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1. INTRODUCTION

In [?], Mansour proved the existence and uniqueness of positive con-
tinuous solutions of the nonlinear Fredholm ¢-integral equations

L) 00 =M@ [ (@t 0<a<)

and

(12)  o(e) = f(z) + A2) / (@2 s (D) dyt (0 < 2 < 1)

where both of A and f are positive continuous functions on [0, 1] and
0 < |p| < 1. S Replace p, and ¢ by =, and ¢™ on (1.1) and (1.2),
respectively, where m ¢ {0,—1,—2,...}. This yields the Fredholm
g-integral equations

13) ") =\) [ tfmgeodt 022

and
(L4)  ¢"(x) = f(x) + A(@) / ()7 ar (D) dyt (0 <z < 1)

In this paper, we investigate the asymptotics of solutions of (1.3) and
(??7) when f and A have following power asymptotic near zero

(1.5) A(x) ~ P g Aoz F,
k=—
with A_; # 0 and

(16) fla) ~ a3 fatk

k=—n

1
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2. PRELIMINARIES AND ¢-NOTATIONS

Let ¢ be a positive number which is less than 1, N be the set of
all positive integers, and Ny be the set of all nonnegative integers. In
the following, we follow the notations and notions of g-hypergeometric
functions, the g-gamma function I'j(x), Jackson g-exponential func-
tions e,(z), and the g-shifted factorial as in [3,4]. By a ¢-geometric
set A we mean a set that satisfies if v € A then qv € A. Let f be a
function defined on a g-geometric set A. The g—difference operator is

defined by

(2.1) D,f(z) := M, x # 0.

r—qr

Jackson [5] introduced an integral denoted by

/abf(:c) d,x

as a right inverse of the ¢-derivative. It is defined by

(2.2) /bf(t) Ayt i /Obf(t) dqt—/oaf(t) dyt, a,be C,

where
2.3) | 10— -0 Y s far), c e €,
0 n=0

provided that the series at the right-hand side of (2.3) converges at
x =a and b. A g-analogue of the Riemann-Liouville fractional integral
operator is introduced in [1] by Al-Salam through

(2.4 1) = fs [ (e, @
a¢g{—1,-2,...}. Using (2.3), we obtain

o = %1 = g)* = (qa;Q>k x k
(2.5) I} f(x) == 2%(1 - q) % @O f(zq"),

which is valid for all a. Let f : A — R be a function. We say that f
is g-decreasing on A if
f(x) < f(qr) forallz e A.

If
f(z) > f(gx) forallze A

then we call f g-increasing on A. If
D,f(xz) > 0forallz € ANRY and D, f(x) <0Oforallz € ANR™,
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then f is g-increasing on A. Similarly, if
D,f(x) <0forallz € ANR" and D, f(x) > 0forallz € ANR™,

then f is ¢g-decreasing on A. Let B[0, a] be the space of all bounded
functions defined on [0,a] and BT[0,a] be the space of all functions
f € B[0,1] such that

inf {f(x) : z €[0,a]} > 0.

The g-translation operator is introduced by Ismail in [4] and is defined
on monomials by

(2.6) el = x"(=y/T; Q)n,

and it is extended to polynomials as a linear operator.

3. ASYMPTOTIC SOLUTIONS NEAR ZERO

The following theorem is proved in [7]. Therefore we introduce it
without a proof.

Theorem 3.1. Let p € Z,a € R and {¢1}32, be a sequence of real
numbers. If the function o(x) has the asymptotic relation

(3.1) o(x) ~ > o™ (x = 0),
k=p
then for m € R with m # 0, —1, -2, ...... , there holds the asymptotic
(3.2) o™ () ~ P Z ®, p2* (= 0)
k=0

where the coefficients @, are expressed in terms of the coefficients ¢y,:

m m
®p,0: <O)S0p7

m m—
(I)P,l = <1)<Pp 180p+1,

m m— m m—
CDpvQ = (1)S0p 1901?4—2 + (2>(10p 290[2)-1—1’
(3.3)

m\ m m\ (2\ o m\ m-3 3
Qps = 1 Yp  Pp+3t 9 1 Cp Ppr1Ppr2 T 3 Pp  Pp+1s
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My m-1 My m—2| 2 2
G4 = 1 ©p  Ppra T 9 “p Ppra T 1 Pp+1¥Pp+3
m\ (3\ ,._ my\ .
+<3) (1) Cp 390;%+190p+2 + <4)90p 490§+17

etc.

In [7], Kilbas and Saigo proved that if in Theorem 3.1 m € {2, 3,

then

0 ij
Pk_z Z 10'21'22 ¢ 1 by

10=071,52,...,i5

where the summation is taken over all non-negative integers iy, s, . ..

such that
0<i <ip<...<1; <k,

Theorem 3.2. Let p € Z and o € R be such that ap > —1. If

(3.4) dla) ~ > i (z—0),
then
o Jja+1)
I7o(x) ~x ngj ]a+a+1) (x —0).

Proof. First we consider (1.4), where A(xz) and f(z) have the asymp-
totics (1.5) and (1.6), respectively. We will seek an asymptotic solution

o(x) of (1.4) in the form (3.4). From (2.5)
k(0 Dk
IFo(x) =21 = q)* ) " —=(xq").
! ; (43 Ow
Hence, applying (3.1) we have

a k ; ka
[Fo(x) ~ 2%(1—¢q)* Z 7

«a «a o aj q;59)k
= 2°(1-q) Z%x] Zq’“( ””—(q,q))k
aj—i—a-‘,—l)

SR DR e
s (q°j +1)’
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where we applied the g-binomial theorem in the last step, cf. [3, xvii].
Consequently,

jOé—l—l)
I3 ~

and the theorem follows.
O

In view of the asymptotic (1.5) and the general properties of asymp-
totic expansions, see [8, Chapter 1], we have

ANax)ze=t [* ‘
W/o (qt/2;q)a—10(t) dyt

I+k—1 .
apm E : § : F (Oﬂ + ]') ak
~ P ( Oﬂ Tot 1) Ak—i—l@i) Xz (I’ — O)

k=—n \i=l—-n—

Then, taking into account Theorem 3.1 and Lemma 1.6, we obtain

(3.5)
xa(l—n—l)m Z (I)l—n—l,kxak ~
k=0

I+k—1 . 00
Fy(ai+1)
Lo q Ao i ) ak apm ak 0).
E ( g T (ai 1 i 1g0,)x +x g frx® (x — 0)

k=—n \i=l-n—

Theorem 3.3. Let « > 0, p, m € R (m # 0,—1,-2,.....) be such
that ap > —1. Assume that as well as l,n,r:=(l—n—p—1)m € Z
such thatl —n —1> —1/a and r > —n. Let XN(x) and f(z) have the
asymptotics (1.5) and (1.6) and the coefficients py, satisfy

I+k—1

Fy(ai+1)
3.6 g No—im19Pi =0

i=l—-n—1
(k=-n,—n+1,..,r—1),
and

I+k—1 .
L,(ai+1)

3.7 Dk = N Ak—i—10i

(3.7) I—n—1k Z T(aitatD) " 100 + fr

i=l—n—1

(k=mrr+1,..).

Then (1.4) is asymptotically solvable in L}(0,a) for some a > 0 and
its asymptotic solution near zero has the form (3.1).
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Proof. Supposer = (I—n—p—1)m € Zform € R, (m # 0,—1,—-2, .....)
such that » > —n. Then (3.5) is equivalent to

(3.8)

I+k—-1 .
Fy(ai+1)
ar+pm) § d ~ P E E q Ao ) ak
l—n— lkm Y ( (OéZ+Oé—|—1) k’—z—lgpz) Y

k=—n \i=l—

4 gopm Z kaak

k=—n

Make the substation u = k 4 r on the left hand side of the last
relation and then replace u by k, this gives

(3.9)
1oPm ) apm gLy Oﬂ—i_ ) A ak
Z Imn—1k—rT" SENE Z F aH—a—i—l) k—i—1¥i | T

k=—n \i=l-n—

4+ gopm Z kaak

k=—n

Hence, it follows from (3.9) that the coefficients ¢y, satisfy (3.6) and
(3.7). Then (1.4) is asymptotically solvable and its asymptotic solution
near zero is given by (3.1). O

Theorem 3.4. Let o > 0,m > 0 and let p,l,n € Z be such that n =
[—p—1<0and(p—1l+1)/m € Z and setr = p+(p—I+1)/m > —1/a.
Let XM(x) and f(z) have the asymptotics (1.5) and (1.6), respectively.
Moreover, let the coefficients py, satisfy the relations

(3.10) Dy eti—p-1 = Ji
(k=p—-Il+1,p—1+2,..,r=1),

and

I+k—1
az—l—l

I'y( az+a+1)

(3.11) D yi—p1 = Ak—i—1i + fr

(k:r—l—l—l,r—l—i—Q,....).

Then (1.4) is asymptotically solvable in L}(0,a) and its asymptotic
solution near zero has the form

(3.12) o(x) ~ Z oz (z — 0).
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Proof. We assume

o(x) ~ Y pra (z = 0),
k=r
and we shall prove that the coefficients p, are given by (3.10), (3.11).
Applying the same arguments as in Theorem 3.3, we came to the as-
ymptotic relation
(3.13)

) l+k—1 .
rorm apm I (Oﬂ + 1) ak
Z(I)rkx ~ xP Z (Z m+a+1)>\k—i—1%>x

k=—n i=r

Lo Z kaak:

k=p—I—1
Since m(r — p) € N, the left hand side of (3.13) can be written as

0o 0o
2oTm § : (I)r,kCCak — xapm+a(rfp)m E (I)r,kxak
k=0

k=0

2oPm Z (I)T,kxoz(kJr(rfp)m).
k=0

Make the substation 4 = k + (r — p)m on the last series and then
replace p by k, this gives

(3.14)
it > (! (i +1
o =\ = F (i 4+« —|— 1)
g Z kaak
k=p—I+1

Equating the coefficients of 2% on (3.14) give (3.10) and (3.11). Then
(1.4) is asymptotically solvable in E;(O,a) for some a > 0 and its
asymptotic solution is in the form (3.12). O

Corollary 3.5. Let « > 0, m > 0 and let | be a positive integer such
that l/m € Z and set r = —1 +1/m. Let

Az) ~ 7 Z Mz f(z) ~ z7om Z frox®® (x — 0),
k=l

with Ay # 0, fi # 0. Then (1.4) is asymptotzcally solvable and its
asymptotic solution near zero has form (3.12).
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Proof. The proof follows from Theorem 3.4 by substituting with p =

—I,n=1land f, =0 (k= —-l,-l+1,...,—l + ) in equations (1.5)
and (1.6). Hence, the coefficients ¢y, satisfy
(3.15) D kr1 = [
(k=—-l,—1l+1,.....,—-1l+71),
and
I+k—1 :

Ly (ai+1)
3.16 D, py = 1 Ae—i1Pi
(3.16) e+l ; Tolai tat1) 1% + Jr

(k=r—1+1r—10142...).
Then (1.4) is asymptotically solvable in £](0,a) for some a > 0 and its
asymptotic solution near zero has the form (3.12). O

Theorem 3.6. Let a > 0,m < 1(m #0,—1,-2,.....) and let p,l,n €
Z be such thatn =1—p—1<0and (p—1+1)/(1 —m) € Z and let
r=p—(p—1l+1)/(1—m) > —1/a. Let N(xz)and f(z) have asymptotics
(1.5) and (1.6) and the coefficients @y satisfy

l+k—1 .
Fy(ai+1)
3.17 T —
(3.17) kti—r—1 £ Ty(ai+a+1) koim1¥

(k=r—1l4+1,r—=1014+2...,p=—1),
and
I4+k—1

Fy(ai+1)
(3.18) Dy i1 = Z Fq(cii o 1))\k—i—190i + fx

(k=p—Il+1,p—1+2,..... ).
Then (1.4) is asymptotically solvable and its asymptotic solution near
zero has the form (3.12).

Proof. Applying Theorem (3.4) we have

0o l+k—1
(i +1
2oPm (I)r (r— ~ pOPM A i1 xak
Z k—(r—i+1)% Z( T, ( az—i—a—i—l) k 1%0>

k=r—I+1 k=—n i=

L gopm Z fkl'ak

k=p—Ii+1

Then the coefficients ¢y, satisfy (3.17) and (3.18). Then (1.4) is asymp-
totically solvable and its asymptotic solution near zero has the form
(3.12) O
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4. ASYMPTOTIC OF THE SOLUTION IN SOME SPECIAL CASES

In this section we give asymptotic solutions of (1.4) when A(z) and
f(z) have the special case:

AMz) = Az and f(x P Z fra®®
k=—n
Hence (1.4) takes the form
(4.1)
gm0 :
o) = et [t/ e o) it~ 2 3
Ly(e) 0 ' Z

k=—n
where 0 <z <a <oo, A\#0and N > —n.

Theorem 4.1. Let « > 0,p,m € R(m # 0,—1,-2,....) and let
Ln,(l—n—p—1)m € Z be such that | —n —1 > —1/a and
l—n—p—1)m>—n.

(1) Whenr = (l—n—p—1)m > N and the coefficients p. satisfy
(4.2) or=0k=N+[N+I1+1,...r+1-2),
—fk_H_qu(Oék? + o+ 1)

Al (ak + 1)
(k=-n+l-1,-n+1..,N+1-1),

(4-3) Pr =

and
ALy (ak + 1)
Lok +a+1)

(4.4) Q1 h—tt1—r = Ok

(k=r+l—1r+1....).

Then (4.1) is asymptotically solvable in Eé(O, a) for some a > 0
and its asymptotic solution near zero has the form

I+N-1

Ly(ak +a+1) =
4.5 ~ q 3 ak ak
R P i T TP P
(2) When —n < r < N and the coefficients ¢y, satisfy
AL, (ak +1
(4.6) Dyt hty1-r = ol ) Ok — fr—i1

F(ak+a+1)
(k=r+l—-1,r+10,..N+1-1),
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AL (ak + 1)
Fy(ak+a+1)
(k=N+ILN+I1+1,...).

Then (4.1) is asymptotically solvable in L(0,a) for some a > 0
and its asymptotic solution near zero has the form

(4.7) Dt hty1r = ©k

r4+l—2 00
Fy(ak+a+1)
48 ~ q B ak Ock.
(4.8)  o(z) E AT, (ak + 1) Je—1112™" + E kT
k=l—n—1 k=r+1-1
(3) When r = —n and the coefficients @y satisfy
AL, (ak + 1)

4.9 B g ;g = —d — fi
( ) l 1,k—l4+1+ Fq(ak—i—omtl)gpk fr—i41

(k=-n+l—-1,—n+1,..,.N+1-1),

AL (ak + 1)
Fy(ak+a+1

(k=N+LN+I+1,..).

Then (4.1) is asymptotically solvable in Eé((), a) and its asymp-
totic solution near zero has the form (3.1).

Proof. From (1.5) and (1.6) we obtain A_; = A\, \; = 0 for j > [,
and fp = 0 for k > N. Hence, conditions (4.2)-(4.4) imply that the
conditions (3.6) and (3.7) of Theorem 3.3 are satisfied. Hence ¢ has
the asymptotic (3.1) where the coefficients are given by (4.2)- (4.4).

That is ¢ has the asymptotic (4.5). This proves (1) of the Theorem.
The proofs of the points (2), (3) are similar to the proof of (1) and so
they are omitted. U

Corollary 4.2. Under the assumptions (4.2)- (4.4) of Theorem 4.1(1),
the solution ¢(x) of (4.1) has the asymptotic

(4.10) D1t higign =

>80k

I+N-1

B I(ak+a+1) ok
P(x) = k:lzgl A, (ak + 1) Je-1112
(4.11) +0p 112D L 0220 (2 — 0),
where
_ Tylalr+10)+1) Lyla(l—n)+1)f-n \"
(412) bt = SF -+ 1) ()\qu(a(l p— 1)) '
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Furthermore, if N > —n, we have
I+N—1

B Fy(ak+a+1) ok
¢($) - k;_l )\F(I(Oék + 1) fk—l—i—lx
(4.13) +90r+l—1xa(r+l_l) + SOT‘_~_Z:L,04(7"—i-l) + O(xa(r-i-l-i-l)) (.CU N O),

where o1 s given by (4.12) and
_mly(a(r+1+ 1)+ 1) [ Tylall—n)+1)f, \™
P T TN (alr + 1) +1) \AD,(a(l—n—1)+1)
Dy(all =0+ 1) + 1S i
Al (a(l—=n)+1)
Proof. Substitute with &k =r + 1 — 1 in (4.4). This gives
B Lo(a(r +1) +1)
Pl T AT (alr+1—1) + 1
Cola(r+0)+1)
A (a(r+1—-1)+ 1)%_”_1'

(4.14)

(Dl—n—l,O
)

Then put £ = —n in (3.6) we get
 Tylall—n)+1)
AT T (all—n—1) + 1)
Then we are done. Similarly if N > —n. O

fn.

Corollary 4.3. Under the assumptions of Theorem 4.1(2), the solution
¢(x) of (4.1) has the asymptotic

r4+l—2

= Lylak +a+1) .
e k=§—1 AL (ak +1) fo-tz
o 120D 1 Oz (2 — 0),
where
(4.16)

 Tyla(r+1)+1) N Cya(l—=n)+1)f-n \"
P T AT e+l -0 +1) U T Oall—n—1+1))
Furthermore, if N > r > —n+ 1, we have

r+l—2

B Iy(ak+a+1) ok
¢($) = k:;I )\Fq(ak—l— 1) fr—i17
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(4.17) 122D oo oD L 022D (2 - 0),
where v,—1 18 given by(4.16) and

_mly(a(r+1+1)+1) ( L al—n)+1)f_, )ml
P T TN (alr + 1) + 1) A (a(l—n—1)+1)
Fq<a(l —n+ 1) + 1)f—n+1
ALy(a(l —n) +1)
Proof. Substitute with k =r 41— 1in (4.7). This gives
B Lolalr +1)+1)
Prei-1 = A (a(r +1—1)— l)q)l—n—l,o
Lolar+D+1)
Ag(a(r+1—-1)+ 1)('017"71

Fy(a(r+1)+1) Ca(l—n)+1)f, \"
M (a(r +1-1) + 1) {fr + ()\Fq(a(l — 1)) } '

(4.18)

Similarly if N >r > —n +1 U

Corollary 4.4. Under the assumptions of Theorem 4.1(3), the solution
() of (4.1) has the asymptotic

(4.19) ¢(x) = Az + O(2*"M) (2 — 0),
where £ = A is a solution of the equation
A (a(l—n—1)+1)
Fy(a(l—n)+1)
Furthermore, if N > —n + 1 and
Ay (a(l —n) +1)
Fy(a(l—n—-1)+1)

(4.20) &

€+f—n:()-

#mA™

we have
(4.21) o(x) = AxeU=n=1) o paoll-n) 4 O(a:o‘(l_"“)) (x = 0),
where
AL (a(l —n) +1)
Fa(l—n—1)+1)
Proof. Substitute with k =1 —n — 1 in (4.9). This gives
ALy (a(l—n—1)+1)
Fy(a(l =n)+1)

-1
B= —mA™ F

q)lfnfl,o = Pl—n—1 — ffna
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. Myl —n—1)+1)
R WO Y

Then ¢;_,—1 = A is a solution of equation (4.20). Now we prove (4.21)
iHfN>-n+1and

Ay (a(l —n) +1)
Fj(a(l—=n—-1)+1)
put k =1[1—nin (4.9). We obtain
ALy (a(l —n) +1) P — Forin
T a(l—n+1)+1)7" " /7P
Ay (a(l —n)+1) iy
Fq(a(l—n—l—l)—{—l)@l_n —n—+1,
where we used (3.3). Since A = ¢;_,,_1 and B = ¢;_,, then we have
Ay (a(l —n) + 1)
B p—
Fy(a(l=n—-1)+1)

Pl—n—1 + f—n = 0.

#mA™

CI)l—n—l,l =

m—1 o
my_n,_1¥Pl—n =

-1
- mAm_1:| f—n+1~

0

In the remaining of this section we derive an exact solution of the
equation

po(pm—I)
(122) ¢"(x) = AFT

(0<z<a<o0).

From Corollary 4.4, the solution ¢(x) of (4.22) has the asymptotic
(4.19) near zero, where £ = A is a solution of equation

em _ MNy(a(l—=n—-1)+1)
Fy(a(l—n)+1)
Theorem 4.5. Let a > 0, B > —1 (5 #0), and |l € R with | # —«
and l # —a — . For a,b € R (a # 0) let the equation

ALG(B+1)

L(B+a+1)

be solvable and let & = ¢ be its solution. Then the nonlinear integral
equation

2 / (at/2: q)ar &) dgt — b @™
0

£4+b=0.

(4.23) g/t £E—b=0,

(4.24) M EFIB(g) = miﬂwl /m(qt/m;Q)aq o(t) dyt + b tFH
q 0

0<z<a< o)
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s solvable and its solution is given by

(4.25) p(z) = ca”.

Proof. We apply Corollary 4.4 withm = 1 + O‘Tﬂ, v = alpm — 1),
and a(pm —n) = a+ B + 7. Then the solution is given by ¢(x) =
cx? + O(2P**). But a direct substitution verifies that ¢(z) = c2” is a

solution of
A —n—-a+1)

Ly(n—1+1)

&m £—b=0.

O

Now we consider the homogeneous equation associated with (4.24)
which is
(4.26)

!
P+ B () Az

Iy(a)
According to Theorems 3.1 and (?7) we obtain the following result

! /x(qt/:c; Qa1 0(t)d;t (0 <z <a<o0).
0

Theorem 4.6. Let the conditions of Theorem 4.5 are satisfied and let
& = ¢ be the unique solution of (4.23).

(i) If =1 < (I + «)/B < 0, then (4.25) is the unique solution of
(4.26) in the space C0,a] for some a > 0. If in additionally,
A b, and C' are positive numbers, then this solution belongs to
C*10,d].

(i) If (a+1)/B > 0, a,b, and ¢ are positive numbers, then (4.25)
is the unique solution of (4.26) in C*[0,1].

Remark 4.7. In [6, PP. 441-442] Karapetyants et al. studied the exis-
tence of positive solutions of the algebraic equation

(4.27) &m—d¢—b=0,

with m > 0, m # 1 and a, b € R — {0}. They investigated the positive
solvability of (4.27) by using the properties of the function

f(§) =¢" —d§—b.
Set
(4.28) S " B
. 0 -— (E) s = f(Co).

The authors of [6] obtained the following result which we state with-
out proof.
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Theorem 4.8. Let m >0, m # 1 and a, b € R — {0}. Let E and ¢
be as in (4.28). Equation (4.27)

(i) does not have positive solutions if either d < 0,b < 0 or d >
0,b<O0,m>1,E>00rd>0,b>0,0<m<1, F<O0;
(ii) has a unique positive solution
il &=c,>014d<0,b>0
1.2 &=c1>co>0if eitherd>0,0<0,0<m<1or
d>0,b>0 m=1;
ii3& =c >0if E=0c >c >0 if either and either
d>0,b<0,m>1ord>0,b>0,0<m<1
(iii) has two positive solutions § = co and & = ¢3, 0 < c3 < ¢ < c3, if
eitherd >0, b<0,m>1, E<0ord>0,b>0,0<m<1,
E > 0.

5. ASYMPTOTIC SOLUTION OF LINEAR EQUATION IN GENERAL CASE

In this section we investigate the special case m = 1 of (1.4) when
0 < a < 1. In other words, we give the asymptotic of the equation

51 o) = foka [ at/ma o0 dg + 1@
(0<z<o0,0<a<l).

In [2, P.214], the authors studied (1.4) for all & > 0 when A(z) = A for
all x € (0,a], and f € ﬁé [0, a] where a is a positive number satisfying
the inequality

|IAla®(1 —¢q)* < 1.
They proved that the g-integral equation (5.1) under the previous con-
ditions has a unique solution

o(z) = f(z) + Ax*? /Ox(qt/x; Qa1 eq oA q) (1) dyt,

in the space £;[0, a] where ¢ is the g-translation operator defined in (2.6).

Theorem 5.1. Let f(z) and \(x) have the asymptotics as x — 0

(5.2) fl)~ Y frua,
and
(5.3) N PP
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Assume that
(5.4) AL £ (ak+a+1)

[y(ak+1)

Then the unique power asymptotic solution ¢(x) of (5.1) near zero
in the space of all continuous functions is given by the form ¢(z) ~
S e R, where @y is given by
(5.5)

k-1

T, (ak+1) - Ty (i + 1) Aeis
— |1 = q A q i ;
vk [ Fy(ak+a+1) 1} 8 Lz_:l Fy(ai+a+1) it

(k=-1,0,1,...).

(k=-1,0,1,2,......).
Proof. Using (3.11) we obtain

D1 = Me—icipi + fr (k=-1,0,1,...).

F az+a+ 1)

Substitute with p = —1 in (3.4) yields

(5.6) $lz) ~ > e,
j=—1

and from (3.2) with p=—1and m =1
(57) (b(ilf) ~x ¢ Z éfl’kilfak = Z (I),17j+1£[}aj

k=0 j=—1

Compared to coefficients of z in (5.6) and (5.7) we obtain
(1)_17]‘_’_1 ZQDJ‘ (j: —1,0,1,)

So, we have the following formulas for the coefficients ¢y,

k .
Fq(ozl + 1))\k—i—1

3 ]{Z:—l, ,1,...,

i_z_zl Tlaitary »Hd | 0,1,-)

Pr =

equivalently
(5.8)
T, (ok+1) o Ty(ai 4+ 1) Api
s Malpe = =& Z
{ T,(ak+a+1) 1} ok _X_:l T (ai+a+1)

@it fe (k=-1,0,1,..).

Hence if (5.4) satisfied, asymptotic solution ¢(z) of equation (5.1) is
given by the form (5.6) where ¢y, given by (5.5). O
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Theorem 5.2. Let f(x) and A(x) have the asymptotics (5.2) and
(5.3), respectively as x — 0. Assume that there exists a number j €
{=1,0,1,....} such that
Fg(aj +a+1)

Fy(aj+1)
If the coefficients fi (k = —1,0,1,....,j) in the asymptotic expansion
(5.2) satisfy the relation

j—1

r (Oéj + 1))\'71',1
5.10 g , ] i+ 1 =0,
(5.10) Z; Ly(ai+a+1) Pt

(59) )\,1 -

then the unique power asymptotic solution ¢(x) of equation (5.1) is
given by

(5.11) P(z) ~ cx® Z R,

k=—1
k#j

where ¢ is an arbitrary constant. If the condition (5.10) is not satisfied,
then equation (5.1) does not have any asymptotic solution of the form
(5.6).

Proof. Using Theorem 5.1 and suppose (5.4) is not valid. This means
there exists a number j € {—1,0,1,....} such that (5.9) holds. In this
case the coefficients f (k = —1,0,1,....,j) in the asymptotic expansion
(5.2) satisfy the relation (5.10), where ¢; (i = —1,0,1,...,5 — 1) are
expressed via f; (i = —1,0,1,...,7— 1) by means of (5.5). For example,
when j = —1,0, 1, the relations (5.9) and (5.10) have the form

1
)\_ = — _1 = f :_1
LSy 0 for
/\_1:Fq(()é+1) )\0@_1+f0:0 for ]:0
I',(2a+1 .
)\1:1311((a—+1))rq(04+1))\1801+)\0800+f1=0 for j=1.

Thus if condition (5.10) is satisfied, then the asymptotic solution of
(5.1) has the form (5.11), where c¢ is an arbitrary constant and ¢y, (k #
j) are given by (5.5). If condition (5.10) is not satisfied, equation (5.1)
does not have any asymptotic solution of the form (5.6) O

Theorem 5.3. Let

(5.12) fla) ~ > fra,
k=0
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and A(x) has the asymptotic (5.3),as © — 0, and let condition (5.4) be
satisfied. Then the unique power asymptotic solution ¢(x) of equation
(5.1) is given by the form

(5.13) o(x) ~ 3 prat

where @y, (k € Ny) are given by
(5.14)

Ly(ak+1) }1 y ri T, (ak + 1)>\,H<,1w i

90’“:{ S Tyak+a+1)"" “ T,(ai+a+1)

Proof. If A(x) has the asymptotic (5.2), then (5.8) takes the form
(1-Ty(1—a)Aq)p_1 =0,
(5.15)

~ Tylak +1) Ly(ak + 1)A_iz
P(ak+a—|—1 F (et +a+1)

it fr (k

When condition (5.4) holds, ¢_; = 0 and hence the asymptotic solution
(5.6) of equation (5.1) has the form (5.13), where ¢ (k = 0,1,2,...) are
given by (5.14). O

Theorem 5.4. Assume that the functions f(x) and X x) have the
asymptotics (5.12) and (5.3), respectively, as x — 0. If \_y = 1, then
the unique power asymptotic solution ¢(x) of equation (5.1) in the space
E; 0, a] for some a > 0 is given by

(5.16) o) ~ecx ™+ Z opr*

where c is an arbitrary constant and ¢y, (k € Ng) are found from (5.14).
Assume there exists a number j € {—1,0,1,....} such that

(1Tl —a)Aa)p1=0 (j=-1)
and
— Iy(0 + 1)Xyoisy

(5:17) Fy(oi4a+1)

pit fi=0 (J€No).
=1

If the coefficients fi (k = 0,1, ....,j) in the asymptotic expansion (5.12)
satisfy the relation
k—

,_.

F(Olkf+ )\k’zl
Fy(ai+a+1)

(5.18) @i+ fu =0,

=0
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then the unique power asymptotic solution ¢(x) of equation (5.1) is
given by

(5.19) o(x) ~ cx™ + Z Rz
k=0
ki

where ¢ is an arbitrary constant.

Proof. If condition (5.4) is not valid, then there exists a number j €
{=1,0,1,....} such that (5.9) holds. Then (5.10) has the form (5.17).
When A\_; = 1, the asymptotic solution ¢(x) of equation (5.1) has the
form (5.16), where ¢ is an arbitrary constant and ¢y (kK = 0,1,2,...)
are found from (5.14). If A_; # 1 and (5.17) holds, then ¢p_; = 0
and coefficients fi (k = 0,1, ....,j) in the asymptotic expansion (5.12)
satisfy the relation (5.18), where ¢; (i =0, 1,2, ...,j — 1) are expressed
via f; (i = 0,1,....,7 — 1) by formulas (5.14). In this case the the
asymptotic solution ¢(x) of equation (5.1) has the form (5.19), where
c is an arbitrary constant. U

Theorem 5.5. Let the functions f(x) and A(z) have asymptotic of the
forms (5.12) and (5.3), respectively. Then the unique power asymptotic
solution ¢(x) of equation (5.1) with any a > 0 is given by (5.13), where
o (k=0,1,....) are found from

e Ap1ilg (i 4+ 1)
2 Ty(ali+ 1)+ 1)

(5-20) o_1 =0, o= fo, o = ©i + fx-

Proof. This proof according to Theorem 5.4. U

Now, we use Theorem 5.5 to give asymptotics of ¢(z) as + — 0 when
f(z) has the asymptotic (5.12).

Corollary 5.6. The asymptotic solution of the linear Volterra q-integral
equation

)\xa—l
Ly(a)

o(z) = / (@t Q)ard(x) dyt + F(2) (x> 0)

s given by
o An
¢(z) = nZ:o I (an+1)

Proof. We apply Theorem 5.5 with A(z) = A. That is in (5.3)
A =0 for all K # 0 and \g = 1.

",

> HATFT(ak + 1)
k=0
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Hence, the coefficients oy of the solution (5.13) satisfy the first order
difference equation
A
gpk Fq(@]{ _|_ 1)S0k‘—1

Set 1, = @xA T (ak + 1) (K > 1). Then ¢y satisfies the difference
equation

= fi (keN), o= fo

Vp — o1 = fid Tk + 1),
Hence ¢, = > 1_o frd "I, (ak: + 1). Consequently,

—k
n:— r,
7 F(om—l—l ka (ak+1).

which proves the Corollary. O

Ezample 5.7. Equation (5.1) with A\(z) = Az®m=1
)\:Eozm—l T
o | /e o) dg + 1)
0<zxz<o0, 0<a<l m=12.; X#0)and f(z) has the
asymptotic (5.2). In this case f(x) has the form
f(@) = faz™ + fo(z?),

fo(2) :== Y 17, fx2" is an entire function in z*. Hence,

(5.21) ¢(r) =

(5.22) At =M\ N =0 (k=-1,0,1,...;k £m— 1),
n (5.3) and therefore the relation (5.20) takes the form
(523) Spk:fk (k:—l,O,l,,m—2),
Iy(ak+1)A
O = ol ) Okem+ fr (E=m—1,m,...).

Fyla(k—m+1)+1]
Thus we obtain for £k = —1,0,1,....m —2;n = 1,2, ..., that
Iyla(nm + k) + 1]
Famm+k—m+1)+
The asymptotic of solution ¢(x) of equation (5.21)
m—2 oo
K)+
S| (I gt B
Lyla(im —m+ K +1)+1)

k=—1n=0 Lj=1 i=j+1

Prnm+k = 1] A@(nfl)m+k + fnm+k~

xa(nerk)

Ly(a(nm+k)+1)
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Example 5.8. The equation

am—1 z
520) 0(o) = i [ @t/ o 0t + 55+ bey(a (1= )
0<z*(1—¢g)<Li0<a<lim=12...).
Hence,
b
f—l == d, fk: == m (k’ - 0, 1,2, )

Consequently, equation (5.24) has the asymptotic solution, as = — 0,

alim — 1) + 1]
~ d A" a(mn—1)
4(x) Z H (cvim + 1) *
m—2 oo n—1

HLDIDD Z jm-l—k?‘l—l H zm+K+1)+1) g,

k=—1n=1 Lj=1

6. Exact solutions of linear equations

In the section we show that in some cases the asymptotic solution
¢(z) of the linear equation (5.1) with certain conditions on A(x) and
f(z) gives the exact solution. This result is a g-analogue of the result
introduced by Saigo and Kilbas in [9]. Consider (5.1) with A(z) = Az~
and

f() = fiz™ + fo2?)
where fo(2) := Y oo, frz" is an analytic function of z* in a disk around
zero, say |2*| < R . In this case we have the integral equation

61)  6l) = e | /e o)t + ra)

<2< RO0<a<1,A#0),
That is
A=A \=0 (keN)
in (5.3) and therefore the relation in (5.8) can be simplified to

(6.2) {1 - - Ly(ak +1) A] or=fr (k=-1,01,..).

Jlak+a+1)
Condition (5.4) takes the form
k 1
(6.3) A\ £ (O‘ +atl) (k=-1,0,1,....).

[,(ak+1)
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Let (6.3) hold. Then from (6.2) we obtain
[ I(ak+1)
pr=|1-
Fy(ak+a+1)
and the asymptotic solution (5.6) has the form

64) @~ [1 N Fq?;(kail_i)l)

-1
/\} £ (k=-1,0,1,..),

-1
)\1 frz®* as x — 0.

Since
Iy(ak+1) -1 .
[ _Fq(ak—i—a—i—l)/\} ~(1=Al=¢)%) (k — o00),

the power series on the left hand side of (6.4) is an analytic function
in 2% for |z < R| and the asymptotic solution give an exact solution.
If (6.3) does not hold and there exists a number j € {—1,0,1, ...} such
that

Ly(aj +a+1)

6.5 A= ,

(6.5) Fy(aj+1)

the condition of the asymptotic solvability (5.10) takes the simple form
(6.6) Jy =0,

and the asymptotic solution of equation (6.1) has the form

ak+ 1) (ef +a+1)]7"

i o Fq( ak
(6.7) o(z) ~cx™ + k_Zl {1 - T,(ak+a+ 1), (aj+ 1) i
k#j

Similarly, the power series on the right hand side of (6.7) represents an
analytic function in z® for |2®| < R and it is the exact solution in this
case.

In the following examples we get exact solutions of (6.1) for certain
choices of the function fo(z®).

Ezxample 6.1. The equation

08 o) -

/x(qt/w; Qa1 O(t) dyt + bz
0

Lylal +a+1)
Ly(al+1)

O<zr<oo, 0<a<l, AM#

)

and [ € {—1,0,1,.....} has the solution

Ty(al +1) ‘1b i
.
(al+a+1)

o) = 1~ 1
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It is worth noting that the homogeneous equation

qugzﬁ Z i)1) ¢(z) = /0 x(qt/ T qQ)a—1 G(t) dgt

xlg(a)
0<z<o00,0<a<l),

for il =—1,0,1,..... has the solution ¢(x) = cx® with c is an arbitrary
constant.

Example 6.2. The equation
(09) 6() =~ [ (@t/mi0)0s000) dyt + 25+ beyfa™(1— )
' T ) Jy (et G e e

0<z¥(1—¢q)<1,0<a<l),

eq(r*(1 —q)) = 37, %, has the solution

-1 ak

B d - Jak+1) x
¢($)_1—Fq(1—a +bZ{1— ak—i—oz—i—l))\ T,(k+1)

If (6.3) holds, the equation

) = ST . (/5501 60) ot +beyfa(1 =)

0<z¥(1—¢q)<1,0<a<l),

aj

 TDylaj+a+1) (7 ' d N x
¢(x) = o (aj £ DT,(a) /0 (qt/z;q)a—1 0(1) dgt +-2+b {eq(iﬁ' (1-q)— TES)]

0<z<oo, 0<a<l,je{0,1,2,...}) have solution

o) _H)Z{ Iy(ak+1)

-1 :Cozk
glak +a+ 1) (1 - a)} L (k+1)

and
dly(aj + 1)z
Fy(aj+1)—T(1—a)ly(aj +a+1)

+b2{1— ak:+1)1“(aj—|—q+1)]1 o |
ak+a+1)(aj+1)] Ty(k+1)

p(x) = cx™™ +

respectively, where c is an arbitrary constant.
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