi_{p+2} + \binom{m}{2}\varphi_p^{m-2}\varphi_{p+1}^2,$$
(3.3)
$$\Phi_{p,3} = \binom{m}{1}\varphi_p^{m-1}\varphi_{p+3} + \binom{m}{2}\binom{2}{1}\varphi_p^{m-2}\varphi_{p+1}\varphi_{p+2} + \binom{m}{3}\varphi_p^{m-3}\varphi_{p+1}^3,$$

$$\Phi_{p,4} = \binom{m}{1} \varphi_p^{m-1} \varphi_{p+4} + \binom{m}{2} \varphi_p^{m-2} \left[\varphi_{p+2}^2 + \binom{2}{1} \varphi_{p+1} \varphi_{p+3} \right] \\ + \binom{m}{3} \binom{3}{1} \varphi_p^{m-3} \varphi_{p+1}^2 \varphi_{p+2} + \binom{m}{4} \varphi_p^{m-4} \varphi_{p+1}^4,$$

etc.

In [7], Kilbas and Saigo proved that if in Theorem 3.1 $m \in \{2, 3, \ldots\}$, then

$$\Phi_{p,k} = \sum_{i_0=0}^{m-1} \sum_{i_1,i_2,\dots,i_j} \frac{m!}{i_0!i_1!i_2!\dots i_j!} \phi_p^{i_0} \phi_{p+1}^{i_1} \dots \phi_{p+j}^{i_j}$$

where the summation is taken over all non-negative integers i_1, i_2, \ldots, i_j such that

$$0 \le i_1 \le i_2 \le \dots \le i_j \le k,$$

$$i_0 + i_1 + \dots + i_j = m, \ i_1 + 2i_2 + \dots + ji_j = k$$

Theorem 3.2. Let $p \in \mathbb{Z}$ and $\alpha \in \mathbb{R}$ be such that $\alpha p > -1$. If

(3.4)
$$\phi(x) \sim \sum_{j=p}^{\infty} \varphi_j x^{\alpha j} \quad (x \to 0),$$

then

$$I_q^{\alpha}\phi(x) \sim x^{\alpha} \sum_{j=p}^{\infty} \varphi_j x^{j\alpha} \frac{\Gamma_q(j\alpha+1)}{\Gamma_q(j\alpha+\alpha+1)} \ (x \to 0).$$

Proof. First we consider (1.4), where $\lambda(x)$ and f(x) have the asymptotics (1.5) and (1.6), respectively. We will seek an asymptotic solution $\varphi(x)$ of (1.4) in the form (3.4). From (2.5)

$$I_q^{\alpha}\phi(x) = x^{\alpha}(1-q)^{\alpha}\sum_{k=0}^{\infty} q^k \frac{(q^{\alpha};q)_k}{(q;q)_k}\phi(xq^k).$$

Hence, applying (3.1) we have

$$\begin{split} I_q^{\alpha}\phi(x) &\sim x^{\alpha}(1-q)^{\alpha}\sum_{k=0}^{\infty}q^k\frac{(q^{\alpha};q)_k}{(q;q)_k}\sum_{j=p}^{\infty}\varphi_j x^{\alpha j}q^{k\alpha j} \\ &= x^{\alpha}(1-q)^{\alpha}\sum_{j=p}^{\infty}\varphi_j x^{j\alpha}\sum_{k=0}^{\infty}q^{k(\alpha j+1)}\frac{(q^{\alpha};q)_k}{(q;q)_k} \\ &= x^{\alpha}(1-q)^{\alpha}\sum_{j=p}^{\infty}\varphi_j x^{j\alpha}\frac{(q^{\alpha j+\alpha+1})}{(q^{\alpha}j+1)}, \end{split}$$

where we applied the q-binomial theorem in the last step, cf. [3, xvii]. Consequently,

$$I_q^{\alpha}\phi(x) \sim x^{\alpha} \sum_{j=p}^{\infty} \varphi_j x^{j\alpha} \frac{\Gamma_q(j\alpha+1)}{\Gamma_q(j\alpha+\alpha+1)},$$

and the theorem follows.

In view of the asymptotic (1.5) and the general properties of asymptotic expansions, see [8, Chapter 1], we have

$$\frac{\lambda(x)x^{\alpha-1}}{\Gamma_q(\alpha)} \int_0^x (qt/x;q)_{\alpha-1}\phi(t) \, d_q t$$

~ $x^{\alpha pm} \sum_{k=-n}^\infty \left(\sum_{i=l-n-1}^{l+k-1} \frac{\Gamma_q(\alpha i+1)}{\Gamma_q(\alpha i+\alpha+1)} \lambda_{k-i-1}\varphi_i\right) x^{\alpha k} \ (x \to 0).$

Then, taking into account Theorem 3.1 and Lemma 1.6, we obtain (3.5)

$$x^{\alpha(l-n-1)m} \sum_{k=0}^{\infty} \Phi_{l-n-1,k} x^{\alpha k} \sim$$
$$x^{\alpha pm} \sum_{k=-n}^{\infty} \left(\sum_{i=l-n-1}^{l+k-1} \frac{\Gamma_q(\alpha i+1)}{\Gamma_q(\alpha i+\alpha+1)} \lambda_{k-i-1} \varphi_i \right) x^{\alpha k} + x^{\alpha pm} \sum_{k=-n}^{\infty} f_k x^{\alpha k} \ (x \to 0)$$

Theorem 3.3. Let $\alpha > 0$, $p, m \in \mathbb{R}$ $(m \neq 0, -1, -2,)$ be such that $\alpha p > -1$. Assume that as well as $l, n, r := (l - n - p - 1)m \in \mathbb{Z}$ such that $l - n - 1 > -1/\alpha$ and $r \ge -n$. Let $\lambda(x)$ and f(x) have the asymptotics (1.5) and (1.6) and the coefficients φ_k satisfy

(3.6)
$$\sum_{i=l-n-1}^{l+k-1} \frac{\Gamma_q(\alpha i+1)}{\Gamma_q(\alpha i+\alpha+1)} \lambda_{k-i-1} \varphi_i + f_k = 0$$

$$(k = -n, -n + 1, ..., r - 1),$$

and

(3.7)
$$\Phi_{l-n-1,k-r} = \sum_{i=l-n-1}^{l+k-1} \frac{\Gamma_q(\alpha i+1)}{\Gamma_q(\alpha i+\alpha+1)} \lambda_{k-i-1}\varphi_i + f_k$$

$$(k=r,r+1,\ldots).$$

Then (1.4) is asymptotically solvable in $\mathcal{L}_q^1(0, a)$ for some a > 0 and its asymptotic solution near zero has the form (3.1).

Proof. Suppose $r = (l-n-p-1)m \in \mathbb{Z}$ for $m \in \mathbb{R}, (m \neq 0, -1, -2,)$ such that $r \geq -n$. Then (3.5) is equivalent to

$$(3.8)$$

$$x^{\alpha(r+pm)} \sum_{k=0}^{\infty} \Phi_{l-n-1,k} x^{\alpha k} \sim x^{\alpha pm} \sum_{k=-n}^{\infty} \left(\sum_{i=l-n-1}^{l+k-1} \frac{\Gamma_q(\alpha i+1)}{\Gamma_q(\alpha i+\alpha+1)} \lambda_{k-i-1} \varphi_i \right) x^{\alpha k}$$

$$+ x^{\alpha pm} \sum_{k=-n}^{\infty} f_k x^{\alpha k}.$$

Make the substation $\mu = k + r$ on the left hand side of the last relation and then replace μ by k, this gives

$$(3.9)$$

$$x^{\alpha pm} \sum_{k=r}^{\infty} \Phi_{l-n-1,k-r} x^{\alpha k} \sim x^{\alpha pm} \sum_{k=-n}^{\infty} \left(\sum_{i=l-n-1}^{l+k-1} \frac{\Gamma_q(\alpha i+1)}{\Gamma_q(\alpha i+\alpha+1)} \lambda_{k-i-1} \varphi_i \right) x^{\alpha k}$$

$$+ x^{\alpha pm} \sum_{k=-n}^{\infty} f_k x^{\alpha k}.$$

Hence, it follows from (3.9) that the coefficients φ_k satisfy (3.6) and (3.7). Then (1.4) is asymptotically solvable and its asymptotic solution near zero is given by (3.1).

Theorem 3.4. Let $\alpha > 0, m > 0$ and let $p, l, n \in \mathbb{Z}$ be such that n = l-p-1 < 0 and $(p-l+1)/m \in \mathbb{Z}$ and set $r = p+(p-l+1)/m > -1/\alpha$. Let $\lambda(x)$ and f(x) have the asymptotics (1.5) and (1.6), respectively. Moreover, let the coefficients φ_k satisfy the relations

$$(3.10)\qquad \qquad \Phi_{r,k+l-p-1} = f_k$$

$$(k = p - l + 1, p - l + 2, ..., r - l),$$

and

(3.11)
$$\Phi_{r,k+l-p-1} = \sum_{i=r}^{l+k-1} \frac{\Gamma_q(\alpha i+1)}{\Gamma_q(\alpha i+\alpha+1)} \lambda_{k-i-1} \varphi_i + f_k$$
$$(k=r-l+1, r-l+2,).$$

Then (1.4) is asymptotically solvable in $\mathcal{L}_q^1(0,a)$ and its asymptotic solution near zero has the form

(3.12)
$$\phi(x) \sim \sum_{k=r}^{\infty} \varphi_k x^{\alpha k} \ (x \to 0).$$

Proof. We assume

$$\phi(x) \sim \sum_{k=r}^{\infty} \varphi_k x^{\alpha k} \ (x \to 0),$$

and we shall prove that the coefficients φ_k are given by (3.10), (3.11). Applying the same arguments as in Theorem 3.3, we came to the asymptotic relation

(3.13)

$$x^{\alpha rm} \sum_{k=0}^{\infty} \Phi_{r,k} x^{\alpha k} \sim x^{\alpha pm} \sum_{k=-n}^{\infty} \left(\sum_{i=r}^{l+k-1} \frac{\Gamma_q(\alpha i+1)}{\Gamma_q(\alpha i+\alpha+1)} \lambda_{k-i-1} \varphi_i \right) x^{\alpha k} + x^{\alpha pm} \sum_{k=p-l-1}^{\infty} f_k x^{\alpha k}.$$

Since $m(r-p) \in \mathbb{N}$, the left hand side of (3.13) can be written as

$$x^{\alpha rm} \sum_{k=0}^{\infty} \Phi_{r,k} x^{\alpha k} = x^{\alpha pm + \alpha (r-p)m} \sum_{k=0}^{\infty} \Phi_{r,k} x^{\alpha k}$$
$$= x^{\alpha pm} \sum_{k=0}^{\infty} \Phi_{r,k} x^{\alpha (k+(r-p)m)}.$$

Make the substation $\mu = k + (r - p)m$ on the last series and then replace μ by k, this gives (3.14)

$$x^{\alpha pm} \sum_{k=(r-p)m}^{\infty} \Phi_{r,k-(r-p)m} x^{\alpha k} \sim x^{\alpha pm} \sum_{k=-n}^{\infty} \left(\sum_{i=r}^{l+k-1} \frac{\Gamma_q(\alpha i+1)}{\Gamma_q(\alpha i+\alpha+1)} \lambda_{k-i-1} \varphi_i \right) x^{\alpha k} + x^{\alpha pm} \sum_{k=p-l+1}^{\infty} f_k x^{\alpha k}.$$

Equating the coefficients of $x^{\alpha k}$ on (3.14) give (3.10) and (3.11). Then (1.4) is asymptotically solvable in $\mathcal{L}_q^1(0, a)$ for some a > 0 and its asymptotic solution is in the form (3.12).

Corollary 3.5. Let $\alpha > 0$, m > 0 and let l be a positive integer such that $l/m \in \mathbb{Z}$ and set r = -1 + l/m. Let

$$\lambda(x) \sim x^{-\alpha m} \sum_{k=l}^{\infty} \lambda_k x^{\alpha k}, \ f(x) \sim x^{-\alpha m} \sum_{k=l}^{\infty} f_k x^{\alpha k} \ (x \to 0),$$

with $\lambda_l \neq 0$, $f_l \neq 0$. Then (1.4) is asymptotically solvable and its asymptotic solution near zero has form (3.12).

Proof. The proof follows from Theorem 3.4 by substituting with p = -1, n = l and $f_k = 0$ (k = -l, -l + 1, ..., -l + r) in equations (1.5) and (1.6). Hence, the coefficients φ_k satisfy

$$(3.15)\qquad \qquad \Phi_{r,k+l} = f_k$$

$$(k = -l, -l + 1, \dots, -l + r),$$

and

(3.16)
$$\Phi_{r,k+l} = \sum_{i=r}^{l+k-1} \frac{\Gamma_q(\alpha i+1)}{\Gamma_q(\alpha i+\alpha+1)} \lambda_{k-i-1} \varphi_i + f_k \\ (k=r-l+1, r-l+2, \dots).$$

Then (1.4) is asymptotically solvable in $\mathcal{L}_q^1(0, a)$ for some a > 0 and its asymptotic solution near zero has the form (3.12).

Theorem 3.6. Let $\alpha > 0, m < 1 \ (m \neq 0, -1, -2,)$ and let $p, l, n \in \mathbb{Z}$ be such that n = l - p - 1 < 0 and $(p - l + 1)/(1 - m) \in \mathbb{Z}$ and let $r = p - (p - l + 1)/(1 - m) > -1/\alpha$. Let $\lambda(x)$ and f(x) have asymptotics (1.5) and (1.6) and the coefficients φ_k satisfy

(3.17)
$$\Phi_{r,k+l-r-1} = \sum_{i=r}^{l+k-1} \frac{\Gamma_q(\alpha i+1)}{\Gamma_q(\alpha i+\alpha+1)} \lambda_{k-i-1} \varphi_i$$
$$(k = r - l + 1, r - l + 2, ..., p - l),$$

and

(3.18)
$$\Phi_{r,k+l-r-1} = \sum_{i=r}^{l+k-1} \frac{\Gamma_q(\alpha i+1)}{\Gamma_q(\alpha i+\alpha+1)} \lambda_{k-i-1} \varphi_i + f_k$$

$$(k = p - l + 1, p - l + 2, \dots).$$

Then (1.4) is asymptotically solvable and its asymptotic solution near zero has the form (3.12).

Proof. Applying Theorem (3.4) we have

$$x^{\alpha pm} \sum_{k=r-l+1}^{\infty} \Phi_{r,k-(r-l+1)} x^{\alpha k} \sim x^{\alpha pm} \sum_{k=-n}^{\infty} \left(\sum_{i=r}^{l+k-1} \frac{\Gamma_q(\alpha i+1)}{\Gamma_q(\alpha i+\alpha+1)} \lambda_{k-i-1} \varphi_i \right) x^{\alpha k} + x^{\alpha pm} \sum_{k=p-l+1}^{\infty} f_k x^{\alpha k}.$$

Then the coefficients φ_k satisfy (3.17) and (3.18). Then (1.4) is asymptotically solvable and its asymptotic solution near zero has the form (3.12)

4. Asymptotic of the Solution in Some Special Cases

In this section we give asymptotic solutions of (1.4) when $\lambda(x)$ and f(x) have the special case:

$$\lambda(x) = \lambda x^{\alpha(pm-l)}$$
 and $f(x) = -x^{\alpha pm} \sum_{k=-n}^{N} f_k x^{\alpha k}$.

Hence (1.4) takes the form (4.1)

$$\phi^m(x) = \frac{\lambda x^{\alpha(pm-l)}}{\Gamma_q(\alpha)} x^{\alpha-1} \int_0^x (qt/x;q)_{\alpha-1} \phi(t) d_q t - x^{\alpha pm} \sum_{k=-n}^N f_k x^{\alpha k},$$

where $0 < x < a \le \infty$, $\lambda \ne 0$ and $N \ge -n$.

Theorem 4.1. Let $\alpha > 0, p, m \in \mathbb{R} (m \neq 0, -1, -2, ...)$ and let $l, n, (l - n - p - 1)m \in \mathbb{Z}$ be such that $l - n - 1 > -1/\alpha$ and $(l - n - p - 1)m \geq -n$.

(1) When r = (l - n - p - 1)m > N and the coefficients φ_k satisfy

(4.2)
$$\varphi_k = 0 \ (k = N + l, N + l + 1, ..., r + l - 2),$$

(4.3)
$$\varphi_k = \frac{-f_{k-l+1}\Gamma_q(\alpha k + \alpha + 1)}{\lambda\Gamma_q(\alpha k + 1)}$$

$$(k = -n + l - 1, -n + l, \dots, N + l - 1),$$

and

(4.4)
$$\Phi_{l-n-1,k-l+1-r} = \frac{\lambda \Gamma_q(\alpha k+1)}{\Gamma_q(\alpha k+\alpha+1)} \varphi_k$$
$$(k=r+l-1,r+l,\ldots).$$

Then (4.1) is asymptotically solvable in $\mathcal{L}_q^1(0, a)$ for some a > 0and its asymptotic solution near zero has the form

(4.5)
$$\phi(x) \sim \sum_{k=l-n-1}^{l+N-1} \frac{\Gamma_q(\alpha k + \alpha + 1)}{\lambda \Gamma_q(\alpha k + 1)} f_{k-l+1} x^{\alpha k} + \sum_{k=r+l-1}^{\infty} \varphi_k x^{\alpha k} dx^{\alpha k}$$

(2) When $-n < r \leq N$ and the coefficients φ_k satisfy

(4.6)
$$\Phi_{l-n-1,k-l+1-r} = \frac{\lambda \Gamma_q(\alpha k+1)}{\Gamma_q(\alpha k+\alpha+1)} \varphi_k - f_{k-l+1}$$
$$(k = r+l-1, r+l, ..., N+l-1),$$

(4.7)
$$\Phi_{l-n-1,k-l+1-r} = \frac{\lambda \Gamma_q(\alpha k+1)}{\Gamma_q(\alpha k+\alpha+1)} \varphi_k$$

 $(k = N + l, N + l + 1, \dots).$

Then (4.1) is asymptotically solvable in $\mathcal{L}_q^1(0, a)$ for some a > 0and its asymptotic solution near zero has the form

(4.8)
$$\phi(x) \sim \sum_{k=l-n-1}^{r+l-2} \frac{\Gamma_q(\alpha k + \alpha + 1)}{\lambda \Gamma_q(\alpha k + 1)} f_{k-l+1} x^{\alpha k} + \sum_{k=r+l-1}^{\infty} \varphi_k x^{\alpha k}.$$

(3) When r = -n and the coefficients φ_k satisfy

(4.9)
$$\Phi_{l-n-1,k-l+1+n} = \frac{\lambda \Gamma_q(\alpha k+1)}{\Gamma_q(\alpha k+\alpha+1)} \varphi_k - f_{k-l+1}$$
$$(k = -n+l-1, -n+l, ..., N+l-1),$$

(4.10)
$$\Phi_{l-n-1,k-l+1+n} = \frac{\lambda \Gamma_q(\alpha k+1)}{\Gamma_q(\alpha k+\alpha+1)} \varphi_k$$
$$(k=N+l,N+l+1,....).$$

Then (4.1) is asymptotically solvable in
$$\mathcal{L}_q^1(0, a)$$
 and its asymptotic solution near zero has the form (3.1).

Proof. From (1.5) and (1.6) we obtain $\lambda_{-l} = \lambda, \lambda_j = 0$ for j > l, and $f_k = 0$ for k > N. Hence, conditions (4.2)-(4.4) imply that the conditions (3.6) and (3.7) of Theorem 3.3 are satisfied. Hence ϕ has the asymptotic (3.1) where the coefficients are given by (4.2)- (4.4). That is ϕ has the asymptotic (4.5). This proves (1) of the Theorem. The proofs of the points (2), (3) are similar to the proof of (1) and so they are omitted.

Corollary 4.2. Under the assumptions (4.2)- (4.4) of Theorem 4.1(1), the solution $\phi(x)$ of (4.1) has the asymptotic

$$\phi(x) = \sum_{k=l-n-1}^{l+N-1} \frac{\Gamma_q(\alpha k + \alpha + 1)}{\lambda \Gamma_q(\alpha k + 1)} f_{k-l+1} x^{\alpha k}$$

(4.11)
$$+\varphi_{r+l-1}x^{\alpha(r+l-1)} + O(x^{\alpha(r+l)}) \ (x \to 0),$$

where

(4.12)
$$\varphi_{r+l-1} = \frac{\Gamma_q(\alpha(r+l)+1)}{\lambda\Gamma_q(\alpha(r+l-1)+1)} \times \left(\frac{\Gamma_q(\alpha(l-n)+1)f_{-n}}{\lambda\Gamma_q(\alpha(l-n-1)+1)}\right)^m.$$

Furthermore, if N > -n, we have

(4.13)
$$\phi(x) = \sum_{k=l-n-1}^{l+N-1} \frac{\Gamma_q(\alpha k + \alpha + 1)}{\lambda \Gamma_q(\alpha k + 1)} f_{k-l+1} x^{\alpha k} + \varphi_{r+l-1} x^{\alpha(r+l-1)} + \varphi_{r+l} x^{\alpha(r+l)} + O(x^{\alpha(r+l+1)}) \ (x \to 0),$$

where φ_{r+l-1} is given by (4.12) and

(4.14)
$$\varphi_{r+l} = \frac{m\Gamma_q(\alpha(r+l+1)+1)}{\lambda\Gamma_q(\alpha(r+l)+1)} \left(\frac{\Gamma_q(\alpha(l-n)+1)f_{-n}}{\lambda\Gamma_q(\alpha(l-n-1)+1)}\right)^{m-1} \\ \times \frac{\Gamma_q(\alpha(l-n+1)+1)f_{-n+1}}{\lambda\Gamma_q(\alpha(l-n)+1)}.$$

Proof. Substitute with k = r + l - 1 in (4.4). This gives

$$\varphi_{r+l-1} = \frac{\Gamma_q(\alpha(r+l)+1)}{\lambda\Gamma_q(\alpha(r+l-1)+1)} \Phi_{l-n-1,0}$$
$$= \frac{\Gamma_q(\alpha(r+l)+1)}{\lambda\Gamma_q(\alpha(r+l-1)+1)} \varphi_{l-n-1}^m.$$

Then put k = -n in (3.6) we get

$$\varphi_{l-n-1} = \frac{\Gamma_q(\alpha(l-n)+1)}{\lambda\Gamma_q(\alpha(l-n-1)+1)} f_{-n}$$

Then we are done. Similarly if N > -n.

Corollary 4.3. Under the assumptions of Theorem 4.1(2), the solution $\phi(x)$ of (4.1) has the asymptotic

$$\phi(x) = \sum_{k=l-n-1}^{r+l-2} \frac{\Gamma_q(\alpha k + \alpha + 1)}{\lambda \Gamma_q(\alpha k + 1)} f_{k-l+1} x^{\alpha k}$$

(4.15)
$$+\varphi_{r+l-1}x^{\alpha(r+l-1)} + O(x^{\alpha(r+l)}) \ (x \to 0),$$

where

(4.16)

$$\varphi_{r+l-1} = \frac{\Gamma_q(\alpha(r+l)+1)}{\lambda\Gamma_q(\alpha(r+l-1)+1)} \times \left\{ f_r + \left(\frac{\Gamma_q(\alpha(l-n)+1)f_{-n}}{\lambda\Gamma_q(\alpha(l-n-1)+1)}\right)^m \right\}.$$

Furthermore, if $N \ge r > -n + 1$, we have

$$\phi(x) = \sum_{k=l-n-1}^{r+l-2} \frac{\Gamma_q(\alpha k + \alpha + 1)}{\lambda \Gamma_q(\alpha k + 1)} f_{k-l+1} x^{\alpha k}$$

(4.17)
$$+\varphi_{r+l-1}x^{\alpha(r+l-1)} + \varphi_{r+l}x^{\alpha(r+l)} + O(x^{\alpha(r+l+1)}) \ (x \to 0),$$

where φ_{r+l-1} is given by (4.16) and

(4.18)
$$\varphi_{r+l} = \frac{m\Gamma_q(\alpha(r+l+1)+1)}{\lambda\Gamma_q(\alpha(r+l)+1)} \times \left(\frac{\Gamma_q(\alpha(l-n)+1)f_{-n}}{\lambda\Gamma_q(\alpha(l-n-1)+1)}\right)^{m-1} \times \frac{\Gamma_q(\alpha(l-n+1)+1)f_{-n+1}}{\lambda\Gamma_q(\alpha(l-n)+1)}.$$

Proof. Substitute with k = r + l - 1 in (4.7). This gives

$$\begin{split} \varphi_{r+l-1} &= \frac{\Gamma_q(\alpha(r+l)+1)}{\lambda\Gamma_q(\alpha(r+l-1)-1)} \Phi_{l-n-1,0} \\ &= \frac{\Gamma_q(\alpha(r+l)+1)}{\lambda\Gamma_q(\alpha(r+l-1)+1)} \varphi_{l-n-1}^m \\ &= \frac{\Gamma_q(\alpha(r+l)+1)}{\lambda\Gamma_q(\alpha(r+l-1)+1)} \left\{ f_r + \left(\frac{\Gamma_q(\alpha(l-n)+1)f_{-n}}{\lambda\Gamma_q(\alpha(l-n-1)+1)} \right)^m \right\}. \end{split}$$

Similarly if $N \ge r > -n+1$

Corollary 4.4. Under the assumptions of Theorem 4.1(3), the solution $\phi(x)$ of (4.1) has the asymptotic

(4.19)
$$\phi(x) = Ax^{\alpha(l-n-1)} + O(x^{\alpha(l-n)}) \ (x \to 0),$$

where $\xi = A$ is a solution of the equation

(4.20)
$$\xi^m - \frac{\lambda \Gamma_q(\alpha(l-n-1)+1)}{\Gamma_q(\alpha(l-n)+1)}\xi + f_{-n} = 0.$$

Furthermore, if $N \ge -n+1$ and

$$\frac{\lambda\Gamma_q(\alpha(l-n)+1)}{\Gamma_q(\alpha(l-n-1)+1)} \neq mA^{m-1},$$

we have

(4.21)
$$\phi(x) = Ax^{\alpha(l-n-1)} + Bx^{\alpha(l-n)} + O(x^{\alpha(l-n+1)}) \ (x \to 0),$$

where

$$B = \left[\frac{\lambda\Gamma_q(\alpha(l-n)+1)}{\Gamma_q(\alpha(l-n-1)+1)} - mA^{m-1}\right]^{-1} f_{-n+1}$$

Proof. Substitute with k = l - n - 1 in (4.9). This gives

$$\Phi_{l-n-1,0} = \frac{\lambda \Gamma_q(\alpha(l-n-1)+1)}{\Gamma_q(\alpha(l-n)+1)} \varphi_{l-n-1} - f_{-n},$$

$$\varphi_{l-n-1}^{m} - \frac{\lambda \Gamma_{q}(\alpha(l-n-1)+1)}{\Gamma_{q}(\alpha(l-n)+1)}\varphi_{l-n-1} + f_{-n} = 0.$$

Then $\varphi_{l-n-1} = A$ is a solution of equation (4.20). Now we prove (4.21) if $N \ge -n+1$ and

$$\frac{\lambda\Gamma_q(\alpha(l-n)+1)}{\Gamma_q(\alpha(l-n-1)+1)} \neq mA^{m-1},$$

put k = l - n in (4.9). We obtain

$$\Phi_{l-n-1,1} = \frac{\lambda \Gamma_q(\alpha(l-n)+1)}{\Gamma_q(\alpha(l-n+1)+1)} \varphi_{l-n} - f_{-n+1},$$
$$m\varphi_{l-n-1}^{m-1}\varphi_{l-n} = \frac{\lambda \Gamma_q(\alpha(l-n)+1)}{\Gamma_q(\alpha(l-n+1)+1)} \varphi_{l-n} - f_{-n+1},$$

where we used (3.3). Since $A = \varphi_{l-n-1}$ and $B = \varphi_{l-n}$, then we have

$$B = \left[\frac{\lambda \Gamma_q(\alpha(l-n)+1)}{\Gamma_q(\alpha(l-n-1)+1)} - mA^{m-1}\right]^{-1} f_{-n+1}.$$

In the remaining of this section we derive an exact solution of the equation

(4.22)
$$\phi^m(x) = \frac{\lambda x^{\alpha(pm-l)}}{\Gamma_q(\alpha)} x^{\alpha-1} \int_0^x (qt/x;q)_{\alpha-1} \phi(t) d_q t - b x^{\alpha(pm-n)}$$
$$(0 < x < a \le \infty).$$

From Corollary 4.4, the solution $\phi(x)$ of (4.22) has the asymptotic (4.19) near zero, where $\xi = A$ is a solution of equation

$$\xi^m - \frac{\lambda \Gamma_q(\alpha(l-n-1)+1)}{\Gamma_q(\alpha(l-n)+1)}\xi + b = 0.$$

Theorem 4.5. Let $\alpha > 0$, $\beta > -1$ ($\beta \neq 0$), and $l \in \mathbb{R}$ with $l \neq -\alpha$ and $l \neq -\alpha - \beta$. For $a, b \in \mathbb{R}$ ($a \neq 0$) let the equation

(4.23)
$$\xi^{1+(l+\alpha)/\beta} - \frac{\lambda\Gamma_q(\beta+1)}{\Gamma_q(\beta+\alpha+1)}\xi - b = 0,$$

be solvable and let $\xi = c$ be its solution. Then the nonlinear integral equation

(4.24)
$$\phi^{1+(l+\alpha)/\beta}(x) = \frac{\lambda x^l}{\Gamma_q(\alpha)} x^{\alpha-1} \int_0^x (qt/x;q)_{\alpha-1} \phi(t) d_q t + b x^{\alpha+\beta+l}$$
$$(0 < x < a \le \infty)$$

is solvable and its solution is given by

(4.25)
$$\phi(x) = cx^{\beta}.$$

Proof. We apply Corollary 4.4 with $m = 1 + \frac{\alpha + \gamma}{\beta}$, $\gamma = \alpha(pm - l)$, and $\alpha(pm - n) = \alpha + \beta + \gamma$. Then the solution is given by $\phi(x) = cx^{\beta} + O(x^{\beta + \alpha})$. But a direct substitution verifies that $\phi(x) = cx^{\beta}$ is a solution of

$$\xi^m - \frac{\lambda \Gamma_q (l - n - \alpha + 1)}{\Gamma_q (n - l + 1)} \xi - b = 0.$$

Now we consider the homogeneous equation associated with (4.24) which is

$$\phi^{1+(l+\alpha)/\beta}(x) = \frac{\lambda x^l}{\Gamma_q(\alpha)} x^{\alpha-1} \int_0^x (qt/x;q)_{\alpha-1} \,\phi(t) \, d_q t \ (0 < x < a \le \infty).$$

According to Theorems 3.1 and (??) we obtain the following result

Theorem 4.6. Let the conditions of Theorem 4.5 are satisfied and let $\xi = c$ be the unique solution of (4.23).

- (i) If -1 < (l + α)/β < 0, then (4.25) is the unique solution of (4.26) in the space C[0, a] for some a > 0. If in additionally, λ, b, and C are positive numbers, then this solution belongs to C⁺[0, d].
- (ii) If $(\alpha + l)/\beta > 0$, a, b, and c are positive numbers, then (4.25) is the unique solution of (4.26) in $C^+[0, 1]$.

Remark 4.7. In [6, PP. 441–442] Karapetyants et al. studied the existence of positive solutions of the algebraic equation

(4.27)
$$\xi^m - d\xi - b = 0,$$

with m > 0, $m \neq 1$ and $a, b \in \mathbb{R} - \{0\}$. They investigated the positive solvability of (4.27) by using the properties of the function

$$f(\xi) = \xi^m - d\xi - b.$$

Set

(4.28)
$$c_0 := \left(\frac{d}{m}\right)^{\frac{1}{m-1}}, \quad E := f(c_0)$$

The authors of [6] obtained the following result which we state without proof. **Theorem 4.8.** Let m > 0, $m \neq 1$ and $a, b \in \mathbb{R} - \{0\}$. Let E and c_0 be as in (4.28). Equation (4.27)

- (i) does not have positive solutions if either d < 0, b < 0 or d > 0, b < 0, m > 1, E > 0 or d > 0, b > 0, 0 < m < 1, E < 0;
- (ii) has a unique positive solution
 ii.1 ξ = c₁ > 0 if d < 0, b > 0;
 ii.2 ξ = c₁ > c₀ > 0 if either d > 0, b < 0, 0 < m < 1 or
 d > 0, b > 0, m = 1;
 ii.2 ξ = c₁ > c₀ > 0 if E = 0 c₁ > c₁ > 0 if either and
 - ii.3 $\xi = c_0 > 0$ if E = 0 $c_1 > c_0 > 0$ if either and either d > 0, b < 0, m > 1 or d > 0, b > 0, 0 < m < 1
- (iii) has two positive solutions $\xi = c_2$ and $\xi = c_3$, $0 < c_2 < c_0 < c_3$, if either d > 0, b < 0, m > 1, E < 0 or d > 0, b > 0, 0 < m < 1, E > 0.

5. Asymptotic solution of linear equation in general case

In this section we investigate the special case m = 1 of (1.4) when $0 < \alpha < 1$. In other words, we give the asymptotic of the equation

(5.1)
$$\phi(x) = \frac{\lambda(x)}{\Gamma_q(\alpha)} x^{\alpha-1} \int_0^x (qt/x;q)_{\alpha-1} \phi(t) d_q t + f(x)$$
$$(0 < x < \infty, 0 < \alpha < 1).$$

In [2, P.214], the authors studied (1.4) for all $\alpha > 0$ when $\lambda(x) = \lambda$ for all $x \in (0, a]$, and $f \in \mathcal{L}_q^1[0, a]$ where a is a positive number satisfying the inequality

$$|\lambda|a^{\alpha}(1-q)^{\alpha} < 1.$$

They proved that the q-integral equation (5.1) under the previous conditions has a unique solution

$$\phi(x) = f(x) + \lambda x^{\alpha - 1} \int_0^x (qt/x; q)_{\alpha - 1} \varepsilon^{-q^{\alpha}t} e_{\alpha, \alpha}(\lambda t^{\alpha}; q) f(t) d_q t,$$

in the space $\mathcal{L}^1_q[0, a]$ where ε is the q-translation operator defined in (2.6).

Theorem 5.1. Let f(x) and $\lambda(x)$ have the asymptotics as $x \to 0$

(5.2)
$$f(x) \sim \sum_{k=-1}^{\infty} f_k x^{\alpha k},$$

and

(5.3)
$$\lambda(x) \sim \sum_{k=-1}^{\infty} \lambda_k x^{\alpha k}.$$

Assume that

(5.4)
$$\lambda_{-1} \neq \frac{\Gamma_q(\alpha k + \alpha + 1)}{\Gamma_q(\alpha k + 1)} \quad (k = -1, 0, 1,).$$

Then the unique power asymptotic solution $\phi(x)$ of (5.1) near zero in the space of all continuous functions is given by the form $\phi(x) \sim \sum_{k=-1}^{\infty} \varphi_k x^{\alpha k}$, where φ_k is given by (5.5) $\varphi_k = \left[1 - \frac{\Gamma_q(\alpha k+1)}{\Gamma_q(\alpha k+\alpha+1)}\lambda_{-1}\right]^{-1} \times \left[\sum_{i=-1}^{k-1} \frac{\Gamma_q(\alpha i+1)\lambda_{k-i-1}}{\Gamma_q(\alpha i+\alpha+1)}\varphi_i + f_k\right]$ $(k = -1, 0, 1, 2, \dots).$

Proof. Using (3.11) we obtain

$$\Phi_{-1,k+1} = \sum_{i=-1}^{k} \frac{\Gamma_q(\alpha i+1)}{\Gamma_q(\alpha i+\alpha+1)} \lambda_{k-i-1}\varphi_i + f_k \quad (k=-1,0,1,...).$$

Substitute with p = -1 in (3.4) yields

(5.6)
$$\phi(x) \sim \sum_{j=-1}^{\infty} \varphi_j x^{\alpha j},$$

and from (3.2) with p = -1 and m = 1

(5.7)
$$\phi(x) \sim x^{-\alpha} \sum_{k=0}^{\infty} \Phi_{-1,k} x^{\alpha k} = \sum_{j=-1}^{\infty} \Phi_{-1,j+1} x^{\alpha j}.$$

Compared to coefficients of $x^{\alpha j}$ in (5.6) and (5.7) we obtain

$$\Phi_{-1,j+1} = \varphi_j \quad (j = -1, 0, 1, \dots).$$

So, we have the following formulas for the coefficients φ_k

$$\varphi_k = \sum_{i=-1}^k \frac{\Gamma_q(\alpha i+1)\lambda_{k-i-1}}{\Gamma_q(\alpha i+\alpha+1)}\varphi_i + f_k \quad (k=-1,0,1,\ldots),$$

equivalently

$$\left[1 - \frac{\Gamma_q(\alpha k+1)}{\Gamma_q(\alpha k+\alpha+1)}\lambda_{-1}\right]\varphi_k = \sum_{i=-1}^{k-1} \frac{\Gamma_q(\alpha i+1)\lambda_{k-i-1}}{\Gamma_q(\alpha i+\alpha+1)}\varphi_i + f_k \ (k=-1,0,1,\ldots).$$

Hence if (5.4) satisfied, asymptotic solution $\phi(x)$ of equation (5.1) is given by the form (5.6) where φ_k given by (5.5).

Theorem 5.2. Let f(x) and $\lambda(x)$ have the asymptotics (5.2) and (5.3), respectively as $x \to 0$. Assume that there exists a number $j \in \{-1, 0, 1, ...\}$ such that

(5.9)
$$\lambda_{-1} = \frac{\Gamma_q(\alpha j + \alpha + 1)}{\Gamma_q(\alpha j + 1)}.$$

If the coefficients $f_k (k = -1, 0, 1, ..., j)$ in the asymptotic expansion (5.2) satisfy the relation

(5.10)
$$\sum_{i=-1}^{j-1} \frac{\Gamma_q(\alpha j+1)\lambda_{j-i-1}}{\Gamma_q(\alpha i+\alpha+1)} \varphi_i + f_j = 0,$$

then the unique power asymptotic solution $\phi(x)$ of equation (5.1) is given by

(5.11)
$$\phi(x) \sim cx^{\alpha j} \sum_{\substack{k=-1\\k\neq j}}^{\infty} \varphi_k x^{\alpha k},$$

where c is an arbitrary constant. If the condition (5.10) is not satisfied, then equation (5.1) does not have any asymptotic solution of the form (5.6).

Proof. Using Theorem 5.1 and suppose (5.4) is not valid. This means there exists a number $j \in \{-1, 0, 1, ...\}$ such that (5.9) holds. In this case the coefficients $f_k (k = -1, 0, 1, ..., j)$ in the asymptotic expansion (5.2) satisfy the relation (5.10), where $\varphi_i (i = -1, 0, 1, ..., j - 1)$ are expressed via $f_i (i = -1, 0, 1, ..., j - 1)$ by means of (5.5). For example, when j = -1, 0, 1, the relations (5.9) and (5.10) have the form

$$\lambda_{-1} = \frac{1}{\Gamma_q(1-\alpha)} f_{-1} = 0 \quad \text{for} \quad j = -1$$
$$\lambda_{-1} = \Gamma_q(\alpha+1) \lambda_0 \varphi_{-1} + f_0 = 0 \quad \text{for} \quad j = 0$$
$$\lambda_{-1} = \frac{\Gamma_q(2\alpha+1)}{\Gamma_q(\alpha+1)} \Gamma_q(\alpha+1) \lambda_1 \varphi_{-1} + \lambda_0 \varphi_0 + f_1 = 0 \quad \text{for} \quad j = 1.$$

Thus if condition (5.10) is satisfied, then the asymptotic solution of (5.1) has the form (5.11), where c is an arbitrary constant and $\varphi_k \ (k \neq j)$ are given by (5.5). If condition (5.10) is not satisfied, equation (5.1) does not have any asymptotic solution of the form (5.6)

Theorem 5.3. Let

(5.12)
$$f(x) \sim \sum_{k=0}^{\infty} f_k x^{\alpha k},$$

and $\lambda(x)$ has the asymptotic (5.3), as $x \to 0$, and let condition (5.4) be satisfied. Then the unique power asymptotic solution $\phi(x)$ of equation (5.1) is given by the form

(5.13)
$$\phi(x) \sim \sum_{k=0}^{\infty} \varphi_k x^{\alpha k},$$

where $\varphi_k \ (k \in \mathbb{N}_0)$ are given by (5.14)

$$\varphi_k = \left[1 - \frac{\Gamma_q(\alpha k + 1)}{\Gamma_q(\alpha k + \alpha + 1)}\lambda_{-1}\right]^{-1} \times \left[\sum_{i=0}^{k-1} \frac{\Gamma_q(\alpha k + 1)\lambda_{k-i-1}}{\Gamma_q(\alpha i + \alpha + 1)}\varphi_i + f_k\right].$$

Proof. If $\lambda(x)$ has the asymptotic (5.2), then (5.8) takes the form

$$(1 - \Gamma_q (1 - \alpha)\lambda_{-1})\varphi_{-1} = 0,$$

(5.15)

$$\left[1 - \frac{\Gamma_q(\alpha k+1)}{\Gamma_q(\alpha k+\alpha+1)}\lambda_{-1}\right]\varphi_k = \sum_{i=-1}^{k-1} \frac{\Gamma_q(\alpha k+1)\lambda_{k-i-1}}{\Gamma_q(\alpha i+\alpha+1)}\varphi_i + f_k \ (k=0,1,\ldots).$$

When condition (5.4) holds, $\varphi_{-1} = 0$ and hence the asymptotic solution (5.6) of equation (5.1) has the form (5.13), where $\varphi_k \ (k = 0, 1, 2, ...)$ are given by (5.14).

Theorem 5.4. Assume that the functions f(x) and $\lambda(x)$ have the asymptotics (5.12) and (5.3), respectively, as $x \to 0$. If $\lambda_{-1} = 1$, then the unique power asymptotic solution $\phi(x)$ of equation (5.1) in the space $\mathcal{L}^1_q[0, a]$ for some a > 0 is given by

(5.16)
$$\phi(x) \sim cx^{-\alpha} + \sum_{k=0}^{\infty} \varphi_k x^{\alpha k},$$

where c is an arbitrary constant and φ_k ($k \in \mathbb{N}_0$) are found from (5.14). Assume there exists a number $j \in \{-1, 0, 1, ...\}$ such that

$$(1 - \Gamma_q (1 - \alpha) \lambda_{-1}) \varphi_{-1} = 0 \ (j = -1)$$

and

(5.17)
$$\sum_{i=-1}^{j-1} \frac{\Gamma_q(\alpha j+1)\lambda_{j-i-1}}{\Gamma_q(\alpha i+\alpha+1)} \varphi_i + f_j = 0 \quad (j \in \mathbb{N}_0).$$

If the coefficients f_k (k = 0, 1, ..., j) in the asymptotic expansion (5.12) satisfy the relation

(5.18)
$$\sum_{i=0}^{k-1} \frac{\Gamma_q(\alpha k+1)\lambda_{k-i-1}}{\Gamma_q(\alpha i+\alpha+1)}\varphi_i + f_k = 0,$$

then the unique power asymptotic solution $\phi(x)$ of equation (5.1) is given by

(5.19)
$$\phi(x) \sim cx^{\alpha j} + \sum_{\substack{k=0\\k\neq j}}^{\infty} \varphi_k x^{\alpha k},$$

where c is an arbitrary constant.

Proof. If condition (5.4) is not valid, then there exists a number $j \in \{-1, 0, 1,\}$ such that (5.9) holds. Then (5.10) has the form (5.17). When $\lambda_{-1} = 1$, the asymptotic solution $\phi(x)$ of equation (5.1) has the form (5.16), where c is an arbitrary constant and $\varphi_k (k = 0, 1, 2, ...)$ are found from (5.14). If $\lambda_{-1} \neq 1$ and (5.17) holds, then $\varphi_{-1} = 0$ and coefficients $f_k (k = 0, 1, ..., j)$ in the asymptotic expansion (5.12) satisfy the relation (5.18), where $\varphi_i (i = 0, 1, 2, ..., j - 1)$ are expressed via $f_i (i = 0, 1, ..., j - 1)$ by formulas (5.14). In this case the the asymptotic solution $\phi(x)$ of equation (5.1) has the form (5.19), where c is an arbitrary constant.

Theorem 5.5. Let the functions f(x) and $\lambda(x)$ have asymptotic of the forms (5.12) and (5.3), respectively. Then the unique power asymptotic solution $\phi(x)$ of equation (5.1) with any $\alpha > 0$ is given by (5.13), where φ_k (k = 0, 1, ...) are found from

(5.20)
$$\varphi_{-1} = 0, \ \varphi_0 = f_0, \ \varphi_k = \sum_{i=0}^{k-1} \frac{\lambda_{k-1-i} \Gamma_q(\alpha i+1)}{\Gamma_q(\alpha (i+1)+1)} \varphi_i + f_k.$$

Proof. This proof according to Theorem 5.4.

Now, we use Theorem 5.5 to give asymptotics of $\phi(x)$ as $x \to 0$ when f(x) has the asymptotic (5.12).

Corollary 5.6. The asymptotic solution of the linear Volterra q-integral equation

$$\phi(x) = \frac{\lambda x^{\alpha-1}}{\Gamma_q(\alpha)} \int_0^x (qt/x;q)_{\alpha-1}\phi(x) \, d_q t + f(x) \, (x>0)$$

is given by

$$\phi(x) = \sum_{n=0}^{\infty} \frac{\lambda^n}{\Gamma_q(\alpha n+1)} \left[\sum_{k=0}^n f_k \lambda^{-k} \Gamma_q(\alpha k+1) \right] x^{\alpha n}.$$

Proof. We apply Theorem 5.5 with $\lambda(x) = \lambda$. That is in (5.3)

 $\lambda_k = 0$ for all $k \neq 0$ and $\lambda_0 = 1$.

Hence, the coefficients φ_k of the solution (5.13) satisfy the first order difference equation

$$\varphi_k - \frac{\lambda}{\Gamma_q(\alpha k+1)} \varphi_{k-1} = f_k \ (k \in \mathbb{N}), \quad \varphi_0 = f_0.$$

Set $\psi_k = \varphi_k \lambda^{-k} \Gamma_q(\alpha k + 1)$ $(k \ge 1)$. Then ψ_k satisfies the difference equation

$$\psi_k - \psi_{k-1} = f_k \lambda^{-k} \Gamma_q(\alpha k + 1).$$

Hence $\psi_n = \sum_{k=0}^n f_k \lambda^{-k} \Gamma_q(\alpha k + 1)$. Consequently,

$$\varphi_n = \frac{\lambda^n}{\Gamma_q(\alpha n+1)} \sum_{k=0}^n f_k \lambda^{-k} \Gamma_q(\alpha k+1),$$

which proves the Corollary.

Example 5.7. Equation (5.1) with $\lambda(x) = \lambda x^{\alpha(m-1)}$

(5.21)
$$\phi(x) = \frac{\lambda x^{\alpha m-1}}{\Gamma_q(\alpha)} \int_0^x (qt/x;q)_{\alpha-1} \phi(t) d_q t + f(x)$$

 $(0 < x < \infty, 0 < \alpha < 1, m = 1, 2, ...; \lambda \neq 0)$ and f(x) has the asymptotic (5.2). In this case f(x) has the form

$$f(x) = f_{-1}x^{-\alpha} + f_0(x^{\alpha}),$$

 $f_0(z) := \sum_{k=0}^{\infty} f_k z^k \text{ is an entire function in } z^{\alpha}. \text{ Hence,}$ $(5.22) \qquad \lambda_{m-1} = \lambda, \ \lambda_k = 0 \quad (k = -1, 0, 1, ...; k \neq m-1),$

in (5.3) and therefore the relation (5.20) takes the form

(5.23)
$$\varphi_k = f_k \quad (k = -1, 0, 1, ..., m - 2)$$

$$\varphi_k = \frac{\Gamma_q(\alpha k + 1)\lambda}{\Gamma_q[\alpha(k - m + 1) + 1]}\varphi_{k-m} + f_k \quad (k = m - 1, m, \dots).$$

Thus we obtain for k = -1, 0, 1, ..., m - 2; n = 1, 2, ..., that

$$\varphi_{nm+k} = \frac{\Gamma_q[\alpha(nm+k)+1]}{\Gamma_q[\alpha(nm+k-m+1)+1]}\lambda\varphi_{(n-1)m+k} + f_{nm+k}.$$

The asymptotic of solution $\phi(x)$ of equation (5.21)

$$\phi(x) \sim \sum_{k=-1}^{m-2} \sum_{n=0}^{\infty} \left[\sum_{j=1}^{n} \lambda^{n-j} \left(\prod_{i=j+1}^{n} \frac{\Gamma_q(\alpha(im+K)+1)}{\Gamma_q(\alpha(im-m+K+1)+1)} \right) \right] \times \frac{x^{\alpha(nm+k)}}{\Gamma_q(\alpha(nm+k)+1)}.$$

20

Example 5.8. The equation

(5.24)
$$\phi(x) = \frac{\lambda x^{\alpha m - 1}}{\Gamma_q(\alpha)} \int_0^x (qt/x; q)_{\alpha - 1} \phi(t) \, d_q t + \frac{d}{x^{\alpha}} + be_q(x^{\alpha}(1 - q)) (0 < x^{\alpha}(1 - q) < 1; 0 < \alpha < 1; m = 1, 2, \ldots).$$

Hence,

$$f_{-1} = d, \ f_k = \frac{b}{\Gamma_q(k+1)} \ (k = 0, 1, 2, ...).$$

Consequently, equation (5.24) has the asymptotic solution, as $x \to 0$,

$$\begin{split} \phi(x) &\sim d \sum_{n=0}^{\infty} \lambda^n \prod_{i=0}^{n-1} \frac{\Gamma_q[\alpha(im-1)+1]}{\Gamma_q(\alpha im+1)} x^{\alpha(mn-1)} \\ &+ b \sum_{k=-1}^{m-2} \sum_{n=1}^{\infty} \left[\sum_{j=1}^n \frac{\lambda^{n-j}}{\Gamma_q(jm+k+1)} \prod_{i=j}^{n-1} \frac{\Gamma_q(\alpha(im+K)+1)}{\Gamma_q(\alpha(im+K+1)+1)} \right] x^{\alpha(nm+k)}. \end{split}$$

6. Exact solutions of linear equations

In the section we show that in some cases the asymptotic solution $\phi(x)$ of the linear equation (5.1) with certain conditions on $\lambda(x)$ and f(x) gives the exact solution. This result is a *q*-analogue of the result introduced by Saigo and Kilbas in [9]. Consider (5.1) with $\lambda(x) = \lambda x^{-\alpha}$ and

$$f(x) = f_1 x^{-\alpha} + f_0(x^{\alpha})$$

where $f_0(z) := \sum_{k=0}^{\infty} f_k z^k$ is an analytic function of z^{α} in a disk around zero, say $|z^{\alpha}| < R$. In this case we have the integral equation

(6.1)
$$\phi(x) = \frac{\lambda}{x\Gamma_q(\alpha)} \int_0^x (qt/x;q)_{\alpha-1} \phi(t) d_q t + f(x^{\alpha})$$
$$(0 < x^{\alpha} < R, 0 < \alpha < 1, \lambda \neq 0),$$

That is

$$\lambda_{-1} = \lambda, \ \lambda_k = 0 \ (k \in \mathbb{N}_0)$$

in (5.3) and therefore the relation in (5.8) can be simplified to

(6.2)
$$\left[1 - \frac{\Gamma_q(\alpha k+1)}{\Gamma_q(\alpha k+\alpha+1)}\lambda\right]\varphi_k = f_k \quad (k = -1, 0, 1, ...).$$

Condition (5.4) takes the form

(6.3)
$$\lambda \neq \frac{\Gamma_q(\alpha k + \alpha + 1)}{\Gamma_q(\alpha k + 1)} \quad (k = -1, 0, 1, \ldots).$$

Let (6.3) hold. Then from (6.2) we obtain

$$\varphi_k = \left[1 - \frac{\Gamma_q(\alpha k + 1)}{\Gamma_q(\alpha k + \alpha + 1)}\lambda\right]^{-1} f_k \quad (k = -1, 0, 1, \ldots),$$

and the asymptotic solution (5.6) has the form

(6.4)
$$\phi(x) \sim \sum_{k=-1}^{\infty} \left[1 - \frac{\Gamma_q(\alpha k+1)}{\Gamma_q(\alpha k+\alpha+1)} \lambda \right]^{-1} f_k x^{\alpha k} \text{ as } x \to 0.$$

Since

$$\left[1 - \frac{\Gamma_q(\alpha k+1)}{\Gamma_q(\alpha k+\alpha+1)}\lambda\right]^{-1} \sim \left(1 - \lambda(1-q)^{\alpha}\right)^{-1} \quad (k \to \infty),$$

the power series on the left hand side of (6.4) is an analytic function in z^{α} for $|z^{\alpha} < R|$ and the asymptotic solution give an exact solution. If (6.3) does not hold and there exists a number $j \in \{-1, 0, 1, ...\}$ such that

(6.5)
$$\lambda = \frac{\Gamma_q(\alpha j + \alpha + 1)}{\Gamma_q(\alpha j + 1)},$$

the condition of the asymptotic solvability (5.10) takes the simple form

$$(6.6) f_j = 0,$$

and the asymptotic solution of equation (6.1) has the form

(6.7)
$$\phi(x) \sim cx^{\alpha j} + \sum_{\substack{k=-1\\k\neq j}}^{\infty} \left[1 - \frac{\Gamma_q(\alpha k+1)\Gamma_q(\alpha j+\alpha+1)}{\Gamma_q(\alpha k+\alpha+1)\Gamma_q(\alpha j+1)} \right]^{-1} f_k x^{\alpha k}.$$

Similarly, the power series on the right hand side of (6.7) represents an analytic function in z^{α} for $|z^{\alpha}| < R$ and it is the exact solution in this case.

In the following examples we get exact solutions of (6.1) for certain choices of the function $f_0(x^{\alpha})$.

Example 6.1. The equation

(6.8)
$$\phi(x) = \frac{\lambda}{x\Gamma_q(\alpha)} \int_0^x (qt/x;q)_{\alpha-1} \phi(t) d_q t + bx^{\alpha l}$$
$$(0 < x < \infty, \ 0 < \alpha < 1, \ \lambda \neq \frac{\Gamma_q(\alpha l + \alpha + 1)}{\Gamma_q(\alpha l + 1)})$$

and $l \in \{-1, 0, 1, \dots\}$ has the solution

$$\phi(x) = \left[1 - \frac{\Gamma_q(\alpha l + 1)}{\Gamma_q(\alpha l + \alpha + 1)}\lambda\right]^{-1} bx^{\alpha l}.$$

It is worth noting that the homogeneous equation

$$\frac{\Gamma_q(\alpha l+1)}{\Gamma_q(\alpha l+\alpha+1)}\phi(x) = \frac{1}{x\Gamma_q(\alpha)}\int_0^x (qt/x;q)_{\alpha-1}\,\phi(t)\,d_qt$$
$$(0 < x < \infty, 0 < \alpha < 1),$$

for l = -1, 0, 1, has the solution $\phi(x) = cx^{\alpha l}$ with c is an arbitrary constant.

Example 6.2. The equation

(6.9)
$$\phi(x) = \frac{\lambda}{x\Gamma_q(\alpha)} \int_0^x (qt/x;q)_{\alpha-1} \phi(t) \, d_q t \, + \frac{d}{x^{\alpha}} + be_q(x^{\alpha}(1-q))$$
$$(0 < x^{\alpha}(1-q) < 1, 0 < \alpha < 1),$$

 $e_q(x^{\alpha}(1-q)) = \sum_{j=0}^{\infty} \frac{x^{\alpha j}}{\Gamma_q(j+1)}$, has the solution

$$\phi(x) = \frac{d}{1 - \Gamma_q(1 - \alpha)\lambda} x^{-\alpha} + b \sum_{k=0}^{\infty} \left[1 - \frac{\Gamma_q(\alpha k + 1)}{\Gamma_q(\alpha k + \alpha + 1)} \lambda \right]^{-1} \frac{x^{\alpha k}}{\Gamma_q(k + 1)}$$

If (6.3) holds, the equation

and

$$\phi(x) = \frac{\Gamma_q(\alpha j + \alpha + 1)}{x\Gamma_q(\alpha j + 1)\Gamma_q(\alpha)} \int_0^x (qt/x;q)_{\alpha-1} \phi(t) \, d_q t + \frac{d}{x^{\alpha}} + b \left[e_q(x^{\alpha}(1-q)) - \frac{x^{\alpha j}}{\Gamma_q(j+1)} \right]$$

 $(0 < x < \infty, \ 0 < \alpha < 1, \ j \in \{0, 1, 2,\})$ have solution

$$\phi(x) = cx^{-\alpha} + b\sum_{k=0}^{\infty} \left[1 - \frac{\Gamma_q(\alpha k+1)}{\Gamma_q(\alpha k+\alpha+1)\Gamma_q(1-\alpha)}\right]^{-1} \frac{x^{\alpha k}}{\Gamma_q(k+1)},$$

and

$$\begin{split} \phi(x) &= cx^{-\alpha j} + \frac{d\Gamma_q(\alpha j+1)x^{-\alpha}}{\Gamma_q(\alpha j+1) - \Gamma_q(1-\alpha)\Gamma_q(\alpha j+\alpha+1)} \\ &+ b\sum_{k=0\atop k\neq j}^{\infty} \left[1 - \frac{\Gamma_q(\alpha k+1)\Gamma_q(\alpha j+\alpha+1)}{\Gamma_q(\alpha k+\alpha+1)\Gamma_q(\alpha j+1)}\right]^{-1} \frac{x^{\alpha k}}{\Gamma_q(k+1)}, \end{split}$$

respectively, where c is an arbitrary constant.

References

- W.A. Al-Salam. Some fractional q-integrals and q-derivatives. Proc. Edinburgh Math. Soc., 2(15):135–140, 1966/1967.
- M.H. Annaby and Z.S. Mansour. q-Fractional Calculus and Equations, volume 2056 of Lecture Notes of Mathematics. Springer, 2012. DOI:10.1007/978-3-642-30898-7.
- [3] G. Gasper and M. Rahman. *Basic Hypergeometric Series*. Cambridge university Press, Cambridge, second edition, 2004.
- [4] M.E.H Ismail. Classical and Quantum Orthogonal Polynomials in One Variable. Cambridge University Press, Cambridge, 2005.
- [5] F.H. Jackson. On q-definite integrals. Quart. J. Pure and Appl. Math., 41:193–203, 1910.
- [6] N.K. Karapetyants, A.A. Kilbas, and M. Saigo. On the solution of non-linear Volterra convolution equation with power non-linearity. J. Integral Equations Appl., 8(4):429–445, 1996.
- [7] A.A. Kilbas and M. Saigo. On asymptotic solutions of nonlinear and linear Abel-Volterra integral equations: Investigations in Jacks lemma and related topics (japanees). Surikaisekikenkyusho Kokyuroku, 881:91–111, 1994.
- [8] F.W.J. Olver. Asymptotics and Special Functions. Academic Press, New York, 1974. Reprinted by A K Peters, Ltd., Wellesley, MA, 1997.
- [9] M. Saigo and A.A. Kilbas. On asymptotic solutions of nonlinear and linear Abel-Volterra integral equations II. Investigations into Jack's lemma and related topics (japanees). Surikaisekikenkyusho Kokyuroku, (881):112–129, 1994.