

Question No.	Ι	II	III	IV	Total
Mark					

[I] Determine whether the following is True or False. [3 Points]

- (1) If A and B are $n \times n$ matrices, then $\det(A^2 B^2) = \det(A B) \det(A + B)$. ()
- (2) If A, B and C are 3×3 matrices, such that det(A) = 4, det(B) = -4 and det(C) = 2, then $det(-AB^{-1}C^T) = -2$.

(3) Every 2×2 matrix can be written as a linear combination of	$\left[\begin{array}{c}1\\0\end{array}\right]$	0 0)]	$\left[\begin{array}{c} 0\\ 0 \end{array}\right]$	$\begin{array}{c} 1 \\ 0 \end{array}$	and	$\left[\begin{array}{c} 0\\ 1\end{array}\right]$	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$	()
---	--	--------	--------	---	---------------------------------------	-----	--	---------------------------------------	---	---

(4) The angle between the vectors (1, 2, 1) and (-1, 0, 2) is obtuse.

(5) The set $\{(2,1,0), (-1,2,3), (1,3,1)\}$ is a base for \mathbb{R}^3 .	()

(6) If the vectors v_1 and v_2 are linearly independent, then the vectors v_1 , v_2 and $v_1 + v_2$ are linearly independent.

)

(

(

)

)

[II] Choose the correct answer. [5 Points]

(1) If
$$A^3 = \begin{bmatrix} 4 & 1 & 1 \\ 2 & 1 & 3 \\ 6 & 1 & 3 \end{bmatrix}$$
 then det (A^{-1}) equals
(a) -2 (b) $\frac{1}{2}$ (c) $\frac{1}{8}$ (d) None of the previous

(2) The set $\{(2, 1, 2), (-1, 0, 1), u\}$ is orthogonal if

(a) a (1, 2, 3) (b) a (0, 1, 3) (c) a (1, 2, 3) (c) a (1, 2, 3)	(a) $u = (2, -8, 2)$	(b) $u = (0, -1, 3)$	(c) $u = (1, 2, 3)$	(d) None of the previous
---	----------------------	-----------------------------	---------------------	--------------------------

(3) If $||u|| = 1, \, ||u+v|| = 4$ and d(u,v) = 6 then ||v|| is

	(a) 2 (b	b) $\sqrt{5}$	(c) 5	(d) None of the previous	
(4)	The solution space of	of $\begin{bmatrix} 3 & 1 & 0 \\ -2 & -4 & 3 \\ 5 & 4 & -2 \end{bmatrix}$	$\left] \cdot \left[\begin{array}{c} x \\ y \\ z \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right]$] is	
	(a) The origin {0}	(b) A line through	ugh the origin	(c) A plane through the origin	(d) None of the previous

(5) Which of the following is a linear combination of $v_1 = (1, 1, 2), (1, 0, 1), v_3 = (2, 1, 3)$?

(a) (3,1,-1) (b) (2,4,6) (c) (2,0,1) (d) None of the previous

[III] [6 Points]

(a) Prove that $W = \{(a, b, c); a + b - c = 0\}$ is a subspace of \mathbb{R}^3 and find a set S, such that W = spanS.

(b) Prove that $S = \{p_1, p_2, p_3\}$ is a basis for \mathcal{P}_2 , where $p_1 = 2x - 3$, $p_2 = x^2 + x + 1$ and $p_3 = -x^2 + 3x + 2$. Find the coordinate vector $(p)_s$, where $p = -3x^2 + 11x - 6$.

[IV] [6 Points] Let $V = \mathbb{R}^2$, with the addition and scalar multiplication defined as follows:

$$(x_1, y_1) + (x_2, y_2) = ((x_1 - x_2, y_1 - y_2))$$

 $k(x, y) = (kx, ky)$

- (a) Compute (-1, 2) + (3, 2) and 2(-1, 2);
- (b) Find the object $0 \in V$, such that u + 0 = 0 + u = u, for all $u \in V$;
- (c) If $u \in V$, find the object $-u \in V$, such that u + (-u) = (-u) + u = 0;
- (d) Is V a vector space? Justify your answer.