King Saud University - College of Engineering - Industrial Engineering Dept.

IE-352
Section 1, CRN: 13536
Section 2, CRN: 30521
First Semester 1432-33 H (Fall-2011) - 4(4,1,1)
MANUFACTURING PROCESSES - 2

Machining Exercises

Name:	Student Number:
42	

Answer ALL of the following questions [2 Points Each].

1. Let $n=0.5$ and $C=90$ in the Taylor equation for tool wear. What is the percent increase in tool life if the cutting speed is reduced by (a) 50% and (b) 75% ?
2. Taking carbide as an example and using the equation for mean temperature in turning on a lathe, determine how much the feed should be reduced in order to keep the mean temperature constant when the cutting speed is doubled.
3. An orthogonal cutting operation is being carried out under the following conditions: $t_{o}=0.1 \mathrm{~mm}, t_{c}=0.2 \mathrm{~mm}$, width of cut $=$ $5 \mathrm{~mm}, V=2 \mathrm{~m} / \mathrm{s}$, rake angle $=10^{\circ}, F_{c}=500 \mathrm{~N}$, and $F_{t}=200 \mathrm{~N}$. Calculate the percentage of the total energy that is dissipated in the shear plane.
4. For a turning operation using a ceramic cutting tool, if the speed is increased by 50%, by what factor must the feed rate be modified to obtain a constant tool life? Use $n=0.5$ and $y=0.6$.
5. Using the equation for surface roughness to select an appropriate feed for $R=1 \mathrm{~mm}$ and a desired roughness of $1 \mu \mathrm{~m}$. How would you adjust this feed to allow for nose wear of the tool during extended cuts? Explain your reasoning.

King Saud University - College of Engineering - Industrial Engineering Dept.

IE-352

Section 1, CRN: 13536
Section 2, CRN: 30521
First Semester 1432-33 H (Fall-2011) - 4(4,1,1)
MANUFACTURING PROCESSES - 2

Machining Exercises Answers

Name:	Student Number:
	42

Answer ALL of the following questions [2 Points Each].

1. Let $n=0.5$ and $C=90$ in the Taylor equation for tool wear. What is the percent increase in tool life if the cutting speed is reduced by (a) 50% and (b) 75% ?

Solution:

Taylor Equation for tool life:

$$
\begin{aligned}
& \boldsymbol{V} \boldsymbol{T}^{n}=\boldsymbol{C} \\
& n=0.5 ; C=90 \\
& \Rightarrow \boldsymbol{V} \boldsymbol{T}^{0.5}=\mathbf{9 0} \Rightarrow \boldsymbol{V}_{\mathbf{1}} \boldsymbol{T}_{1}{ }^{0.5}=\boldsymbol{V}_{2} \boldsymbol{T}_{\mathbf{2}}{ }^{0.5}
\end{aligned}
$$

a) $V_{2}=0.5 V_{1}$
$\Rightarrow V_{1} T_{1}{ }^{0.5}=0.5 V_{1} T_{2}{ }^{0.5}$
$\Rightarrow T_{1}{ }^{0.5}=0.5 T_{2}{ }^{0.5}$
$\Rightarrow\left(\frac{T_{2}}{T_{1}}\right)^{0.5}=2$
$\Rightarrow \sqrt{\frac{T_{2}}{T_{1}}}=2$
$\Rightarrow \frac{T_{2}}{T_{1}}=4$
\Rightarrow increase in tool life $=\frac{T_{2}-T_{1}}{T_{1}}=\frac{T_{2}}{T_{1}}-1=3$
\Rightarrow i.e. increase in tool life is 300%
b) $V_{2}=0.25 V_{1}$ (since speed decreases by 75\%)
$\Rightarrow T_{1}{ }^{0.5}=0.25 T_{2}{ }^{0.5}$
$\Rightarrow\left(\frac{T_{2}}{T_{1}}\right)^{0.5}=4$

King Saud University - College of Engineering - Industrial Engineering Dept.

$$
\begin{aligned}
& \Rightarrow \frac{T_{2}}{T_{1}}=16 \\
& \Rightarrow \text { increase in tool life }=\frac{T_{2}-T_{1}}{T_{1}}=16-1=15
\end{aligned}
$$

\Rightarrow i.e. increase in tool life is 1500% (i.e. 15 - fold)
2. Taking carbide as an example and using the equation for mean temperature in turning on a lathe, determine how much the feed should be reduced in order to keep the mean temperature constant when the cutting speed is doubled.

Solution:

equation for mean temperature in turning on a lathe,

$$
T_{\text {mean }} \alpha V^{a} f^{b}
$$

Given: $T_{\text {mean }}=C_{1} ; V_{2}=2 V_{1} ;$ for carbide: $a=0.2, b=0.125$

$$
\begin{aligned}
& \Rightarrow C_{1}=C_{2} V^{0.2} f^{0.125} \\
& \Rightarrow V_{1}^{0.2} f_{1}^{0.125}=\left(2 V_{1}\right)^{0.2} f_{2}^{0.125} \\
& \Rightarrow\left(\frac{f_{2}}{f_{1}}\right)^{0.125}=0.5^{0.2} \\
& \Rightarrow \frac{f_{2}}{f_{1}}=2^{-\left(\frac{0.2}{0.125}\right)}=2^{-1.6}=0.330 \\
& \Rightarrow \text { reduction in feed }=\frac{f_{1}-f_{2}}{f_{1}}=1-0.330=0.670 \\
& \Rightarrow \text { i.e. reduction in feed is } 67 \%
\end{aligned}
$$

King Saud University - College of Engineering - Industrial Engineering Dept.
3. An orthogonal cutting operation is being carried out under the following conditions: $t_{o}=0.1 \mathrm{~mm}, t_{c}=0.2 \mathrm{~mm}$, width of cut $=$ $5 \mathrm{~mm}, V=2 \mathrm{~m} / \mathrm{s}$, rake angle $=10^{\circ}, F_{c}=500 \mathrm{~N}$, and $F_{t}=200 \mathrm{~N}$. Calculate the percentage of the total energy that is dissipated in the shear plane.
Note, for detailed solution, see similar exercise:"cutting force exercise 2.PDF"

Givens: thicknesses: $t_{o}=0.1 \mathrm{~mm} ; t_{c}=0.2 \mathrm{~mm}$

$$
\text { angles: } \alpha=10^{\circ}
$$

velocities: $V=2 \mathrm{~m} / \mathrm{s}$

$$
\text { forces: } F_{c}=500 \mathrm{~N} ; F_{t}=200 \mathrm{~N} ; F_{s}=? ; F_{n}=\text { ? }
$$

Required: \%ge of total energy dissipated in primary shearing zone

$$
\text { i.e. } \frac{U_{s}}{U_{\text {tot }}}(100)=\frac{\text { Power }_{s}}{\text { Power }_{\text {tot }}}(100)=\text { ? }
$$

Solution:
$\frac{\text { Power }_{s}}{\text { Power }_{\text {tot }}}=\frac{F_{s} V_{s}}{F_{c} V}$
Strategy: we have F_{c} and V, and we need to find F_{s} and V_{s}

- V_{s} can be obtained if we have shear angle (ϕ), from,

$$
V_{s}=V \frac{\cos \alpha}{\cos (\phi-\alpha)}
$$

o and ϕ can be obtained from,

$$
\tan \phi=\frac{r \cos \alpha}{1-r \sin \alpha}
$$

o and r can be obtained from,

$$
r=\frac{t_{o}}{t_{c}}=\frac{0.1 \mathrm{~mm}}{0.2 \mathrm{~mm}}=0.5
$$

o now, working back \Rightarrow

$$
\phi=\tan ^{-1}\left[\frac{0.5 \cos 10^{\circ}}{1-0.5 \sin 10^{\circ}}\right]=\tan ^{-1} 0.539=28.3^{\circ}, \text { and: }
$$

King Saud University - College of Engineering - Industrial Engineering Dept.

$$
V_{s}=2 \mathrm{~m} / \mathrm{s} \frac{\cos 10^{\circ}}{\cos \left(28.3^{\circ}-10^{\circ}\right)}=(2 \mathrm{~m} / \mathrm{s}) * 1.037=2.075 \mathrm{~m} / \mathrm{s}
$$

Note how shear velocity is higher (4\%) than cutting speed

- F_{S} is now required and can be obtained force circle, by resolving component of F_{c} along F_{s} direction, and F_{t} opposite to F_{s} direction \Rightarrow

$F_{s}=F_{c} \cos \phi-F_{t} \sin \phi$

$$
\begin{aligned}
& =(500 N) \cos 28.3^{\circ}-(200 N) \sin 28.3^{\circ} \\
& =440 N-94.9 N=345 N
\end{aligned}
$$

- Substituting values of V_{s} and F_{s} into $\frac{\text { Power }_{s}}{\text { Power }_{t o t}}=\frac{F_{s} V_{s}}{F_{c} V} \Rightarrow$

$$
\frac{\text { Power }_{s}}{\text { Power }_{\text {tot }}}=\frac{(345 \mathrm{~N})(2.075 \mathrm{~m} / \mathrm{s})}{(500 \mathrm{~N})(2 \mathrm{~m} / \mathrm{s})}=\frac{718.875}{1000}=0.719
$$

$\Rightarrow \%$ ge of total energy dissipated in shearing is approximately 72%
Note, you can check your answer by calculating \%ge of energy dissipated due to friction (which should 28\%; see "cutting force exercise 1.PDF"), and adding the two values, which should amount to exactly 100\%.

King Saud University - College of Engineering - Industrial Engineering Dept.
4. For a turning operation using a ceramic cutting tool, if the speed is increased by 50%, by what factor must the feed rate be modified to obtain a constant tool life? Use $n=0.5$ and $y=0.6$.
Given:

$$
\begin{aligned}
& V_{2}=V_{1}+0.5 V_{1}=1.5 V_{1} \\
& T_{2}=T_{1} \\
& n=0.5 ; y=0.6
\end{aligned}
$$

Required: $\frac{f_{2}}{f_{1}}=$?

Solution:

Taylor tool life equation for turning operation:

$$
\begin{aligned}
& V T^{n} d^{x} f^{y}=C_{1} \Rightarrow \\
& V_{1} T_{1}^{n} d_{1}^{x} f_{1}^{y}=V_{2} T_{2}^{n} d_{2}^{x} f_{2}^{y}
\end{aligned}
$$

since $T_{2}=T_{1}$, and assuming constant depth of cut $(d) \Rightarrow$
$V_{1} f_{1}^{y}=1.5 V_{1} f_{2}^{y} \Rightarrow$
$\left(\frac{f_{2}}{f_{1}}\right)^{0.6}=\frac{1}{1.5} \Rightarrow$
$\frac{f_{2}}{f_{1}}=1.5^{-\frac{1}{0.6}}=0.509$
\Rightarrow feed must be modified by a factor of 50.9\%

King Saud University - College of Engineering - Industrial Engineering Dept.
5. Using the equation for surface roughness to select an appropriate feed for $R=1 \mathrm{~mm}$ and a desired roughness of $1 \mu \mathrm{~m}$. How would you adjust this feed to allow for nose wear of the tool during extended cuts? Explain your reasoning.
Given:

$$
\begin{aligned}
& R=1 \mathrm{~mm}=1 * 10^{-3} \mathrm{~m} \\
& R_{t}=1 \mu \mathrm{~m}=1 * 10^{-6} \mathrm{~m}
\end{aligned}
$$

Required:

- $f=$?
- how to adjust feed to account for nose wear

Solution:

- equation for surface roughness,
$R_{t}=\frac{f^{2}}{8 R} \Rightarrow$
$f=\sqrt{(8 R) R_{t}}=\sqrt{\left(8 * 10^{-3} m\right)\left(1 * 10^{-6} m\right)}=\sqrt{8 * 10^{-9} \mathrm{~m}^{2}}=$
$=8.94 * 10^{-5} \mathrm{~m} / \mathrm{rev}=0.089 * 10^{-3} \mathrm{~m} / \mathrm{rev} \Rightarrow$
\Rightarrow appropriate feed is $0.089 \mathrm{~mm} / \mathrm{rev}$
- when nose wear occurs \Rightarrow
radius (R) will increase \Rightarrow
to keep the surface roughness $\left(R_{t}\right)$ the same
\Rightarrow the feed must also increase

