أجب عن الأسئلة الثلاثة التالية

(1) السؤال الأول (سبع درجات)

(i) هات مثالاً لما يلى :

. $A \sim B$ و $A \subset B$ بحيث $A \subset B$ و مجموعتان غير منتهيتان A

$$B=\mathbb{Q}$$
 و $A=\mathbb{N}$: الحل

$$B=\mathbb{R}$$
 أو $A=(0,1)$ أ

- . $\sup(A) = \max(A)$ و $\inf(A) = -\infty$ غير خالية و A غير خالية و $a \in \mathbb{R}$ حيث $A = (-\infty, a]$ الحل
 - . أثبت أن مجموعة الأعداد غير النسبية \mathbb{Q}^c كثيفة الحل : انظر الكتاب .
 - . قابلة للعد . \mathbb{Q} قابلة للعد . الحل : انظر الكتاب .

(2) السؤال الثاني (عشر درجات)

(i) هات مثالاً لما يلى :

• متتالية مطردة وليست متقاربة .

$$(x_n) = (-n)$$
 أو $(x_n) = (n)$: الحل

• مجموعة A قابلة للعد بينما \hat{A} غير قابلة للعد .

$$A=\mathbb{Q} \implies \hat{A}=\mathbb{R}:$$
الحل

• متتالية ليست متقاربة ولها متتالية جزئية محدودة .

$$(x_n) = ((-1)^n)$$
 الحل : المتتالية

أو المتتالية التي حدها النوني

$$x_n = \begin{cases} n & , & n \in \mathbb{N}_1 \\ \frac{1}{n} & , & n \in \mathbb{N}_2 \end{cases}$$

. متقاربة ((x_ny_n) و (x_ny_n) و متقاربتين ، فأثبت باستخدام التعريف أن المتتالية ((x_ny_n) متقاربة . الخل : انظر الكتاب .

(3) السؤال الثالث (ثمان درجات)

$$x_n\in\mathbb{N}$$
 لکل $x_n=\sum_{i=1}^na_i$ وکانت $i\in\mathbb{N}$ لکل $a_i\geq 0$ إذا کانت $i\in\mathbb{N}$

. أثبت أن المتتالية (x_n) تزايدية الحل: لكل $n \in \mathbb{N}$

$$x_{n+1} - x_n = \sum_{i=1}^{n+1} a_i - \sum_{i=1}^n a_i = a_{n+1} \ge 0$$

. إذاً المتتالية (x_n) تزايدية

. إذا كانت $x_n \leq y_n$ لكل $x_n \in \mathbb{N}$ وكانت المتتالية (y_n) متقاربة ، فأثبت أن المتتالية (y_n) متقاربة فهي محدودة . الحل : بما أن المتتالية (y_n) متقاربة فهي محدودة .

. $n\in\mathbb{N}$ لکل $|y_n|\leq M$ بحیث یکون M>0 لکل

$$x_n \leq y_n = |y_n| \leq M$$
 فإن $n \in \mathbb{N}$ لكل $n \in \mathbb{N}$

أي أن المتتالية $\left(x_{n}
ight)$ محدودة من أعلى وبالتالي فهي متقاربة .

. إذا كانت
$$(x_n)$$
 متتالية متقاربة فأثبت أنها من نوع كوشي (ii) الحل : انظر الكتاب .

رنان لتكن
$$(x_n)$$
 متقاربة ، أثبت أن المتتالية (x_n) متقاربة ، أثبت أن المتتالية (x_n) متقاربة . الحل : لنفرض أن $x_n \longrightarrow l_3$ و $x_n \longrightarrow l_2$ و $x_n \longrightarrow l_1$ يكفى أن نشت أن $x_n \longrightarrow l_3$ و $x_n \longrightarrow l_3$ و يكفى أن نشت أن $x_n \longrightarrow l_3$

$$(x_{2n})$$
 المتتالية (x_{6n}) هي متتالية جزئية من المتتالية $x_{6n}\longrightarrow l_1$ وبالتالي $x_{6n}\longrightarrow l_1$ هي متتالية جزئية من المتتالية (x_{3n}) هي متتالية جزئية من المتتالية $x_{6n}\longrightarrow l_3$ من وحدانية نهاية المتتالية فإن $l_1=l_3$ هي متتالية جزئية من المتتالية (x_{2n+1}) هي متتالية جزئية من المتتالية $x_{6n+3}\longrightarrow l_2$ وبالتالي $x_{6n+3}\longrightarrow l_2$ هي متتالية جزئية من المتتالية $x_{6n+3}\longrightarrow l_3$ وبالتالي $x_{6n+3}\longrightarrow l_3$ هي متتالية فإن $x_{6n+3}\longrightarrow l_3$ من وحدانية نهاية المتتالية فإن $x_{6n+3}\longrightarrow l_1=l_2$ من وحدانية نهاية المتتالية وإن $x_{6n+3}\longrightarrow l_1=l_2$ هي وبالتالي المتتالية $x_{6n+3}\longrightarrow l_1=l_2$

أجب عن الأسئلة الثلاثة التالية

- (1) السؤال الأول (عشر درجات)
- . أعط مثالاً لدالة f و نقطة c بحيث تكون $\lim_{x \to c} \left[f(x) \right]^2$ موجودة بينها f عبر موجودة و أعط مثالاً لدالة f

$$f(x) = \left\{ egin{array}{ll} 1 & , & x \geq 0 \ -1 & , & x < 0 \end{array}
ight.$$
 الحل : الدالة

. غير موجودة $\lim_{x o 0} f(x)$ يينها $\lim_{x o 0} \left[f(x)
ight]^2 = 1$

. بين أن $\frac{1}{x-2}$ غير موجودة •

$$f(x) = \frac{1}{x-2}$$
 الحل: لتكن

$$x_n = 2 + \frac{1}{n}$$
 خذ المتتالية التي حدها

$$n\in\mathbb{N}$$
 لكل $x_n
eq 2$ و $x_n\longrightarrow 2$ لكل لاحظ أن

$$n\in\mathbb{N}$$
 لکل $x_n
eq 2$ و $x_n\longrightarrow 2$ لکل $f\left(x_n
ight)=rac{1}{x_n-2}=rac{1}{\left(2+rac{1}{n}
ight)-2}=rac{1}{rac{1}{n}}=n$

أى أن المتتالية $(f(x_n))$ غير محدودة وبالتالى ليست متقاربة .

إذاً
$$\lim_{x\to 2} \frac{1}{x-2}$$
 غير موجودة .

- $x_n
 eq c$ وكانت D وكانت $C \in \hat{D}$ وكانت $f: D \longrightarrow \mathbb{R}$ فأثبت أن لكل متتالية و $f: D \longrightarrow \mathbb{R}$ إذا كانت $f(x_n) \longrightarrow l$ فإن $x_n \longrightarrow c$ و $n \in \mathbb{N}$ لكل الحل: انظر الكتاب.
- لكل f(x)=ax فأثبت أن $a\in\mathbb{R}$ حيث $x\in\mathbb{Q}$ لكل f(x)=ax دالة متزايدة و f(x)=ax دالة متزايدة و

$$c \in \mathbb{R}$$
 الحل : لتكن

$$n\in\mathbb{N}$$
 من كثافة المجموعة \mathbb{Q} في \mathbb{R} توجد متتالية (x_n) في \mathbb{Q} بحيث $x_n>c$ و

$$n \in \mathbb{N}$$
 لكل $y_n < c$ وتوجد متتالية (y_n) في \mathbb{Q} بحيث $y_n < c$

$$n \in \mathbb{N}$$
 لکل $y_n < c < x_n$ أي أن

$$f\left(y_{n}
ight)\leq f(c)\leq f\left(x_{n}
ight)$$
 بها أن الدالة f متزايدة فإن

$$ay_n \le f(c) \le ax_n$$
 وبالتالي

$$f(c)=ac$$
 ومن ثم $ac\leq f(c)\leq ac$ يأخذ النهاية عندما $n\longrightarrow\infty$ نحصل على $x\in\mathbb{R}$ لكل $f(x)=ax$ أي أن

$$x>0 \ \text{ Lim}_{x\to\infty} g(x)>0 \ \text{g} \lim_{x\to\infty} \frac{f(x)}{g(x)}=l>0 \ \text{Lim}_{x\to\infty} (iv)$$

$$\lim_{x\to\infty} g(x)=\infty \Longleftrightarrow \lim_{x\to\infty} f(x)=\infty \text{ different points}$$
 bit
$$\lim_{x\to\infty} g(x)=\infty \Longleftrightarrow \lim_{x\to\infty} f(x)=\infty \text{ for } I$$
 bit
$$\lim_{x\to\infty} g(x)=\infty \text{ for } I$$
 bit
$$\lim_{x\to\infty} g(x)>M \text{ for } I$$
 bit
$$\lim_{x\to\infty} g(x)>M \text{ for } I$$
 bit
$$\lim_{x\to\infty} \frac{f(x)}{g(x)}=l>0 \text{ for } I$$
 bit
$$\lim_{x\to\infty} f(x)=\frac{2}{3l} f(x)< g(x)$$
 bit
$$\lim_{x\to\infty} f(x)=\infty \text{ for } I$$
 bit
$$\lim_{x\to\infty} f(x)>\frac{3l}{2}M$$
 bit
$$\lim_{x\to\infty} f(x)>\frac{2}{3l} f(x)>\frac{3l}{2}M = M$$
 bit
$$\lim_{x\to\infty} g(x)=\infty \text{ for } I$$
 bit
$$\lim_{x\to\infty} g(x)=\infty \text{ for } I$$
 bit
$$\lim_{x\to\infty} g(x)=\infty \text{ for } I$$

(2) السؤال الثاني (4)

(i) أعط مثالاً لما يلى :

. c عند متصلة عند c ولكن تحصيلهما دالة متصلة عند • دالتين أحدهما غير متصلة عند ع

الحل : الدالة
$$g(x)=|x|$$
 متصلة عند $c=0$ فير متصلة عند $f(x)=\left\{egin{array}{ll} 1&,&x\geq0\\ -1&,&x<0\end{array}\right.$ متصلة عند $c=0$ متصلة عند $c=0$ متصلة عند $c=0$

- . دالة $\mathbb{R} \longrightarrow \mathbb{R}$ تحقق قيمتها العظمى فقط على $f:D \longrightarrow \mathbb{R}$. f(1)=1 على f(x)=x تحقق قيمتها العظمى فقط وهي f(x)=x حل آخر : f(x)=1 على f(x)=1 على f(x)=1 تحقق قيمتها العظمى فقط وهي f(x)=1
- . إذا كانت الدالة f تحقق $f(x)| \leq |x|^2$ لكل $|f(x)| \leq |x|^2$ فأثبت أن الدالة f متصلة عند الصفر f(0) = 0 وبالتالي $0 \leq |f(0)| \leq |0|^2 = 0$ الحل $x \in (-1,1)$ لكل $0 \leq |f(x)| \leq |x|^2$ لاحظ أن $x \in (-1,1)$

$$\lim_{x\to 0}0=0\ \mathrm{g}\lim_{x\to 0}|x|^2=0$$
 من نظرية الحصر للدوال فإن $f(x)=0=f(0)$ من نظرية الحالة f متصلة عند $x=0$ متصلة عند

. مجموعة محدودة فأثبت أن $f:I\longrightarrow \mathbb{R}$ مجموعة محدودة $f:I\longrightarrow \mathbb{R}$ مجموعة محدودة فأثبت أن $f:I\longrightarrow \mathbb{R}$ مجموعة محدودة . الخل : انظر الكتاب

(3) السؤال الثالث (ثمان درجات)

- . I على على الدالة $f:I\longrightarrow \mathbb{R}$ تحقق قيمتها العظمى على الدالة $f:I\longrightarrow \mathbb{R}$ الحال : انظر الكتاب .
 - (ii) أذكر نص نظرية القيمة البينية . الحل: انظر الكتاب .
- $f\left(x_{2}
 ight)=x_{1}$ و $f\left(x_{1}
 ight)=x_{2}$ و كانت $x_{1}< x_{2}$ و $x_{1},x_{2}\in \mathbb{R}$ و رائم متصلة و $x_{1}< x_{2}$ و كانت $x_{1}< x_{2}\in \mathbb{R}$ و بحيث يكون $x_{2}\in \mathbb{R}$ و كاثبت وجود $x_{3}\in \mathbb{R}$ بحيث يكون $x_{2}\in \mathbb{R}$ و كاثبت وجود $x_{3}\in \mathbb{R}$ بحيث يكون $x_{4}\in \mathbb{R}$ و كاثبت و كاثب
- يكون يكون $x \in [a,b]$ إذا كانت $x \in [a,b]$ متصلة وتحقق $f:[a,b] \to \mathbb{R}$ أثبت وجود $x \in [a,b]$ لكل إذا كانت $x \in [a,b]$ لكل إلى الكل إلى الكل أن الدالة $x \in [a,b]$ متصلة على الفترة المغلقة والمحدودة $x \in [a,b]$ فإن $x \in [a,b]$ عند نقطة ما $x \in [a,b]$

$$x\in[a,b]$$
 لکل $f(x)\geq f$ ($x_0)=m$ أي أن $f(x)\geq f$ لکل $f(x)\geq f$ لکل $f(x)>0$ فإن $f(x)>0$ لکل $f(x)>0$ بيا أن $f(x)>0$ لكل $f(x)>0$ و $f(x)>0$ و $f(x)>0$ كند $f(x)>0$ كند أن $f(x)>0$ لكل $f(x)>0$ لكل $f(x)>0$ أي أن $f(x)>0$ لكل $f(x)>0$

أجب عن الأسئلة الخمسة التالية

- (1) السؤال الأول (7 درجات):
- (1) أذكر نص نظرية الحصر للمتتاليات . الحل : انظر الكتاب .
- $\lim_{n\to\infty}\frac{\sin(n^2+1)}{n^2+1} \to 0$ أحسب $n\in\mathbb{N} \text{ لكل } \frac{-1}{n^2+1} \leq \frac{\sin(n^2+1)}{n^2+1} \leq \frac{1}{n^2+1} \text{ tb}$ الحل $\lim_{n\to\infty}\frac{1}{n^2+1} = 0 \text{ im} \quad \frac{-1}{n^2+1} = 0$ بها أن $\lim_{n\to\infty}\frac{\sin(n^2+1)}{n^2+1} = 0$ فهن نظرية الحصر للهتتاليات فإن 0

$$n\in\mathbb{N}$$
 لكل $x_{n+1}=\sqrt{2x_n+3}$ و $x_1=1$ و أذا كانت $x_1=1$ و أثبت أن المتتالية $x_2=1$ برايدية . الحل : بالاستقراء الرياضي $x_2=\sqrt{5}\geq 1=x_1$ لنفرض أن $x_1\geq x_2=1$ لنفرض أن $x_1\geq x_2=1$ نريد إثبات أن $x_1\geq x_1\geq x_1$ نريد إثبات أن $x_1\geq x_1\geq x_1$ $x_1\geq x_1\geq x_1$ $x_1\geq x_1\geq x_1$ $x_1\geq x_1\geq x_1$ اذاً المتتالية $x_1\geq x_1\geq x_1$ ترايدية .

- أثبت أن الهتتالية (x_n) محدودة من أعلى . $|x_1 \le 3|$ لاحظ أن $x_1 \le 3$ لاحظ أن $x_n \le 3$ لنفرض أن $x_n \le 3$ لنفرض أن $x_n \le 3$ نريد إثبات أن $x_n \le 3 \Longrightarrow 2x_n + 3 \le 9 \Longrightarrow \sqrt{2x_n + 3} \le \sqrt{9} \Longrightarrow x_{n+1} \le 3$ إذاً الهتتالية $x_n \le 3$ محدودة من أعلى .

الحل : بها أن الهتتالية تزايدية و محدودة من أعلى فهي متقاربة
$$x_n \longrightarrow l$$
 لنفرض أن $x_n \longrightarrow l$ لنفرض أن $x_{n+1} = \sqrt{2x_n+3} \Longrightarrow l = \sqrt{2l+3} \Longrightarrow l^2 = 2l+3 \Longrightarrow l^2 - 2l-3 = 0$
$$\Longrightarrow (l-3)(l+1) = 0 \Longrightarrow l = 3 \; , \; l = -1$$

- (3) أذكر نص نظرية بلزانو فايرشتراس . الحل : انظر الكتاب .
- هات مثالاً لمتتالية غير محدودة ولها متتالية جزئية متقاربة. الحل : المتتالية التي حدها النوني $x_n = \left\{ \begin{array}{ll} n & , & n \in \mathbb{N}_1 \\ \frac{1}{n} & , & n \in \mathbb{N}_2 \end{array} \right.$

 $x_n\longrightarrow 3$ وبالتالي $n\in\mathbb{N}$ لكل $x_n\ge 1$ أن

(2) السؤال الثاني (7 درجات):

$$c\in\mathbb{R}$$
 الخاكانت $f(x)=egin{cases} 1 & , & x\in\mathbb{Q} \\ -1 & , & x\in\mathbb{Q}^c \end{cases}$ غير موجودة لكل $f(x)=egin{cases} 1 & , & x\in\mathbb{Q} \\ -1 & , & x\in\mathbb{Q}^c \end{cases}$ الحل : لتكن $c\in\mathbb{R}$ الحل : $c\in\mathbb{R}$ من كثافة الأعداد النسبية توجد متتالية $f(x)$ في \mathbb{Q} بحيث $f(x_n)=1$ لكل $f(x_n)=1$ من كثافة الأعداد غير النسبية توجد متتالية $f(y_n)$ في \mathbb{Q}^c بحيث $f(y_n)=-1$ من كثافة الأعداد غير النسبية توجد متتالية $f(y_n)=-1$ غير موجودة لكل $f(y_n)=-1$

$$\lim_{x\to 0}\frac{f(ax)}{x}=al \text{ if } a\neq 0 \text{ odd } \frac{f(x)}{x}=l\in\mathbb{R}$$
 إذا كانت $g=0$ إذا كانت $g=0$

 $\lim_{x \to b^-} f(x) = \infty$ لتكن $f:(a,b) \to \mathbb{R}$ دالة متزايدة فعلاً وليست محدودة من أعلى ، أثبت أن $f:(a,b) \to \mathbb{R}$ لتكن $0 < b - x < \delta \implies f(x) > M$ بحيث يتحقق $0 < b - x < \delta \implies f(x) > M$ نريد إيجاد $0 < b < x < \delta$ بحيث يكون لتكن $0 < b < x < \delta$ بمي أن الدالة $0 < b < x < \delta$ ليست محدودة من أعلى على الفترة $0 < b < x < \delta$ بحيث يكون $0 < b < x < \delta$ بحيث يكون $0 < b < x < \delta$ بحيث يكون $0 < b < x < \delta$

ضع
$$a>0$$
 عندئذ $a>0$ عندئذ $b>0$ ولكل $a>0$ و $a>0$ و $a>0$ فإن $a>0$ فإن الدالة $a>0$ تزايدية فعلاً على على $a>0$ فإن $a>0$ فإن $a>0$ وبكا أن الدالة $a>0$ تزايدية فعلاً على والتالي $a>0$ وبالتالي $a>0$

(3) السؤال الثالث (8 درجات):

$$x\in\mathbb{R}$$
 لكل $f(x)=0$ فأثبت أن $q\in\mathbb{Q}$ لكل $f(q)=0$ دالة متصلة و $f:\mathbb{R}\longrightarrow\mathbb{R}$ الحل $f(x)=0$ الحل $f(x)=0$ دالة متصلة عند النقطة $f(x)=f(x)=0$ فإن $f(x)=f(x)=0$ من كثافة الأعداد النسبية توجد متتالية $f(x)=f(x)$ في $f(x)=0$ بحيث تحقق $f(x)=0$ لكل $f(x)=0$ أي أن $f(x)=0$ لكل $f(x)=0$ لكل $f(x)=0$

- . أعط مثالاً لدالة متصلة $\mathbb{R} \to \mathbb{R}$ و D مجموعة محدودة ولكن f(D) ليست مجموعة محدودة . $f(x)=rac{1}{x}$ والمعرفة بالقاعدة $f:(0,1) \to \mathbb{R}$ غير محدودة . الدالة $f:(0,1) \to \mathbb{R}$ غير محدودة . الدالة $f:(0,1) \to \mathbb{R}$ غير محدودة .
 - (3) اذكر نص نظرية القيمة البينية . الحل : انظر الكتاب .

$$f(x) = \frac{1}{x^2}$$
 إذا كانت (4)

. $[1,\infty)$ بين أن الدالة f متصلة بانتظام على الفترة •

الحل : الدالة
$$\frac{1}{x^2}=0$$
 متصلة على $f(x)=\frac{1}{x^2}$ موجودة وبالتالي الدالة $f(x)=\frac{1}{x^2}$ متصلة بانتظام على $f(x)=\frac{1}{x^2}$

وبالتالي الدالة
$$f$$
 غير متصلة بانتظام على الفترة f بين أن الدالة f غير متصلة بانتظام على الفترة f و f الحل : خذ المتتاليتين f الحل : f لكل f الحل : خذ المتتاليتين f لكل f الحل : f لكل f الحل : خذ المتتاليتين f المتالي الدالة f المتالي المتالي الدالة f المتالي المتالية ال

(4) السؤال الرابع (9 درجات):

(1) أذكر نص نظرية هاين - بوريل . الحل : انظر الكتاب .

. أو اكانت
$$\displaystyle \bigcap_{n=1}^{\infty} K_n$$
 أثبت أن $n \in \mathbb{N}$ مجموعة متراصة اذا كانت المجموعة متراصة الكل

. محدودة
$$\bigcap_{n=1}^\infty K_n$$
 فإن أن $\bigcap_{n=1}^\infty K_n$ محدودة الأنها متراصة أفإن أن $\bigcap_{n=1}^\infty K_n$

. مغلقة
$$\displaystyle\bigcap_{n=1}^{\infty}K_n$$
 وبالتالي $n\in\mathbb{N}$ مغلقة (لأنها متراصة) لكل K_n

. من نظریة هاین - بوریل
$$\displaystyle \bigcap_{n=1}^{\infty} K_n$$
 مجموعة متراصة

- . متراصة ، فأثبت أن المجموعة $f:D\longrightarrow \mathbb{R}$ متراصة ، فأثبت أن المجموعة متراصة ، عناصة ، وكانت $f:D\longrightarrow \mathbb{R}$ متراصة . الخل : انظر الكتاب .
- . والله متصلة ، فأثبت أن $\{x \in \mathbb{R}: 0 < f(x) < 3\}$ مجموعة مفتوحة . $\{x \in \mathbb{R}: 0 < f(x) < 3\} = \{x \in \mathbb{R}: f(x) \in (0,3)\} = f^{-1}((0,3)):$ الحل الحل : $\{x \in \mathbb{R}: 0 < f(x) < 3\} = \{x \in \mathbb{R}: f(x) \in (0,3)\} = f^{-1}((0,3)):$ بها أن $\{x \in \mathbb{R}: 0 < f(x) \in \mathbb{R}: 0 < f(x) < 3\}$ مجموعة مفتوحة . أي أن $\{x \in \mathbb{R}: 0 < f(x) < 3\}$ مجموعة مفتوحة .

(4) اذكر نص نظرية القيمة المتوسطة وبرهنها . الحل: انظر الكتاب.

- (5) السؤال الخامس (9 درجات):
- $x, y \in \mathbb{R}$ لکا $|\sin x \sin y| < |x y|$ (1) اُثنت اُن

 \mathbb{R} متصلة وقابلة للاشتقاق على sin الحل

لتكن x و y ، يوجد x يقع بين x و y بحيث لتكن x بتطبيق نظرية القيمة المتوسطة على الفترة الواقعة بين x و y بحيث

$$\frac{\sin x - \sin y}{x - y} = \cos(c)$$

$$\left|\frac{\sin x - \sin y}{x - y}\right| = |\cos(c)| \le 1 \Longrightarrow \frac{|\sin x - \sin y|}{|x - y|} \le 1 \Longrightarrow |\sin x - \sin y| \le |x - y|$$

fان أن $x\in(a,b)$ لكل f'(x)<0 وكانت f قابلة للاشتقاق و $x\in(a,b)$ لكل أنت f دالة متصلة على الفترة وكانت f وكانت أن وكانت أن أن المتحالة على الفترة الفترة أن المتحالة على الفترة الفتر [a,b] متناقصة فعلاً على

الحل: انظر الكتاب.

(3) أذكر نص قاعدة لوستال . الحل: انظر الكتاب.

 $\overline{\mathbb{R}}$ أعط مثالاً لدالتين f و g معرفتين في جوار الصفر بحيث $\frac{f(x)}{a(x)}=0$ ولكن $\frac{f'(x)}{a'(x)}$ غير موجودة في

$$g(x)=x^2+1$$
 و $f(x)=x$ الحل: ضع

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{x}{x^2 + 1} = \frac{0}{0 + 1} = 0$$

$$\lim_{x o 0^-}rac{1}{2x}=-\infty$$
 فير موجودة في $\overline{\mathbb{R}}$ لأن $x o 0$ الأن $\frac{f'(x)}{g'(x)}=\lim_{x o 0}rac{1}{2x}$ فير موجودة في $\frac{1}{\mathbb{R}}$

 $x\in\mathbb{R}$ استخدم نظریة تیلور لإثبات أن $\cos x\geq 1-rac{x^2}{2}$ استخدم نظریة تیلور الإثبات أن

 $x_0=0$ عند النقطة ولا تايلور للدالة الحل ياستخدام مفكوك تايلور للدالة

$$f(x) = \cos x$$
 $f(0) = 1$
 $f'(x) = -\sin x$ $f'(0) = 0$
 $f''(x) = -\cos x$ $f''(0) = -1$

$$f''(x) = -\cos x$$
 $f''(0) = 0$

$$f'''(x) = \sin x$$

$$\cos x = 1 - \frac{x^2}{2} + R_3(x)$$
 وبالتالي

.
$$x$$
 حيث $x^3=rac{\sin c}{6}$ حيث $x^3=rac{\sin c}{6}$ حيث و x^3

 $c\in(0,\pi)$ اِذَا كَانَت $x\leq x\leq\pi$ فإن •

$$\cos x \geq 1-rac{x^2}{2}$$
 و $R_3(x)\geq 0$ أي أن $R_3(x)\geq 0$ و $\sin c$ و $c\in (-\pi,0)$ فإن $-\pi\leq x\leq 0$

$$\cos x \geq 1 - rac{x^2}{2}$$
 و x^3 كلاهما سالب وبالتالي $x^3 \geq 0$ أي أن $x^3 \geq 0$

$$x^2>\pi^2>9\Longrightarrow rac{x^2}{2}>rac{9}{2}$$
 إذا كانت $|x|>\pi$ فإن

$$\implies -\frac{x^2}{2} < -\frac{9}{2} \implies 1 - \frac{x^2}{2} < 1 - \frac{9}{2} = -\frac{7}{2} < -1 \le \cos x$$

$$|x|>\pi$$
 وبالتالي $x>1-rac{x^2}{2}$ وبالتالي

$$x\in\mathbb{R}$$
 لکل $\cos x\geq 1-rac{x^2}{2}$ أي أن