M 104 - GENERAL MATHEMATICS -2-Dr. Tariq A. AlFadhel¹ Solution of the First Mid-Term Exam First semester 1438-1439 H

Q.1 Let
$$\mathbf{A} = \begin{pmatrix} -2 & 3 & 1 \\ 0 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 1 & -1 \\ -2 & 0 \\ 1 & 3 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$.

Compute (if possible) : $\mathbf{A} + \mathbf{B}$ and \mathbf{BC}

Solution :

 $\mathbf{A}{+}\mathbf{B}$ is impossible.

$$\mathbf{BC} = \begin{pmatrix} 1 & -1 \\ -2 & 0 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$
$$= \begin{pmatrix} 2+0 & 0+(-2) \\ -4+0 & 0+0 \\ 2+0 & 0+6 \end{pmatrix} = \begin{pmatrix} 2 & -2 \\ -4 & 0 \\ 2 & 6 \end{pmatrix}$$

Q.2 Compute The determinant $\begin{vmatrix} 3 & 2 & 1 \\ 0 & 4 & 0 \\ 2 & 0 & 1 \end{vmatrix}$

Solution (1) : Using Sarrus Method

								3	2	1	3	2		
								0	4	0	0	4		
								2	0	1	2	0		
3	2	1												
0	4	0	= (12 -	+0	+0)	- (8+	0+	- 0)	= 1	12 -	- 8 =	= 4
2	0	1								,				

Solution (2) : By the definition (using second row)

$$\begin{vmatrix} 3 & 2 & 1 \\ 0 & 4 & 0 \\ 2 & 0 & 1 \end{vmatrix} = 4 \times \begin{vmatrix} 3 & 1 \\ 2 & 1 \end{vmatrix} = 4(3-2) = 4$$

 $^{^{1}\}mathrm{E}\text{-mail}$: alfadhel@ksu.edu.sa

 ${\bf Q.3}$ Solve by Gauss the linear system :

$$\begin{cases} x & -2y & +z & = 5\\ & y & +3z & = 5\\ -x & +3y & -z & = -6 \end{cases}$$

Solution : The augmented matrix is

$$\begin{pmatrix} 1 & -2 & 1 & | & 5 \\ 0 & 1 & 3 & | & 5 \\ -1 & 3 & -1 & | & -6 \end{pmatrix} \xrightarrow{R_1+R_3} \begin{pmatrix} 1 & -2 & 1 & | & 5 \\ 0 & 1 & 3 & | & 5 \\ 0 & 1 & 0 & | & -1 \end{pmatrix}$$
$$\xrightarrow{-R_2+R_3} \begin{pmatrix} 1 & -2 & 1 & | & 5 \\ 0 & 1 & 3 & | & 5 \\ 0 & 0 & -3 & | & -6 \end{pmatrix}$$
$$-3z = -6 \implies z = 2$$
$$y + 3z = 5 \implies y + 6 = 5 \implies y = -1$$
$$x - 2y + z = 5 \implies x - 2(-1) + 2 = 5 \implies x = 1$$
The solution is $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$

Q.4 Find the standard equation of the parabola with focus F(5, 1) and vertex V(6, 1), then sketch it.

Solution :

From the position of the focus and the vertex the parabola opens to the left.

The equation of the parabola has the form $(y - k)^2 = -4a(x - h)$

The vertex is V(6, 1), hence h = 6, k = 1.

"a" is the distance between V and F, hence a = 1.

The standard equation of the parabola is $(y-1)^2 = -4(x-6)$

The equation of the directrix is x = 7.

Q.5 Find all the elements of the conic section $y^2 - 4x^2 + 10y + 8x + 17 = 0$ and sketch it.

Solution :

 $y^{2} - 4x^{2} + 10y + 8x + 17 = 0$ $y^{2} + 10y - 4x^{2} + 8x = -17$ $y^{2} + 10y - 4(x^{2} - 2x) = -17$ By completing the square. $(y^{2} + 10y + 25) - 4(x^{2} - 2x + 1) = -17 + 25 - 4$ $(y + 5)^{2} - 4(x - 1)^{2} = 4$ $\frac{(y + 5)^{2}}{4} - \frac{4(x - 1)^{2}}{4} = 1$ $\frac{(y + 5)^{2}}{4} - \frac{(x - 1)^{2}}{1} = 1$

The conic section is Hyperbola.

The center is P = (1, -5) $a^2 = 1 \implies a = 1$ $b^2 = 4 \implies b = 2$ $c^2 = a^2 + b^2 = 1 + 4 = 5 \implies c = \sqrt{5}$ The vertices are $V_1 = (1, -3)$ and $V_2 = (1, -7)$ The foci are $F_1 = (1, -5 + \sqrt{5})$ and $F_2 = (1, -5 - \sqrt{5})$ The equations of the asymptotes are L_1 : (y + 5) = 2(x - 1)and L_2 : (y + 5) = -2(x - 1)

M 104 - GENERAL MATHEMATICS -2-Dr. Tariq A. AlFadhel Solution of the Second Mid-Term Exam First semester 1438-1439 H

Q.1 Compute the integrals :

(a)
$$\int 2x(x^2+1)^7 dx$$

(b) $\int x^2 \cos(x^3) dx$
(c) $\int x^2 \ln x dx$
(d) $\int (x+1)e^x dx$
(e) $\int \frac{1}{x^2+6x+10} dx$
(f) $\int \frac{x+2}{(x-2)(x-4)} dx$

Solution :

(a)
$$\int 2x(x^2+1)^7 dx = \int (x^2+1)^7 (2x) dx = \frac{(x^2+1)^8}{8} + c$$

Using the formula $\int [f(x)]^n f'(x) dx = \frac{[f(x)]^{n+1}}{n+1} + c$, where $n \neq -1$

(b) $\int x^2 \cos\left(x^3\right) dx = \frac{1}{3} \int \cos\left(x^3\right) (3x^2) dx = \frac{1}{3} \sin\left(x^3\right) + c$ Using the formula $\int \cos\left(f(x)\right) f'(x) dx = \sin\left(f(x)\right) + c$

(c)
$$\int x^2 \ln x \, dx$$

Using integration by parts

$$u = \ln x \qquad dv = x^2 \ dx$$
$$du = \frac{1}{x} \ dx \qquad v = \frac{x^3}{3}$$
$$\int x^2 \ln x \ dx = \frac{x^3}{3} \ln x - \int \frac{1}{x} \frac{x^3}{3} \ dx$$
$$= \frac{x^3}{3} \ln x - \frac{1}{3} \int x^2 \ dx = \frac{x^3}{3} \ln x - \frac{1}{3} \frac{x^3}{3} + c$$

(d)
$$\int (x+1)e^x dx$$

Using integration by parts :

$$u = x + 1 \qquad dv = e^x \ dx$$

$$du = 1 \ dx \qquad v = e^x$$

$$\int (x+1)e^x \ dx = (x+1)e^x - \int e^x \ dx = (x+1)e^x - e^x + c = xe^x + c$$

(e)
$$\int \frac{1}{x^2 + 6x + 10} dx = \int \frac{1}{(x^2 + 6x + 9) + 1} dx = \int \frac{1}{(x+3)^2 + 1} dx$$

= $\tan^{-1}(x+3) + c$

Using the formula $\int \frac{f'(x)}{a^2 + [f(x)]^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{f(x)}{a}\right) + c$, where a > 0

(f)
$$\int \frac{x+2}{(x-2)(x-4)} dx$$

Using the method of partial fractions

$$\frac{x+2}{(x-2)(x-4)} = \frac{A_1}{x-2} + \frac{A_2}{x-4}$$

$$x+2 = A_1(x-4) + A_2(x-2)$$
Put $x = 2$:
 $2+2 = A_1(2-4) \implies 4 = -2A_1 \implies A_1 = -2$
Put $x = 4$:
 $4+2 = A_2(4-2) \implies 6 = 2A_2 \implies A_2 = 3$
 $\int \frac{x+2}{(x-2)(x-4)} dx = \int \left(\frac{-2}{x-2} + \frac{3}{x-4}\right) dx$
 $= -2\int \frac{1}{x-2} dx + 3\int \frac{1}{x-4} dx = -2\ln|x-2| + 3\ln|x-4| + c$

Q.2 (a) Sketch the region R_1 determined by the curves

$$y = x^2 - 1$$
, $y = -1$, $x = 1$

(b) Find the area of the region ${\cal R}_1$ described in part (a) .

Solution :

- (a) $y = x^2 1$ is a parabola opens upwards with vertex (0, -1)y = -1 is a straight line parallel to the x-axis and passes through (0, -1)
 - x=1 is a straight line parallel to the y-axis and passes through (1,0)

$$y = x^2$$
 , $x = 2$, $y = 0$

(b) Find the volume of the solid generated by rotating the region R_2 in part (a) about the *y*-axis .

Solution :

- (a) y = 0 is the x-axis
 - $y = x^2$ is a parabola opens upwards with vertex (0,0)
 - x = 2 is a straight line parallel to the y-axis and passes through (2, 0)

(b) Using Cylindrical Shells method :

Volume =
$$2\pi \int_0^2 x(x^2) dx = 2\pi \int_0^2 x^3 dx$$

= $2\pi \left[\frac{x^4}{4}\right]_0^2 = 2\pi \left[\frac{2^4}{4} - \frac{0^4}{4}\right] = 2\pi \left[\frac{16}{4}\right] = 8\pi$

Another solution : Using Washer Method

$$y = x^{2} \implies x = \sqrt{y}$$

Volume $= \pi \int_{0}^{4} \left[(2)^{2} - (\sqrt{y})^{2} \right] dy = \pi \int_{0}^{4} (4 - y) dy$
 $= \pi \left[4y - \frac{y^{2}}{2} \right]_{0}^{4} = \pi \left[\left(4 \times 4 - \frac{4^{2}}{2} \right) - (0 - 0) \right] = \pi (16 - 8) = 8\pi$

M 104 - GENERAL MATHEMATICS -2-Dr. Tariq A. AlFadhel Solution of the Final Exam First semester 1438-1439 H

Q.1 (a) Compute (if possible) **AB** for $\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 6 \\ 0 & 2 & 0 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 4 \\ 1 & 1 & 1 \end{pmatrix}$ (b) Compute the determinant $\begin{vmatrix} 0 & 1 & 2 \\ 2 & 3 & 4 \\ 5 & 0 & 1 \end{vmatrix}$. (c) Solve by Gauss Method : $\begin{cases} x & -y + z = 1 \\ 2x & -5y + z = -3 \\ 3x & -6y - z = -8 \end{cases}$ Solution :

(a)
$$\mathbf{AB} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 6 \\ 0 & 2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 4 \\ 1 & 1 & 1 \end{pmatrix}$$

= $\begin{pmatrix} 1+4+3 & 0+2+3 & 1+8+3 \\ 3+2+6 & 0+1+6 & 3+4+6 \\ 0+4+0 & 0+2+0 & 0+8+0 \end{pmatrix} = \begin{pmatrix} 8 & 5 & 12 \\ 11 & 7 & 13 \\ 4 & 2 & 8 \end{pmatrix}$

(b) Solution (1): Using Sarrus Method

$$\begin{vmatrix} 0 & 1 & 2 & 0 & 1 \\ 2 & 3 & 4 & 2 & 3 \\ 5 & 0 & 1 & 5 & 0 \end{vmatrix}$$
$$\begin{vmatrix} 0 & 1 & 2 \\ 2 & 3 & 4 \\ 5 & 0 & 1 \end{vmatrix} = (0 + 20 + 0) - (30 + 0 + 2) = 20 - 32 = -12$$

Solution (2): Using the definition (using the first row) :

$$\begin{vmatrix} 0 & 1 & 2 \\ 2 & 3 & 4 \\ 5 & 0 & 1 \end{vmatrix} = 0 \times \begin{vmatrix} 3 & 4 \\ 0 & 1 \end{vmatrix} - 1 \times \begin{vmatrix} 2 & 4 \\ 5 & 1 \end{vmatrix} + 2 \times \begin{vmatrix} 2 & 3 \\ 5 & 0 \end{vmatrix}$$
$$= 0 - (2 - 20) + 2(0 - 15) = 0 - (-18) - 30 = 18 - 30 = -12$$

(c) Using Gauss Method :

$$\begin{pmatrix} 1 & -1 & 1 & | & 2 \\ 1 & -2 & 1 & | & 0 \\ 2 & -1 & 1 & | & 3 \end{pmatrix} \xrightarrow{-2R_1+R_2} \begin{pmatrix} 1 & -1 & 1 & | & 2 \\ 0 & -3 & -1 & | & -5 \\ 2 & -1 & 1 & | & 3 \end{pmatrix}$$

Q.2 (a) Find the standard equation of the ellipse with foci (-2, 3) and (4, 3), and with vertex (5, 3).

(b) Find the elements of the conic section $9x^2 - 4y^2 + 18x - 24y = 63$. Solution :

(a) The two foci and the vertex are located on a line parallel to the x-axis.

The standard equation of the ellipse is $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$, where a > b. $P(h,k) = \left(\frac{-2+4}{2}, \frac{3+3}{2}\right) = (1,3)$, hence h = 0 and k = 0 a is the distance between the vertex (5,3) and P, hence a = 4 c is the distance between one of the foci and P, hence c = 3 $c^2 = a^2 - b^2 \implies 9 = 16 - b^2 \implies b^2 = 16 - 9 = 7 \implies b = \sqrt{7}$ The standard equation of the ellipse is $\frac{(x-1)^2}{16} - \frac{(y-3)^2}{7} = 1$ The other vertex is (-3,3)The end-points of the minor axis are $(1, 3 - \sqrt{7})$ and $(1, 3 + \sqrt{7})$.

(b)
$$9x^2 - 4y^2 + 18x - 24y = 63$$

 $9x^2 + 18x - 4y^2 - 24y = 63$
 $9(x^2 + 2x) - 4(y^2 + 6y) = 63$
By completing the square
 $9(x^2 + 2x + 1) - 4(y^2 + 6y + 9) = 63 + 9 - 9(x + 1)^2 - 4(y + 3)^2 = 36$

36

$$\frac{9(x+1)^2}{36} - \frac{4(y+3)^2}{36} = 1$$
$$\frac{(x+1)^2}{4} - \frac{(y+3)^2}{9} = 1$$

The conic section is a hyperbola.

The center is
$$P(-1, -3)$$
.
 $a^2 = 4 \implies a = 2$.
 $b^2 = 9 \implies b = 3$.
 $c^2 = a^2 + b^2 = 4 + 9 = 13 \implies c = \sqrt{13}$.
The vertices are $V_1(-3, -3)$ and $V_2(1, -3)$
The foci are $F_1(-1 - \sqrt{13}, -3)$ and $F_2(-1 + \sqrt{13}, -3)$.
The equations of the asymptotes are :
 $L_1 : y + 3 = \frac{3}{2} (x + 1)$ and $L_2 : y + 3 = -\frac{3}{2} (x + 1)$

Q.3 (a) Compute the integrals :

(i)
$$\int \frac{x+1}{(x-2)(x-3)} dx$$
 (ii) $\int x \ln x \, dx$ (iii) $\int x \sin(x^2) \, dx$

(b) Find the area of the region bounded by the curves :

 $y=\sqrt{x}$ and $y=x^2$.

(c) The region R between the curves y = 0, x = 1 and $y = \sqrt{x}$ is rotated about the x-axis to form a solid of revolution S. Find the volume of S.

Solution :

(a) (i)
$$\int \frac{x+1}{(x-2)(x-3)} dx$$

Using the method of partial fractions

$$\frac{x+1}{(x-2)(x-3)} = \frac{A_1}{x-2} + \frac{A_2}{x-3}$$

$$x+1 = A_1(x-3) + A_2(x-2)$$
Put $x = 2$ then $2+1 = A_1(2-3) \implies 3 = -A_1 \implies A_1 = -3$
Put $x = 3$ then $3+1 = A_2(3-2) \implies A_2 = 4$

$$\int \frac{x+1}{(x-2)(x-3)} \, dx = \int \left(\frac{-3}{x-2} + \frac{4}{x-3}\right) \, dx$$

$$= -3\int \frac{1}{x-2} \, dx + 4\int \frac{1}{x-3} \, dx = -3\ln|x-2| + 4\ln|x-3| + c$$

(ii)
$$\int x \ln x \, dx$$

Using integration by parts

$$u = \ln x \qquad dv = x \ dx du = \frac{1}{x} \ dx \qquad v = \frac{x^2}{2} \int x \ln x \ dx = \frac{x^2}{2} \ln x - \int \frac{x^2}{2} \ \frac{1}{x} x \ dx = \frac{x^2}{2} \ln x - \frac{1}{2} \int x \ dx = \frac{x^2}{2} \ln x - \frac{1}{2} \ \frac{x^2}{2} + c (iii) \int x \sin (x^2) \ dx \int x \sin (x^2) \ dx = \frac{1}{2} \int \sin (x^2) \ (2x) \ dx = \frac{1}{2} (-\cos (x^2)) + c = -\frac{1}{2} \cos (x^2) + c Using the formula $\int \sin (f(x)) \ f'(x) \ dx = -\cos (f(x)) + c$$$

(b) $y = x^2$ is a parabola opens upwards with vertex (0, 0).

 $y = \sqrt{x}$ is the upper-half of the parabola $x = y^2$ which opens to the right with vertex (0, 0),

c

Points of intersection of $y = x^2$ and $y = \sqrt{x}$:

$$\begin{aligned} x^2 &= \sqrt{x} \implies x^4 = x \implies x^4 - x = 0 \implies x(x^3 - 1) = 0 \\ \implies x = 0 \ , \ x^3 - 1 = 0 \implies x = 0 \ , \ x = 1 \end{aligned}$$

Area =
$$\int_0^1 \left(\sqrt{x} - x^2\right) dx = \int_0^1 \left(x^{\frac{1}{2}} - x^2\right) dx = \left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}} - \frac{x^3}{3}\right]_0^1 = \left[\frac{2}{3}x^{\frac{3}{2}} - \frac{x^3}{3}\right]_0^1$$

$$= \left(\frac{2}{3} \ (1)^{\frac{3}{2}} - \frac{(1)^3}{3}\right) - \left(\frac{2}{3} \ (0)^{\frac{3}{2}} - \frac{(0)^3}{3}\right) = \left(\frac{2}{3} - \frac{1}{3}\right) - (0 - 0) = \frac{1}{3}$$

- (c) y = 0 is the x-axis .
 - x = 1 is a straight line parallel to the y-axis and passes through (1, 0).

 $y = \sqrt{x}$ is the upper-half of the parabola $x = y^2$ which opens to the right with vertex (0, 0),

Using Disk Method :

Volume
$$= \pi \int_0^1 (\sqrt{x})^2 dx = \pi \int_0^1 x dx = \pi \left[\frac{x^2}{2}\right]_0^1$$

 $= \pi \left[\frac{(1)^2}{2} - \frac{(0)^2}{2}\right] = \pi \left(\frac{1}{2} - 0\right) = \frac{\pi}{2}$

Q.4 (a) Find f_x , f_y and f_z for the function $f(x, y, z) = xy^3 z + \ln(xz^4)$.

(b) Solve the differential equation $\frac{dy}{dx} - 3x^2y^2 = 0$. Solution :

(a)
$$f_x = y^3 z(1) + \frac{z^4(1)}{xz^4} = y^3 z + \frac{1}{x}$$

 $f_y = xz (3y^2) + 0 = 3xy^2 z$
 $f_z = xy^3(1) + \frac{x (4z^3)}{xz^4} = xy^3 + \frac{4}{z}$

(b)
$$\frac{dy}{dx} - 3x^2y^2 = 0$$
$$\frac{dy}{dx} = 3x^2y^2$$
$$\frac{1}{y^2} dy = 3x^2 dx$$

It is a separable differential equation.

$$\int \frac{1}{y^2} dy = \int 3x^2 dx$$
$$\int y^{-2} dy = \int 3x^2 dx$$
$$\frac{y^{-1}}{-1} = x^3 + c$$
$$\frac{-1}{y} = x^3 + c$$
$$\frac{1}{y} = -x^3 - c$$
$$y = \frac{1}{-x^3 - c} = \frac{-1}{x^3 + c}$$

M 104 - GENERAL MATHEMATICS -2-Dr. Tariq A. AlFadhel Solution of the First Mid-Term Exam Second semester 1438-1439 H

Q.1 Let
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 2 \\ 2 & -1 & 1 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 3 & 1 \\ 2 & 3 \\ 1 & 1 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} 7 & 1 \\ 3 & 6 \\ 1 & 3 \end{pmatrix}$.

Compute (if possible) : \mathbf{AB} and $\mathbf{B}+\mathbf{C}$

Solution :

$$\mathbf{AB} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 2 \\ 2 & -1 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 2 & 3 \\ 1 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 3+4+3 & 1+6+3 \\ 3+4+2 & 1+6+2 \\ 6-2+1 & 2-3+1 \end{pmatrix} = \begin{pmatrix} 10 & 10 \\ 9 & 9 \\ 5 & 0 \end{pmatrix}$$
$$\mathbf{B} + \mathbf{C} = \begin{pmatrix} 3 & 1 \\ 2 & 3 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} 7 & 1 \\ 3 & 6 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 3+7 & 1+1 \\ 2+3 & 3+6 \\ 1+1 & 1+3 \end{pmatrix} = \begin{pmatrix} 10 & 2 \\ 5 & 9 \\ 2 & 4 \end{pmatrix}$$

Q.2 Compute The determinant
$$\begin{vmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 2 & 3 & 1 \end{vmatrix}$$

Solution : Using Sarrus Method

$$\begin{vmatrix} 1 & 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 & 1 \\ 2 & 3 & 1 & 2 & 3 \end{vmatrix}$$
$$\begin{vmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 2 & 3 & 1 \end{vmatrix} = (1+4+6) - (2+3+4) = 11 - 9 = 2$$

 ${\bf Q.3}$ Solve by Gauss the linear system :

$$\begin{cases} x & -2y + z = 0\\ x & -3y - z = -2\\ 2x + 2y - z = 4 \end{cases}$$

Solution : The augmented matrix is

$$\begin{pmatrix} 1 & -2 & 1 & | & 0 \\ 1 & -3 & -1 & | & -2 \\ 2 & 2 & -1 & | & 4 \end{pmatrix} \xrightarrow{-R_1+R_2} \begin{pmatrix} 1 & -2 & 1 & | & 0 \\ 0 & -1 & -2 & | & -2 \\ 2 & 2 & -1 & | & 4 \end{pmatrix}$$

Q.4 Find all the elements of the conic section $x^2 - 4y^2 + 2x + 8y - 7 = 0$ and sketch it.

Solution :

 $\begin{aligned} x^2 - 4y^2 + 2x + 8y - 7 &= 0 \\ x^2 + 2x - 4y^2 + 8y &= 7 \\ x^2 + 2x - 4(y^2 - 2y) &= 7 \\ \text{By completing the square.} \\ (x^2 + 2x + 1) - 4(y^2 - 2y + 1) &= 7 + 1 - 4 \\ (x + 1)^2 - 4(y - 1)^2 &= 4 \\ \frac{(x + 1)^2}{4} - \frac{4(y - 1)^2}{4} &= 1 \\ \frac{(x + 1)^2}{4} - \frac{(y - 1)^2}{1} &= 1 \\ \text{The conic section is Hyperbola.} \end{aligned}$

The center is P(-1, 1) $a^2 = 4 \implies a = 2$ $b^2 = 1 \implies b = 1$ $c^2 = a^2 + b^2 = 4 + 1 = 5 \implies c = \sqrt{5}$ The vertices are $V_1(-3,1)$ and $V_2(1,1)$

The foci are $F_1\left(-1-\sqrt{5},1\right)$ and $F_2\left(-1+\sqrt{5},1\right)$

The equations of the asymptotes are L_1 : $(y-1) = \frac{1}{2}(x+1)$

and L_2 : $(y-1) = -\frac{1}{2}(x+1)$

Q.5 Find the standard equation of the ellipse with foci $F_1(5,1)$ and $F_2(5,7)$ with vertex V(5,8), then sketch it.

Solution :

The two foci and the vertex are located on a line parallel to the y-axis.

The standard equation of the ellipse is $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$, where b > a .

$$P(h,k) = \left(\frac{5+5}{2}, \frac{1+7}{2}\right) = (5,4)$$
, hence $h = 5$ and $k = 4$

c is the distance between one of the foci and P , hence c=3

b is the distance between the vertex (5,8) and ${\cal P}$, hence b=4

 $c^{2} = b^{2} - a^{2} \implies 9 = 16 - a^{2} \implies a^{2} = 16 - 9 = 7 \implies a = \sqrt{7}$ $(x - 5)^{2} \qquad (y - 4)^{2}$

The standard equation of the ellipse is $\frac{(x-5)^2}{7} + \frac{(y-4)^2}{16} = 1$

The other vertex is (5,0)

The end-points of the minor axis are $(5 - \sqrt{7}, 4)$ and $(5 + \sqrt{7}, 4)$.

M 104 - GENERAL MATHEMATICS -2-Dr. Tariq A. AlFadhel Solution of the Second Mid-Term Exam Second semester 1438-1439 H

${\bf Q.1}$ Compute the integrals :

(a)
$$\int \frac{2x}{x^2 + 1} dx$$

(b)
$$\int x \cos x dx$$

(c)
$$\int x \ln x dx$$

(d)
$$\int xe^{x^2} dx$$

(e)
$$\int \frac{x}{(x - 2)^2} dx$$

(f)
$$\int \frac{1}{(x - 1)(x - 2)} dx$$

Solution :

(a)
$$\int \frac{2x}{x^2+1} dx = \ln(x^2+1) + c$$

Using the formula $\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + c$

(b)
$$\int x \cos x \, dx$$

Using integration by parts

$$u = x \qquad dv = \cos x \ dx$$

$$du = dx \qquad v = \sin x$$

$$\int x \ \cos x \ dx = x \ \sin x - \int \sin x \ dx$$

$$= x \ \sin x - (-\cos x) + c = x \ \sin x + \cos x + c$$

(c)
$$\int x \ln x \, dx$$

Using integration by parts

$$u = \ln x \qquad dv = x \, dx$$
$$du = \frac{1}{x} \, dx \qquad v = \frac{x^2}{2}$$

$$\int x^2 \ln x \, dx = \frac{x^2}{2} \ln x - \int \frac{1}{x} \frac{x^2}{2} \, dx$$
$$= \frac{x^2}{2} \ln x - \frac{1}{2} \int x \, dx = \frac{x^2}{2} \ln x - \frac{1}{2} \frac{x^2}{2} + c$$

(d)
$$\int xe^{x^2} dx = \frac{1}{2} \int e^{x^2} (2x) dx = \frac{1}{2}e^{x^2} + c$$

Using the formula $\int e^{f(x)}f'(x) dx = e^{f(x)} + c$

(e)
$$\int \frac{x}{(x-2)^2} dx$$

Using the method of partial fractions

$$\frac{x}{(x-2)^2} = \frac{A_1}{x-2} + \frac{A_2}{(x-2)^2} = \frac{A_1(x-2) + A_2}{(x-2)^2}$$
$$x = A_1(x-2) + A_2 = A_2x - 2A_1 + A_2$$

By comparing the coefficients of the two polynomials in each side :

$$A_{1} = 1$$

$$-2A_{1} + A_{2} = 0 \implies -2 + A_{2} = 0 \implies A_{2} = 2$$

$$\int \frac{x}{(x-2)^{2}} dx = \int \left(\frac{1}{x-2} + \frac{2}{(x-2)^{2}}\right) dx$$

$$= \int \frac{1}{x-2} dx + 2 \int (x-2)^{-2} dx$$

$$= \ln|x-2| + 2 \frac{(x-2)^{-1}}{-1} + c = \ln|x-2| - \frac{2}{x-2} + c$$

(f)
$$\int \frac{1}{(x-1)(x-2)} dx$$

Using the method of partial fractions

$$\frac{1}{(x-1)(x-2)} = \frac{A_1}{x-1} + \frac{A_2}{x-2} = \frac{A_1(x-2) + A_2(x-1)}{(x-1)(x-2)}$$

$$1 = A_1(x-2) + A_2(x-1)$$
Put $x = 1$:
$$1 = A_1(1-2) \implies 1 = -A_1 \implies A_1 = -1$$
Put $x = 2$:
$$1 = A_2(2-1) \implies A_2 = 1$$

$$\int \frac{1}{(x-1)(x-2)} dx = \int \left(\frac{-1}{x-1} + \frac{1}{x-2}\right) dx$$
$$= -\int \frac{1}{x-1} dx + \int \frac{1}{x-2} dx = -\ln|x-1| + \ln|x-2| + c$$

 $\mathbf{Q.2}$ (a) Sketch the region \mathbf{R} determined by the curves

$$y = x^2$$
, $y = 0$, $x = 2$

(b) Find the area of the region ${\bf R}$ described in part (a) .

Solution :

- (a) $y = x^2$ is a parabola opens upwards with vertex (0,0)y = 0 is the x-axis
 - x = 2 is a straight line parallel to the y-axis and passes through (2, 0)

Q.3 (a) Sketch the region R determined by the curves

$$y = x^2$$
, $y = -x + 2$

(b) Find the volume of the solid generated by rotating the region \mathbf{R} in part (a) about the *x*-axis .

Solution :

(a) $y = x^2$ is a parabola opens upwards with vertex (0,0)

y=-x+2 is a straight line passes through (0,2) with slope equals -1

(b) Points of intersection of $y = x^2$ and y = -x + 2: $x^2 = -x + 2 \implies x^2 + x - 2 = 0 \implies (x + 2)(x - 1) = 0$ $\implies x = -2$, x = 1Using Washer method : Volume $= \pi \int_{-2}^{1} \left[(-x + 2)^2 - (x^2)^2 \right] dx = \pi \int_{-2}^{1} \left[(x^2 - 4x + 4) - x^4 \right] dx$ $= \pi \int_{-2}^{1} \left[-x^4 + x^2 - 4x + 4 \right] dx = \pi \left[-\frac{x^5}{5} + \frac{x^3}{3} - 2x^2 + 4x \right]_{-2}^{1}$ $= \pi \left[\left(-\frac{1^5}{5} + \frac{1^3}{3} - 2(1^2) + 4(1) \right) - \left(-\frac{(-2)^5}{5} + \frac{(-2)^3}{3} - 2((-2)^2) + 4(-2) \right) \right]$ $= \pi \left[-\frac{1}{5} + \frac{1}{3} - 2 + 4 - \left(\frac{32}{5} - \frac{8}{3} - 8 - 8 \right) \right] = \pi \left(-\frac{33}{5} + 3 + 2 + 16 \right)$ $= \pi \left(21 - \frac{33}{5} \right) = \frac{72\pi}{5}$