King Saud University
 Department of Mathematics

Home Assignment

Page 1

Question1(3+3). (a) Decide whether the set $E=\left\{2 n+1+\frac{1}{2 n-5}, n \in \mathrm{~N}\right\}$ is bounded.
(b) find $\sup E$ and $\inf E$.

Question2 (3+2). (a) Using the ε-definition show that $\lim _{n \rightarrow \infty} x_{n}=0$ if $x_{n}=\frac{1}{n}+\frac{\sin n}{n+1}$
(b) Decide whether the sequence $y_{n}=n+\frac{\cos n \sqrt{\pi}}{n}$ is Cauchy or not.

Question3 (2.5+2.5+2.5). Find $\lim _{n \rightarrow \infty} x_{n}$ or show that it does not exist if:
a) $x_{n}=(-1)^{n} n^{2}\left(\cos \frac{2}{n}-1\right)$
b) $x_{n}=\frac{(n!)^{2}}{(2 n)!}$
c) $x_{n}=\sum_{k=3}^{n} \frac{1}{k^{2}-3 k+2}$

Question4 (2.5+2.5+2.5). Determine whether the following series are convergent or divergent:
a) $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!}$
b) $\sum_{n=0}^{\infty}(-1)^{n} \frac{n}{e^{2 n}}$
c) $\sum_{n=1}^{\infty}\left(\left(\frac{2}{3}\right)^{n}+\left(\frac{-1}{3}\right)^{n}+\frac{3}{2} n \sin \frac{1}{n}\right)^{n}$

Page2

Question5 (6). Find $\lim _{n \rightarrow \infty} x_{n}$ if $x_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+\cdots+\frac{1}{2 n}$ or show that it is divergent.

Question6 (6). prove that there is at least one real number c such that

$$
c^{3}=3 c+1
$$

Question7 (6). prove that $x \leq e^{x} \forall x \in \mathfrak{R}$

Question8 (6). Decide whether the following improper integral is convergent or divergent: $\quad I=\int_{0}^{1} \frac{\sin x^{2}}{\sqrt{x^{7}}} d x$

