# M 104 - GENERAL MATHEMATICS -2- 

Dr. Tariq A. AlFadhel ${ }^{1}$
Solution of the First Mid-Term Exam
First semester 1438-1439 H
Q. 1 Let $\mathbf{A}=\left(\begin{array}{ccc}-2 & 3 & 1 \\ 0 & 1 & 2 \\ 2 & 0 & 1\end{array}\right), \mathbf{B}=\left(\begin{array}{cc}1 & -1 \\ -2 & 0 \\ 1 & 3\end{array}\right)$ and $\mathbf{C}=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$.

Compute (if possible) : $\mathbf{A}+\mathbf{B}$ and $\mathbf{B C}$

## Solution :

$\mathbf{A}+\mathbf{B}$ is impossible.

$$
\begin{aligned}
& \mathbf{B C}=\left(\begin{array}{cc}
1 & -1 \\
-2 & 0 \\
1 & 3
\end{array}\right)\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) \\
& =\left(\begin{array}{cc}
2+0 & 0+(-2) \\
-4+0 & 0+0 \\
2+0 & 0+6
\end{array}\right)=\left(\begin{array}{cc}
2 & -2 \\
-4 & 0 \\
2 & 6
\end{array}\right)
\end{aligned}
$$

Q. 2 Compute The determinant $\left|\begin{array}{lll}3 & 2 & 1 \\ 0 & 4 & 0 \\ 2 & 0 & 1\end{array}\right|$

Solution (1) : Using Sarrus Method

$$
\begin{array}{lllll}
3 & 2 & 1 & 3 & 2 \\
0 & 4 & 0 & 0 & 4 \\
2 & 0 & 1 & 2 & 0
\end{array}
$$

$\left|\begin{array}{lll}3 & 2 & 1 \\ 0 & 4 & 0 \\ 2 & 0 & 1\end{array}\right|=(12+0+0)-(8+0+0)=12-8=4$
Solution (2) : By the definition (using second row)

$$
\left|\begin{array}{lll}
3 & 2 & 1 \\
0 & 4 & 0 \\
2 & 0 & 1
\end{array}\right|=4 \times\left|\begin{array}{ll}
3 & 1 \\
2 & 1
\end{array}\right|=4(3-2)=4
$$

[^0]Q. 3 Solve by Gauss the linear system:
\[

\left\{$$
\begin{aligned}
x-2 y+z & =5 \\
y+3 z & =5 \\
-x+3 y-z & =-6
\end{aligned}
$$\right.
\]

Solution : The augmented matrix is
$\left(\begin{array}{ccc|c}1 & -2 & 1 & 5 \\ 0 & 1 & 3 & 5 \\ -1 & 3 & -1 & -6\end{array}\right) \xrightarrow{R_{1}+R_{3}}\left(\begin{array}{ccc|c}1 & -2 & 1 & 5 \\ 0 & 1 & 3 & 5 \\ 0 & 1 & 0 & -1\end{array}\right)$
$\xrightarrow{-R_{2}+R_{3}}\left(\begin{array}{ccc|c}1 & -2 & 1 & 5 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & -3 & -6\end{array}\right)$
$-3 z=-6 \Longrightarrow z=2$
$y+3 z=5 \Longrightarrow y+6=5 \Longrightarrow y=-1$
$x-2 y+z=5 \Longrightarrow x-2(-1)+2=5 \Longrightarrow x=1$
The solution is $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)$
Q. 4 Find the standard equation of the parabola with focus $F(5,1)$ and vertex $V(6,1)$, then sketch it.

## Solution :

From the position of the focus and the vertex the parabola opens to the left.

The equation of the parabola has the form $(y-k)^{2}=-4 a(x-h)$
The vertex is $V(6,1)$, hence $h=6, k=1$.
"a" is the distance between $V$ and $F$, hence $a=1$.
The standard equation of the parabola is $(y-1)^{2}=-4(x-6)$
The equation of the directrix is $x=7$.

Q. 5 Find all the elements of the conic section $y^{2}-4 x^{2}+10 y+8 x+17=0$ and sketch it.

## Solution :

$y^{2}-4 x^{2}+10 y+8 x+17=0$
$y^{2}+10 y-4 x^{2}+8 x=-17$
$y^{2}+10 y-4\left(x^{2}-2 x\right)=-17$
By completing the square.
$\left(y^{2}+10 y+25\right)-4\left(x^{2}-2 x+1\right)=-17+25-4$
$(y+5)^{2}-4(x-1)^{2}=4$
$\frac{(y+5)^{2}}{4}-\frac{4(x-1)^{2}}{4}=1$
$\frac{(y+5)^{2}}{4}-\frac{(x-1)^{2}}{1}=1$
The conic section is Hyperbola.
The center is $P=(1,-5)$
$a^{2}=1 \Longrightarrow a=1$
$b^{2}=4 \Longrightarrow b=2$
$c^{2}=a^{2}+b^{2}=1+4=5 \Longrightarrow c=\sqrt{5}$
The vertices are $V_{1}=(1,-3)$ and $V_{2}=(1,-7)$
The foci are $F_{1}=(1,-5+\sqrt{5})$ and $F_{2}=(1,-5-\sqrt{5})$
The equations of the asymptotes are $L_{1}:(y+5)=2(x-1)$
and $L_{2}:(y+5)=-2(x-1)$


# M 104-GENERAL MATHEMATICS -2- 

Dr. Tariq A. AlFadhel
Solution of the Second Mid-Term Exam First semester 1438-1439 H
Q. 1 Compute the integrals :
(a) $\int 2 x\left(x^{2}+1\right)^{7} d x$
(b) $\int x^{2} \cos \left(x^{3}\right) d x$
(c) $\int x^{2} \ln x d x$
(d) $\int(x+1) e^{x} d x$
(e) $\int \frac{1}{x^{2}+6 x+10} d x$
(f) $\int \frac{x+2}{(x-2)(x-4)} d x$

Solution :
(a) $\int 2 x\left(x^{2}+1\right)^{7} d x=\int\left(x^{2}+1\right)^{7}(2 x) d x=\frac{\left(x^{2}+1\right)^{8}}{8}+c$

Using the formula $\int[f(x)]^{n} f^{\prime}(x) d x=\frac{[f(x)]^{n+1}}{n+1}+c$, where $n \neq-1$
(b) $\int x^{2} \cos \left(x^{3}\right) d x=\frac{1}{3} \int \cos \left(x^{3}\right)\left(3 x^{2}\right) d x=\frac{1}{3} \sin \left(x^{3}\right)+c$

Using the formula $\int \cos (f(x)) f^{\prime}(x) d x=\sin (f(x))+c$
(c) $\int x^{2} \ln x d x$

Using integration by parts

$$
\begin{aligned}
& u=\ln x \quad d v=x^{2} d x \\
& d u=\frac{1}{x} d x \quad v=\frac{x^{3}}{3} \\
& \int x^{2} \ln x d x=\frac{x^{3}}{3} \ln x-\int \frac{1}{x} \frac{x^{3}}{3} d x \\
& =\frac{x^{3}}{3} \ln x-\frac{1}{3} \int x^{2} d x=\frac{x^{3}}{3} \ln x-\frac{1}{3} \frac{x^{3}}{3}+c
\end{aligned}
$$

(d) $\int(x+1) e^{x} d x$

Using integration by parts :

$$
\begin{array}{ll}
u=x+1 & d v=e^{x} d x \\
d u=1 d x & v=e^{x} \\
\int(x+1) e^{x} & d x=(x+1) e^{x}-\int e^{x} d x=(x+1) e^{x}-e^{x}+c=x e^{x}+c
\end{array}
$$

(e) $\int \frac{1}{x^{2}+6 x+10} d x=\int \frac{1}{\left(x^{2}+6 x+9\right)+1} d x=\int \frac{1}{(x+3)^{2}+1} d x$
$=\tan ^{-1}(x+3)+c$
Using the formula $\int \frac{f^{\prime}(x)}{a^{2}+[f(x)]^{2}} d x=\frac{1}{a} \tan ^{-1}\left(\frac{f(x)}{a}\right)+c$, where $a>0$
(f) $\int \frac{x+2}{(x-2)(x-4)} d x$

Using the method of partial fractions
$\frac{x+2}{(x-2)(x-4)}=\frac{A_{1}}{x-2}+\frac{A_{2}}{x-4}$
$x+2=A_{1}(x-4)+A_{2}(x-2)$
Put $x=2$ :
$2+2=A_{1}(2-4) \Longrightarrow 4=-2 A_{1} \Longrightarrow A_{1}=-2$
Put $x=4$ :
$4+2=A_{2}(4-2) \Longrightarrow 6=2 A_{2} \Longrightarrow A_{2}=3$
$\int \frac{x+2}{(x-2)(x-4)} d x=\int\left(\frac{-2}{x-2}+\frac{3}{x-4}\right) d x$
$=-2 \int \frac{1}{x-2} d x+3 \int \frac{1}{x-4} d x=-2 \ln |x-2|+3 \ln |x-4|+c$
Q. 2 (a) Sketch the region $R_{1}$ determined by the curves

$$
y=x^{2}-1, y=-1, x=1
$$

(b) Find the area of the region $R_{1}$ described in part (a).

## Solution :

(a) $y=x^{2}-1$ is a parabola opens upwards with vertex $(0,-1)$
$y=-1$ is a straight line parallel to the $x$-axis and passes through $(0,-1)$
$x=1$ is a straight line parallel to the $y$-axis and passes through $(1,0)$

(b) Area $=\int_{0}^{1}\left[\left(x^{2}-1\right)-(-1)\right] d x=\int_{0}^{1} x^{2} d x$ $=\left[\frac{x^{3}}{3}\right]_{0}^{1}=\frac{1}{3}-0=\frac{1}{3}$
Q. 3 (a) Sketch the region $R_{2}$ determined by the curves

$$
y=x^{2}, x=2, y=0
$$

(b) Find the volume of the solid generated by rotating the region $R_{2}$ in part (a) about the $y$-axis .

## Solution :

(a) $y=0$ is the $x$-axis
$y=x^{2}$ is a parabola opens upwards with vertex $(0,0)$
$x=2$ is a straight line parallel to the $y$-axis and passes through $(2,0)$

(b) Using Cylindrical Shells method:

Volume $=2 \pi \int_{0}^{2} x\left(x^{2}\right) d x=2 \pi \int_{0}^{2} x^{3} d x$
$=2 \pi\left[\frac{x^{4}}{4}\right]_{0}^{2}=2 \pi\left[\frac{2^{4}}{4}-\frac{0^{4}}{4}\right]=2 \pi\left[\frac{16}{4}\right]=8 \pi$
Another solution : Using Washer Method
$y=x^{2} \Longrightarrow x=\sqrt{y}$
Volume $=\pi \int_{0}^{4}\left[(2)^{2}-(\sqrt{y})^{2}\right] d y=\pi \int_{0}^{4}(4-y) d y$
$=\pi\left[4 y-\frac{y^{2}}{2}\right]_{0}^{4}=\pi\left[\left(4 \times 4-\frac{4^{2}}{2}\right)-(0-0)\right]=\pi(16-8)=8 \pi$

Dr. Tariq A. AlFadhel
Solution of the Final Exam
First semester 1438-1439 H
Q. 1 (a) Compute (if possible) $\mathbf{A B}$ for $\mathbf{A}=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 6 \\ 0 & 2 & 0\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{lll}1 & 0 & 1 \\ 2 & 1 & 4 \\ 1 & 1 & 1\end{array}\right)$
(b) Compute the determinant $\left|\begin{array}{lll}0 & 1 & 2 \\ 2 & 3 & 4 \\ 5 & 0 & 1\end{array}\right|$.
(c) Solve by Gauss Method : $\left\{\begin{array}{llc}x & -y+z & =1 \\ 2 x & -5 y+z & =-3 \\ 3 x & -6 y-z & =-8\end{array}\right.$

## Solution :

(a) $\mathbf{A B}=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 6 \\ 0 & 2 & 0\end{array}\right)\left(\begin{array}{lll}1 & 0 & 1 \\ 2 & 1 & 4 \\ 1 & 1 & 1\end{array}\right)$

$$
=\left(\begin{array}{lll}
1+4+3 & 0+2+3 & 1+8+3 \\
3+2+6 & 0+1+6 & 3+4+6 \\
0+4+0 & 0+2+0 & 0+8+0
\end{array}\right)=\left(\begin{array}{ccc}
8 & 5 & 12 \\
11 & 7 & 13 \\
4 & 2 & 8
\end{array}\right)
$$

(b) Solution (1): Using Sarrus Method

$$
\begin{aligned}
& \begin{array}{lllll}
0 & 1 & 2 & 0 & 1 \\
2 & 3 & 4 & 2 & 3 \\
5 & 0 & 1 & 5 & 0
\end{array} \\
& \left|\begin{array}{lll}
0 & 1 & 2 \\
2 & 3 & 4 \\
5 & 0 & 1
\end{array}\right|=(0+20+0)-(30+0+2)=20-32=-12
\end{aligned}
$$

Solution (2) : Using the definition (using the first row) :

$$
\begin{aligned}
& \left|\begin{array}{lll}
0 & 1 & 2 \\
2 & 3 & 4 \\
5 & 0 & 1
\end{array}\right|=0 \times\left|\begin{array}{ll}
3 & 4 \\
0 & 1
\end{array}\right|-1 \times\left|\begin{array}{ll}
2 & 4 \\
5 & 1
\end{array}\right|+2 \times\left|\begin{array}{ll}
2 & 3 \\
5 & 0
\end{array}\right| \\
& =0-(2-20)+2(0-15)=0-(-18)-30=18-30=-12
\end{aligned}
$$

(c) Using Gauss Method:

$$
\left(\begin{array}{ccc|c}
1 & -1 & 1 & 2 \\
1 & -2 & 1 & 0 \\
2 & -1 & 1 & 3
\end{array}\right) \xrightarrow{-2 R_{1}+R_{2}}\left(\begin{array}{ccc|c}
1 & -1 & 1 & 2 \\
0 & -3 & -1 & -5 \\
2 & -1 & 1 & 3
\end{array}\right)
$$

$\xrightarrow{-3 R_{1}+R_{3}}\left(\begin{array}{ccc|c}1 & -1 & 1 & 2 \\ 0 & -3 & -1 & -5 \\ 0 & -3 & -4 & -11\end{array}\right) \xrightarrow{-R_{2}+R_{3}}\left(\begin{array}{ccc|c}1 & -1 & 1 & 2 \\ 0 & -3 & -1 & -5 \\ 0 & 0 & -3 & -6\end{array}\right)$
$-3 z=-6 \Longrightarrow z=\frac{-6}{-3}=2$
$-3 y-z=-5 \Longrightarrow-3 y-2=-5 \Longrightarrow-3 y=-3 \Longrightarrow y=\frac{-3}{-3}=1$
$x-y+z=1 \Longrightarrow x-1+2=1 \Longrightarrow x+1=1 \Longrightarrow x=0$
The solution is $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)$
Q. 2 (a) Find the standard equation of the ellipse with foci $(-2,3)$ and $(4,3)$, and with vertex $(5,3)$.
(b) Find the elements of the conic section $9 x^{2}-4 y^{2}+18 x-24 y=63$.

## Solution :

(a) The two foci and the vertex are located on a line parallel to the $x$-axis.

The standard equation of the ellipse is $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$, where $a>b$ 。
$P(h, k)=\left(\frac{-2+4}{2}, \frac{3+3}{2}\right)=(1,3)$, hence $h=0$ and $k=0$
$a$ is the distance between the vertex $(5,3)$ and $P$, hence $a=4$
$c$ is the distance between one of the foci and $P$, hence $c=3$
$c^{2}=a^{2}-b^{2} \Longrightarrow 9=16-b^{2} \Longrightarrow b^{2}=16-9=7 \Longrightarrow b=\sqrt{7}$
The standard equation of the ellipse is $\frac{(x-1)^{2}}{16}-\frac{(y-3)^{2}}{7}=1$
The other vertex is $(-3,3)$
The end-points of the minor axis are $(1,3-\sqrt{7})$ and $(1,3+\sqrt{7})$.
(b) $9 x^{2}-4 y^{2}+18 x-24 y=63$
$9 x^{2}+18 x-4 y^{2}-24 y=63$
$9\left(x^{2}+2 x\right)-4\left(y^{2}+6 y\right)=63$
By completing the square
$9\left(x^{2}+2 x+1\right)-4\left(y^{2}+6 y+9\right)=63+9-36$
$9(x+1)^{2}-4(y+3)^{2}=36$
$\frac{9(x+1)^{2}}{36}-\frac{4(y+3)^{2}}{36}=1$
$\frac{(x+1)^{2}}{4}-\frac{(y+3)^{2}}{9}=1$
The conic section is a hyperbola.
The center is $P(-1,-3)$.
$a^{2}=4 \Longrightarrow a=2$.
$b^{2}=9 \Longrightarrow b=3$.
$c^{2}=a^{2}+b^{2}=4+9=13 \Longrightarrow c=\sqrt{13}$.
The vertices are $V_{1}(-3,-3)$ and $V_{2}(1,-3)$
The foci are $F_{1}(-1-\sqrt{13},-3)$ and $F_{2}(-1+\sqrt{13},-3)$.
The equations of the asymptotes are :
$L_{1}: y+3=\frac{3}{2}(x+1)$ and $L_{2}: y+3=-\frac{3}{2}(x+1)$
Q. 3 (a) Compute the integrals :
(i) $\int \frac{x+1}{(x-2)(x-3)} d x$
(ii) $\int x \ln x d x$
(iii) $\int x \sin \left(x^{2}\right) d x$
(b) Find the area of the region bounded by the curves:
$y=\sqrt{x}$ and $y=x^{2}$.
(c) The region $R$ between the curves $y=0, x=1$ and $y=\sqrt{x}$ is rotated about the $x$-axis to form a solid of revolution $S$. Find the volume of $S$.

## Solution :

(a) (i) $\int \frac{x+1}{(x-2)(x-3)} d x$

Using the method of partial fractions
$\frac{x+1}{(x-2)(x-3)}=\frac{A_{1}}{x-2}+\frac{A_{2}}{x-3}$
$x+1=A_{1}(x-3)+A_{2}(x-2)$
Put $x=2$ then $2+1=A_{1}(2-3) \Longrightarrow 3=-A_{1} \Longrightarrow A_{1}=-3$
Put $x=3$ then $3+1=A_{2}(3-2) \Longrightarrow A_{2}=4$
$\int \frac{x+1}{(x-2)(x-3)} d x=\int\left(\frac{-3}{x-2}+\frac{4}{x-3}\right) d x$
$=-3 \int \frac{1}{x-2} d x+4 \int \frac{1}{x-3} d x=-3 \ln |x-2|+4 \ln |x-3|+c$
(ii) $\int x \ln x d x$

Using integration by parts
$u=\ln x \quad d v=x d x$
$d u=\frac{1}{x} d x \quad v=\frac{x^{2}}{2}$
$\int x \ln x d x=\frac{x^{2}}{2} \ln x-\int \frac{x^{2}}{2} \frac{1}{x} x d x$
$=\frac{x^{2}}{2} \ln x-\frac{1}{2} \int x d x=\frac{x^{2}}{2} \ln x-\frac{1}{2} \frac{x^{2}}{2}+c$
(iii) $\int x \sin \left(x^{2}\right) d x$
$\int x \sin \left(x^{2}\right) d x=\frac{1}{2} \int \sin \left(x^{2}\right)(2 x) d x$
$=\frac{1}{2}\left(-\cos \left(x^{2}\right)\right)+c=-\frac{1}{2} \cos \left(x^{2}\right)+c$
Using the formula $\int \sin (f(x)) f^{\prime}(x) d x=-\cos (f(x))+c$
(b) $y=x^{2}$ is a parabola opens upwards with vertex $(0,0)$.
$y=\sqrt{x}$ is the upper-half of the parabola $x=y^{2}$ which opens to the right with vertex $(0,0)$,


Points of intersection of $y=x^{2}$ and $y=\sqrt{x}$ :
$x^{2}=\sqrt{x} \Longrightarrow x^{4}=x \Longrightarrow x^{4}-x=0 \Longrightarrow x\left(x^{3}-1\right)=0$
$\Longrightarrow x=0, x^{3}-1=0 \Longrightarrow x=0, x=1$
Area $=\int_{0}^{1}\left(\sqrt{x}-x^{2}\right) d x=\int_{0}^{1}\left(x^{\frac{1}{2}}-x^{2}\right) d x=\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}-\frac{x^{3}}{3}\right]_{0}^{1}=\left[\frac{2}{3} x^{\frac{3}{2}}-\frac{x^{3}}{3}\right]_{0}^{1}$

$$
=\left(\frac{2}{3}(1)^{\frac{3}{2}}-\frac{(1)^{3}}{3}\right)-\left(\frac{2}{3}(0)^{\frac{3}{2}}-\frac{(0)^{3}}{3}\right)=\left(\frac{2}{3}-\frac{1}{3}\right)-(0-0)=\frac{1}{3}
$$

(c) $y=0$ is the $x$-axis .
$x=1$ is a straight line parallel to the $y$-axis and passes through $(1,0)$.
$y=\sqrt{x}$ is the upper-half of the parabola $x=y^{2}$ which opens to the right with vertex $(0,0)$,


Using Disk Method :
Volume $=\pi \int_{0}^{1}(\sqrt{x})^{2} \quad d x=\pi \int_{0}^{1} x d x=\pi\left[\frac{x^{2}}{2}\right]_{0}^{1}$
$=\pi\left[\frac{(1)^{2}}{2}-\frac{(0)^{2}}{2}\right]=\pi\left(\frac{1}{2}-0\right)=\frac{\pi}{2}$
Q. 4 (a) Find $f_{x}, f_{y}$ and $f_{z}$ for the function $f(x, y, z)=x y^{3} z+\ln \left(x z^{4}\right)$.
(b) Solve the differential equation $\frac{d y}{d x}-3 x^{2} y^{2}=0$.

## Solution :

(a) $f_{x}=y^{3} z(1)+\frac{z^{4}(1)}{x z^{4}}=y^{3} z+\frac{1}{x}$
$f_{y}=x z\left(3 y^{2}\right)+0=3 x y^{2} z$
$f_{z}=x y^{3}(1)+\frac{x\left(4 z^{3}\right)}{x z^{4}}=x y^{3}+\frac{4}{z}$
(b) $\frac{d y}{d x}-3 x^{2} y^{2}=0$

$$
\frac{d y}{d x}=3 x^{2} y^{2}
$$

$$
\frac{1}{y^{2}} d y=3 x^{2} d x
$$

It is a separable differential equation.

$$
\begin{aligned}
& \int \frac{1}{y^{2}} d y=\int 3 x^{2} d x \\
& \int y^{-2} d y=\int 3 x^{2} d x \\
& \frac{y^{-1}}{-1}=x^{3}+c \\
& \frac{-1}{y}=x^{3}+c \\
& \frac{1}{y}=-x^{3}-c \\
& y=\frac{1}{-x^{3}-c}=\frac{-1}{x^{3}+c}
\end{aligned}
$$

Dr. Tariq A. AlFadhel
Solution of the First Mid-Term Exam Second semester 1438-1439 H
Q. 1 Let $\mathbf{A}=\left(\begin{array}{ccc}1 & 2 & 3 \\ 1 & 2 & 2 \\ 2 & -1 & 1\end{array}\right), \mathbf{B}=\left(\begin{array}{ll}3 & 1 \\ 2 & 3 \\ 1 & 1\end{array}\right)$ and $\mathbf{C}=\left(\begin{array}{ll}7 & 1 \\ 3 & 6 \\ 1 & 3\end{array}\right)$.

Compute (if possible) : $\mathbf{A B}$ and $\mathbf{B}+\mathbf{C}$

## Solution :

$$
\begin{aligned}
& \mathbf{A B}=\left(\begin{array}{ccc}
1 & 2 & 3 \\
1 & 2 & 2 \\
2 & -1 & 1
\end{array}\right)\left(\begin{array}{ll}
3 & 1 \\
2 & 3 \\
1 & 1
\end{array}\right) \\
& =\left(\begin{array}{ll}
3+4+3 & 1+6+3 \\
3+4+2 & 1+6+2 \\
6-2+1 & 2-3+1
\end{array}\right)=\left(\begin{array}{cc}
10 & 10 \\
9 & 9 \\
5 & 0
\end{array}\right) \\
& \mathbf{B}+\mathbf{C}=\left(\begin{array}{ll}
3 & 1 \\
2 & 3 \\
1 & 1
\end{array}\right)+\left(\begin{array}{ll}
7 & 1 \\
3 & 6 \\
1 & 3
\end{array}\right)=\left(\begin{array}{ll}
3+7 & 1+1 \\
2+3 & 3+6 \\
1+1 & 1+3
\end{array}\right)=\left(\begin{array}{cc}
10 & 2 \\
5 & 9 \\
2 & 4
\end{array}\right)
\end{aligned}
$$

Q. 2 Compute The determinant $\left|\begin{array}{lll}1 & 2 & 1 \\ 2 & 1 & 1 \\ 2 & 3 & 1\end{array}\right|$

Solution : Using Sarrus Method

| 1 | 2 | 1 | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- |
| 2 | 1 | 1 | 2 | 1 |
| 2 | 3 | 1 | 2 | 3 |

$$
\left|\begin{array}{lll}
1 & 2 & 1 \\
2 & 1 & 1 \\
2 & 3 & 1
\end{array}\right|=(1+4+6)-(2+3+4)=11-9=2
$$

Q. 3 Solve by Gauss the linear system :

$$
\left\{\begin{aligned}
x-2 y+z & =0 \\
x-3 y-z & =-2 \\
2 x+2 y-z & =4
\end{aligned}\right.
$$

Solution : The augmented matrix is

$$
\left(\begin{array}{ccc|c}
1 & -2 & 1 & 0 \\
1 & -3 & -1 & -2 \\
2 & 2 & -1 & 4
\end{array}\right) \xrightarrow{-R_{1}+R_{2}}\left(\begin{array}{ccc|c}
1 & -2 & 1 & 0 \\
0 & -1 & -2 & -2 \\
2 & 2 & -1 & 4
\end{array}\right)
$$

$\xrightarrow{-2 R_{1}+R_{3}}\left(\begin{array}{ccc|c}1 & -2 & 1 & 0 \\ 0 & -1 & -2 & -2 \\ 0 & 6 & -3 & 4\end{array}\right) \xrightarrow{6 R_{2}+R_{3}}\left(\begin{array}{ccc|c}1 & -2 & 1 & 0 \\ 0 & -1 & -2 & -2 \\ 0 & 0 & -15 & -8\end{array}\right)$
$-15 z=-8 \Longrightarrow z=\frac{-8}{-15}=\frac{8}{15}$
$-y-2 z=-2 \Longrightarrow-y-2\left(\frac{8}{15}\right)=-2 \Longrightarrow-y-\frac{16}{15}=-2$
$\Longrightarrow-y=-2+\frac{16}{15} \Longrightarrow-y=\frac{-30+16}{16}=-\frac{14}{15} \Longrightarrow y=\frac{14}{15}$
$x-2 y+z=0 \Longrightarrow x-2\left(\frac{14}{15}\right)+\frac{8}{15}=0 \Longrightarrow x-\frac{28}{15}+\frac{8}{15}=0$
$\Longrightarrow x=\frac{28}{15}-\frac{8}{15}=\frac{20}{15}=\frac{4}{3}$
The solution is $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}\frac{4}{3} \\ \frac{14}{15} \\ \frac{8}{15}\end{array}\right)$
Q. 4 Find all the elements of the conic section $x^{2}-4 y^{2}+2 x+8 y-7=0$ and sketch it.

## Solution :

$x^{2}-4 y^{2}+2 x+8 y-7=0$
$x^{2}+2 x-4 y^{2}+8 y=7$
$x^{2}+2 x-4\left(y^{2}-2 y\right)=7$
By completing the square.
$\left(x^{2}+2 x+1\right)-4\left(y^{2}-2 y+1\right)=7+1-4$
$(x+1)^{2}-4(y-1)^{2}=4$
$\frac{(x+1)^{2}}{4}-\frac{4(y-1)^{2}}{4}=1$
$\frac{(x+1)^{2}}{4}-\frac{(y-1)^{2}}{1}=1$
The conic section is Hyperbola.
The center is $P(-1,1)$
$a^{2}=4 \Longrightarrow a=2$
$b^{2}=1 \Longrightarrow b=1$
$c^{2}=a^{2}+b^{2}=4+1=5 \Longrightarrow c=\sqrt{5}$

The vertices are $V_{1}(-3,1)$ and $V_{2}(1,1)$
The foci are $F_{1}(-1-\sqrt{5}, 1)$ and $F_{2}(-1+\sqrt{5}, 1)$
The equations of the asymptotes are $L_{1}:(y-1)=\frac{1}{2}(x+1)$ and $L_{2}:(y-1)=-\frac{1}{2}(x+1)$

Q. 5 Find the standard equation of the ellipse with foci $F_{1}(5,1)$ and $F_{2}(5,7)$ with vertex $V(5,8)$, then sketch it.

## Solution :

The two foci and the vertex are located on a line parallel to the $y$-axis.
The standard equation of the ellipse is $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$, where $b>a$.
$P(h, k)=\left(\frac{5+5}{2}, \frac{1+7}{2}\right)=(5,4)$, hence $h=5$ and $k=4$
$c$ is the distance between one of the foci and $P$, hence $c=3$
$b$ is the distance between the vertex $(5,8)$ and $P$, hence $b=4$
$c^{2}=b^{2}-a^{2} \Longrightarrow 9=16-a^{2} \Longrightarrow a^{2}=16-9=7 \Longrightarrow a=\sqrt{7}$
The standard equation of the ellipse is $\frac{(x-5)^{2}}{7}+\frac{(y-4)^{2}}{16}=1$
The other vertex is $(5,0)$
The end-points of the minor axis are $(5-\sqrt{7}, 4)$ and $(5+\sqrt{7}, 4)$.


# M 104-GENERAL MATHEMATICS -2- 

Dr. Tariq A. AlFadhel
Solution of the Second Mid-Term Exam Second semester 1438-1439 H
Q. 1 Compute the integrals :
(a) $\int \frac{2 x}{x^{2}+1} d x$
(b) $\int x \cos x d x$
(c) $\int x \ln x d x$
(d) $\int x e^{x^{2}} d x$
(e) $\int \frac{x}{(x-2)^{2}} d x$
(f) $\int \frac{1}{(x-1)(x-2)} d x$

## Solution :

(a) $\int \frac{2 x}{x^{2}+1} d x=\ln \left(x^{2}+1\right)+c$

Using the formula $\int \frac{f^{\prime}(x)}{f(x)} d x=\ln |f(x)|+c$
(b) $\int x \cos x d x$

Using integration by parts

$$
\begin{aligned}
& u=x \quad d v=\cos x d x \\
& d u=d x \quad v=\sin x \\
& \int x \cos x d x=x \sin x-\int \sin x d x \\
& =x \sin x-(-\cos x)+c=x \sin x+\cos x+c
\end{aligned}
$$

(c) $\int x \ln x d x$

Using integration by parts

$$
\begin{array}{ll}
u=\ln x & d v=x d x \\
d u=\frac{1}{x} d x & v=\frac{x^{2}}{2}
\end{array}
$$

$$
\begin{aligned}
& \int x^{2} \ln x d x=\frac{x^{2}}{2} \ln x-\int \frac{1}{x} \frac{x^{2}}{2} d x \\
& =\frac{x^{2}}{2} \ln x-\frac{1}{2} \int x d x=\frac{x^{2}}{2} \ln x-\frac{1}{2} \frac{x^{2}}{2}+c
\end{aligned}
$$

(d) $\int x e^{x^{2}} d x=\frac{1}{2} \int e^{x^{2}}(2 x) d x=\frac{1}{2} e^{x^{2}}+c$

Using the formula $\int e^{f(x)} f^{\prime}(x) d x=e^{f(x)}+c$
(e) $\int \frac{x}{(x-2)^{2}} d x$

Using the method of partial fractions

$$
\begin{aligned}
& \frac{x}{(x-2)^{2}}=\frac{A_{1}}{x-2}+\frac{A_{2}}{(x-2)^{2}}=\frac{A_{1}(x-2)+A_{2}}{(x-2)^{2}} \\
& x=A_{1}(x-2)+A_{2}=A_{2} x-2 A_{1}+A_{2}
\end{aligned}
$$

By comparing the coefficients of the two polynomials in each side :
$A_{1}=1$

$$
-2 A_{1}+A_{2}=0 \Longrightarrow-2+A_{2}=0 \Longrightarrow A_{2}=2
$$

$$
\int \frac{x}{(x-2)^{2}} d x=\int\left(\frac{1}{x-2}+\frac{2}{(x-2)^{2}}\right) d x
$$

$$
=\int \frac{1}{x-2} d x+2 \int(x-2)^{-2} d x
$$

$$
=\ln |x-2|+2 \frac{(x-2)^{-1}}{-1}+c=\ln |x-2|-\frac{2}{x-2}+c
$$

(f) $\int \frac{1}{(x-1)(x-2)} d x$

Using the method of partial fractions

$$
\begin{aligned}
& \frac{1}{(x-1)(x-2)}=\frac{A_{1}}{x-1}+\frac{A_{2}}{x-2}=\frac{A_{1}(x-2)+A_{2}(x-1)}{(x-1)(x-2)} \\
& 1=A_{1}(x-2)+A_{2}(x-1)
\end{aligned}
$$

Put $x=1$ :

$$
1=A_{1}(1-2) \Longrightarrow 1=-A_{1} \Longrightarrow A_{1}=-1
$$

Put $x=2$ :

$$
1=A_{2}(2-1) \Longrightarrow A_{2}=1
$$

$$
\begin{aligned}
& \int \frac{1}{(x-1)(x-2)} d x=\int\left(\frac{-1}{x-1}+\frac{1}{x-2}\right) d x \\
& =-\int \frac{1}{x-1} d x+\int \frac{1}{x-2} d x=-\ln |x-1|+\ln |x-2|+c
\end{aligned}
$$

Q. 2 (a) Sketch the region $\mathbf{R}$ determined by the curves

$$
y=x^{2}, y=0, x=2
$$

(b) Find the area of the region $\mathbf{R}$ described in part (a).

## Solution :

(a) $y=x^{2}$ is a parabola opens upwards with vertex $(0,0)$
$y=0$ is the $x$-axis
$x=2$ is a straight line parallel to the $y$-axis and passes through $(2,0)$

(b) Area $=\int_{0}^{2} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{0}^{2}=\frac{2^{3}}{3}-\frac{0^{3}}{3}=\frac{8}{3}$
Q. 3 (a) Sketch the region $\mathbf{R}$ determined by the curves

$$
y=x^{2}, y=-x+2
$$

(b) Find the volume of the solid generated by rotating the region $\mathbf{R}$ in part (a) about the $x$-axis .

## Solution :

(a) $y=x^{2}$ is a parabola opens upwards with vertex $(0,0)$
$y=-x+2$ is a straight line passes through $(0,2)$ with slope equals $-1$

(b) Points of intersection of $y=x^{2}$ and $y=-x+2$ :
$x^{2}=-x+2 \Longrightarrow x^{2}+x-2=0 \Longrightarrow(x+2)(x-1)=0$
$\Longrightarrow x=-2, x=1$
Using Washer method :
Volume $=\pi \int_{-2}^{1}\left[(-x+2)^{2}-\left(x^{2}\right)^{2}\right] d x=\pi \int_{-2}^{1}\left[\left(x^{2}-4 x+4\right)-x^{4}\right] d x$
$=\pi \int_{-2}^{1}\left[-x^{4}+x^{2}-4 x+4\right] d x=\pi\left[-\frac{x^{5}}{5}+\frac{x^{3}}{3}-2 x^{2}+4 x\right]_{-2}^{1}$
$=\pi\left[\left(-\frac{1^{5}}{5}+\frac{1^{3}}{3}-2\left(1^{2}\right)+4(1)\right)-\left(-\frac{(-2)^{5}}{5}+\frac{(-2)^{3}}{3}-2\left((-2)^{2}\right)+4(-2)\right)\right]$
$=\pi\left[-\frac{1}{5}+\frac{1}{3}-2+4-\left(\frac{32}{5}-\frac{8}{3}-8-8\right)\right]=\pi\left(-\frac{33}{5}+3+2+16\right)$
$=\pi\left(21-\frac{33}{5}\right)=\frac{72 \pi}{5}$


[^0]:    ${ }^{1}$ E-mail : alfadhel@ksu.edu.sa

