Dr. Tariq A. AlFadhel ${ }^{1}$
Solution of the First Mid-Term Exam First semester 1437-1438 H
Q. 1 Let $\mathbf{A}=\left(\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 2 \\ 2 & 0 & 1\end{array}\right), \mathbf{B}=\left(\begin{array}{ll}1 & 1 \\ 0 & 2 \\ 0 & 1\end{array}\right)$ and $\mathbf{C}=\left(\begin{array}{ll}0 & 1 \\ 3 & 6 \\ 1 & 3\end{array}\right)$.

Compute (if possible) : $\mathbf{A B}$ and $\mathbf{B}+\mathbf{C}$

Solution :

$$
\left.\begin{array}{l}
\mathbf{A B}=\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 2 & 2 \\
2 & 0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 2 \\
0 & 1
\end{array}\right) \\
=\left(\begin{array}{l}
1+0+0 \\
0+0+0 \\
0+4+3 \\
2+0+0
\end{array} 2+0+2\right. \\
0+1
\end{array}\right)=\left(\begin{array}{ll}
1 & 8 \\
0 & 6 \\
2 & 3
\end{array}\right) .
$$

Q. 2 Compute The determinant $\left|\begin{array}{ccc}1 & -2 & 1 \\ 2 & 1 & -1 \\ -2 & 0 & 1\end{array}\right|$

Solution (1) : Using Sarrus Method

$$
\begin{aligned}
& \begin{array}{ccccc}
1 & -2 & 1 & 1 & -2 \\
2 & 1 & -1 & 2 & 1 \\
-2 & 0 & 1 & -2 & 0
\end{array} \\
& \left|\begin{array}{ccc}
1 & -2 & 1 \\
2 & 1 & -1 \\
-2 & 0 & 1
\end{array}\right|=(1+(-4)+0)-(-2+0+(-4))=-3-(-6)=-3+6=3
\end{aligned}
$$

Solution (2) : By the definition (using third row)

$$
\begin{aligned}
& \left|\begin{array}{ccc}
1 & -2 & 1 \\
2 & 1 & -1 \\
-2 & 0 & 1
\end{array}\right|=-2 \times\left|\begin{array}{cc}
-2 & 1 \\
1 & -1
\end{array}\right|-0 \times\left|\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right|+1 \times\left|\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right| \\
& =-2(2-1)-0+1(1-(-4))=-2(1)+1(5)=-2+5=3
\end{aligned}
$$

[^0]Q. 3 Solve by Gauss-Jordan the linear system :
\[

\left\{$$
\begin{array}{cccc}
x-2 y+z & =0 \\
2 x-3 y-z & =-2 \\
-2 x & =z & =-1
\end{array}
$$\right.
\]

Solution : The augmented matrix is
$\left(\begin{array}{ccc|c}1 & -2 & 1 & 0 \\ 2 & -3 & -1 & -2 \\ -2 & 0 & 1 & -1\end{array}\right) \xrightarrow{-2 R_{1}+R_{2}}\left(\begin{array}{ccc|c}1 & -2 & 1 & 0 \\ 0 & 1 & -3 & -2 \\ -2 & 0 & 1 & -1\end{array}\right)$
$\xrightarrow{2 R_{1}+R_{3}}\left(\begin{array}{ccc|c}1 & -2 & 1 & 0 \\ 0 & 1 & -3 & -2 \\ 0 & -4 & 3 & -1\end{array}\right) \xrightarrow{4 R_{2}+R_{3}}\left(\begin{array}{ccc|c}1 & -2 & 1 & 0 \\ 0 & 1 & -3 & -2 \\ 0 & 0 & -9 & -9\end{array}\right)$
$\xrightarrow{\frac{1}{-9} R_{3}}\left(\begin{array}{ccc|c}1 & -2 & 1 & 0 \\ 0 & 1 & -3 & -2 \\ 0 & 0 & 1 & 1\end{array}\right) \xrightarrow{3 R_{3}+R_{2}}\left(\begin{array}{ccc|c}1 & -2 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1\end{array}\right)$
$\xrightarrow{-R_{3}+R_{1}}\left(\begin{array}{ccc|c}1 & -2 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1\end{array}\right) \xrightarrow{2 R_{2}+R_{1}}\left(\begin{array}{lll|l}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1\end{array}\right)$
The solution is $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
Q. 4 Find all the elements of the conic section $y^{2}-4 x^{2}+2 y+8 x-7=0$ and sketch it.

Solution :

$$
\begin{aligned}
& y^{2}-4 x^{2}+2 y+8 x-7=0 \\
& y^{2}+2 y-4 x+8 x=7 \\
& \left(y^{2}+2 y\right)-4\left(x^{2}-2 x\right)=7
\end{aligned}
$$

By completing the square

$$
\begin{aligned}
& \left(y^{2}+2 y+1\right)-4\left(x^{2}-2 x+1\right)=7+1-4 \\
& (y+1)^{2}-4(x-1)^{2}=4 \\
& \frac{(y+1)^{2}}{4}+\frac{4(x-1)^{2}}{4}=1 \\
& \frac{(y+1)^{2}}{4}+\frac{(x-1)^{2}}{1}=1
\end{aligned}
$$

The conic section is a Hyperbola.

The center is $P(1,-1)$.
$a^{2}=1 \Longrightarrow a=1$
$b^{2}=4 \Longrightarrow b=2$
$c^{2}=a^{2}+b^{2}=1+4=5 \Longrightarrow c=\sqrt{5}$
The vertices are $V_{1}(1,1)$ and $V_{2}(1,-3)$
The foci are $F_{1}(1,-1+\sqrt{5})$ and $F_{2}(1,-1-\sqrt{5})$
The equations of the asymptotes are $L_{1}:(y+1)=2(x-1)$
and $L_{2}:(y+1)=-2(x-1)$

Q. 5 Find the standard equation of the parabola with focus $F(5,1)$ and with directrix $x=-1$, and sketch it.

Solution :

From the positions of the focus and directrix the parabola opens to the right.

The equation of the parabola has the form $(y-k)^{2}=4 a(x-h)$.
The vertex lies between the focus and the directrix, hence the vertex is $V(2,1)$
a is the distance between the focus and the vertex, hence $a=3$
The standard equation of the parabola is $(y-1)^{2}=12(x-2)$

M 104-GENERAL MATHEMATICS -2-

Dr. Tariq A. AlFadhel
Solution of the Second Mid-Term Exam First semester 1437-1438 H
Q. 1 Compute the integrals :
(a) $\int_{0}^{1} 16 x\left(x^{2}-1\right)^{7} d x$
(b) $\int \frac{2 x-1}{(x-2)(x-3)} d x$
(c) $\int(x+1) \sin x d x$
(d) $\int x^{3} \ln |x| d x$
(e) $\int \frac{2 x}{(x+1)^{2}} d x$

Solution :
(a) $\int_{0}^{1} 16 x\left(x^{2}-1\right)^{7} d x=8 \int_{0}^{1}\left(x^{2}-1\right)^{7} 2 x d x=8\left[\frac{\left(x^{2}-1\right)^{8}}{8}\right]_{0}^{1}$
$=8\left[\frac{(1-1)^{8}}{8}-\frac{(0-1)^{8}}{8}\right]=8\left(0-\frac{1}{8}\right)=0-1=-1$
Using the formula $\int[f(x)]^{n} f^{\prime}(x) d x=\frac{[f(x)]^{n+1}}{n+1}+c$, where $n \neq-1$
(b) $\int \frac{2 x-1}{(x-2)(x-3)} d x$

Using the method of partial fractions
$\frac{2 x-1}{(x-2)(x-3)}=\frac{A_{1}}{x-2}+\frac{A_{2}}{x-3}$
$2 x-1=A_{1}(x-3)+A_{2}(x-2)$
Put $x=2$:
$2(2)-1=A_{1}(2-3) \Longrightarrow A_{1}=-3$
Put $x=3$:

$$
\begin{aligned}
& 2(3)-1=A_{2}(3-2) \Longrightarrow A_{2}=5 \\
& \int \frac{2 x-1}{(x-2)(x-3)} d x=\int\left(\frac{-3}{x-2}+\frac{5}{x-3}\right) d x \\
& =-3 \int \frac{1}{x-2} d x+5 \int \frac{1}{x-3} d x=-3 \ln |x-2|+5 \ln |x-3|+c
\end{aligned}
$$

(c) $\int(x+1) \sin x d x$

Using integration by parts

$$
\begin{array}{ll}
u=x+1 & d v=\sin x d x \\
d u=d x & v=-\cos x \\
\int(x+1) \sin x d x=(x+1)(-\cos x)-\int-\cos x d x \\
=-(x+1) \cos x+\int \cos x d x=-(x+1) \cos x+\sin x+c
\end{array}
$$

(d) $\int x^{3} \ln |x| d x$

Using integration by parts :

$$
\begin{aligned}
& u=\ln |x| \quad d v=x^{3} d x \\
& d u=\frac{1}{x} d x \quad v=\frac{x^{4}}{4} \\
& \int \ln |x| d x=\frac{x^{4}}{4} \ln |x|-\int \frac{x^{4}}{4} \frac{1}{x} d x \\
& =\frac{x^{4}}{4} \ln |x|-\frac{1}{4} \int x^{3} d x=\frac{x^{4}}{4} \ln |x|-\frac{1}{4} \frac{x^{4}}{4}+c
\end{aligned}
$$

(e) $\int \frac{2 x}{(x+1)^{2}} d x$

Using the method of partial fractions

$$
\begin{aligned}
& \frac{2 x}{(x+1)^{2}}=\frac{A_{1}}{x+1}+\frac{A_{2}}{(x+1)^{2}} \\
& \frac{2 x}{(x+1)^{2}}=\frac{A_{1}(x+1)}{(x+1)^{2}}+\frac{A_{2}}{(x+1)^{2}} \\
& 2 x=A_{1}(x+1)+A_{2}=A_{1} x+\left(A_{1}+A_{2}\right)
\end{aligned}
$$

By comparing the coefficients of both sides :

$$
\begin{array}{lll}
A_{1}=2 & \longrightarrow & (1) \\
A_{1}+A_{2}=0 & \longrightarrow \quad(2)
\end{array}
$$

From equations (1) and (2) : $A_{1}=2$ and $A_{2}=-2$

$$
\begin{aligned}
& \int \frac{2 x}{(x+1)^{2}} d x=\int\left(\frac{2}{x+1}+\frac{-2}{(x+1)^{2}}\right) d x \\
& =2 \int \frac{1}{x+1} d x-2 \int(x+1)^{-2} d x=2 \ln |x+1|-2 \frac{(x+1)^{-1}}{-1}+c
\end{aligned}
$$

$=2 \ln |x+1|+\frac{2}{x+1}+c$
Q. 2 Find the area of the region bounded by the curves :
$y=x^{2}+1$ and $y=2$

Solution :

$y=2$ is a straight line parallel to the x-axis and passes through $(0,2)$
$y=x^{2}+1$ is a parabola opens upwards with vertex $(0,1)$
Points of intersection of $y=x^{2}+1$ and $y=2$:
$x^{2}+1=2 \Longrightarrow x^{2}=1 \Longrightarrow x= \pm 1$

Area $=\int_{-1}^{1}\left[2-\left(x^{2}+1\right)\right] d x=\int_{-1}^{1}\left(2-x^{2}-1\right) d x=\int_{-1}^{1}\left(1-x^{2}\right) d x$
$=\left[x-\frac{x^{3}}{3}\right]_{-1}^{1}=\left(1-\frac{1}{3}\right)-\left(-1-\frac{-1}{3}\right)=1-\frac{1}{3}+1-\frac{1}{3}$
$=2-\frac{2}{3}=\frac{6-2}{3}=\frac{4}{3}$
Q. 3 Find the volume of the solid of revolution generated by rotation about the x-axis of the region \mathbf{R} limited by the following curves :
$y=0, x=-1, x=1$ and $y=2 x^{2}$

Solution :

$y=0$ is the x-axis
$x=-1$ is a straight line parallel to the y-axis and passes through $(-1,0)$
$x=1$ is a straight line parallel to the y-axis and passes through $(1,0)$ $y=2 x^{2}$ is a parabola opens upwards with vertex $(0,0)$

Using Disk method :
Volume $=\pi \int_{-1}^{1}\left(2 x^{2}\right)^{2} d x=\pi \int_{-1}^{1} 4 x^{4} d x=4 \pi \int_{-1}^{1} x^{4} d x$
$=4 \pi\left[\frac{x^{5}}{5}\right]_{-1}^{1}=4 \pi\left[\frac{1}{5}-\left(\frac{-1}{5}\right)\right]=4 \pi\left(\frac{2}{5}\right)=\frac{8 \pi}{5}$

Dr. Tariq A. AlFadhel
Solution of the Final Exam First semester 1437-1438 H
Q. 1 (a) Compute (if possible) $\mathbf{A B}$ and $\mathbf{B A}$ for $\mathbf{A}=\left(\begin{array}{lll}0 & 3 & 1 \\ 2 & 3 & 2 \\ 2 & 3 & 1\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{ll}1 & 3 \\ 0 & 1 \\ 2 & 4\end{array}\right)$
(b) Compute the determinant $\left|\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 1 \\ 2 & 1 & 1\end{array}\right|$.
(c) Solve by Gauss Method : $\left\{\begin{array}{ccccc}x & - & +z=2 \\ x & -2 y+z & =0 \\ 2 x & -y+z & =3\end{array}\right.$

Solution :

(a) $\mathbf{A B}=\left(\begin{array}{lll}0 & 3 & 1 \\ 2 & 3 & 2 \\ 2 & 3 & 1\end{array}\right)\left(\begin{array}{ll}1 & 3 \\ 0 & 1 \\ 2 & 4\end{array}\right)$
$=\left(\begin{array}{ll}0+0+2 & 0+3+4 \\ 2+0+4 & 6+3+8 \\ 2+0+2 & 6+3+4\end{array}\right)=\left(\begin{array}{cc}2 & 7 \\ 6 & 17 \\ 4 & 13\end{array}\right)$
$\mathbf{B A}$ is impossible, because the number of columns of \mathbf{B} does not equal the number of rows of \mathbf{A}
(b) Solution (1): Using Sarrus Method

1	2	3	1	2
1	3	1	1	3
2	1	1	2	1

$$
\left|\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 1 \\
2 & 1 & 1
\end{array}\right|=(3+4+3)-(18+1+2)=10-21=-11
$$

Solution (2) : Using the definition (using the first row) :

$$
\begin{aligned}
& \left|\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 1 \\
2 & 1 & 1
\end{array}\right|=1 \times\left|\begin{array}{ll}
3 & 1 \\
1 & 1
\end{array}\right|-2 \times\left|\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right|+3 \times\left|\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right| \\
& =(3-1)-2(1-2)+3(1-6)=2+2-15=-11
\end{aligned}
$$

(c) Using Gauss Method :

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & -1 & 1 & 2 \\
1 & -2 & 1 & 0 \\
2 & -1 & 1 & 3
\end{array}\right) \xrightarrow{-R_{1}+R_{2}}\left(\begin{array}{ccc|c}
1 & -1 & 1 & 2 \\
0 & -1 & 0 & -2 \\
2 & -1 & 1 & 3
\end{array}\right) \\
& \xrightarrow{-2 R_{1}+R_{3}}\left(\begin{array}{ccc|c}
1 & -1 & 1 & 2 \\
0 & -1 & 0 & -2 \\
0 & 1 & -1 & -1
\end{array}\right) \xrightarrow{R_{2}+R_{3}}\left(\begin{array}{ccc|c}
1 & -1 & 1 & 2 \\
0 & -1 & 0 & -2 \\
0 & 0 & -1 & -3
\end{array}\right) \\
& -z=-3 \Longrightarrow z=3 \\
& -y=-2 \Longrightarrow y=2 \\
& x-y+z=2 \Longrightarrow x-2+3=2 \Longrightarrow x=1 \\
& \text { The solution is }\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
\end{aligned}
$$

Q. 2 (a) Find the standard equation of the hyperbola with foci $F_{1}(2,0)$, $F_{2}(-2,0)$ and a vertex $V_{1}(1,0)$ then sketch it.
(b) Find the elements of the conic section $x^{2}+4 y^{2}-8 y+4 x+4=0$ and sketch it.

Solution :

(a) The two foci and the vertex are located on the x-axis.

The standard equation of the hyperbola is $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$
$P(h, k)=\left(\frac{-2+2}{2}, \frac{0+0}{2}\right)=(0,0)$, hence $h=0$ and $k=0$
a is the distance between V_{1} and P, hence $a=1$
c is the distance between F_{1} and P, hence $c=2$
$c^{2}=a^{2}+b^{2} \Longrightarrow 4=1+b^{2} \Longrightarrow b^{2}=3 \Longrightarrow b=\sqrt{3}$
The standard equation of the hyperbola is $\frac{x^{2}}{1}-\frac{y^{2}}{3}=1$
The other vertex is $V_{2}=(0-1,0)=(-1,0)$
The equations of the asymptotes are :
$L_{1}: y=\sqrt{3} x$ and $L_{2}: y=-\sqrt{3} x$

(b) $x^{2}+4 y^{2}-8 y+4 x+4=0$
$x^{2}-4 x+4 y^{2}-8 y=-4$
$x^{2}-4 x+4\left(y^{2}-2 y\right)=-4$
By completing the square
$\left(x^{2}-4 x+4\right)+4\left(y^{2}-2 y+1\right)=-4+4+4$
$(x-2)^{2}+4(y-1)^{2}=4$
$\frac{(x-2)^{2}}{4}+\frac{(y-1)^{2}}{1}=1$
The conic section is an ellipse.
The center is $P(2,1)$.
$a^{2}=4 \Longrightarrow a=2$.
$b^{2}=1 \Longrightarrow b=1$.
$c^{2}=a^{2}-b^{2}=4-1=3 \Longrightarrow c=\sqrt{3}$.
The vertices are $V_{1}(0,1)$ and $V_{2}(4,1)$
The foci are $F_{1}(2-\sqrt{3}, 1)$ and $F_{2}(2+\sqrt{3}, 1)$.
The end-points of the minor axis are $W_{1}(2,2)$ and $W_{2}(2,0)$.

Q. 3 (a) Compute the integrals :
(i) $\int 6 x\left(3 x^{2}+9\right)^{15} d x$
(ii) $\int x^{10} \ln x d x$
(iii) $\int \frac{1}{(x-1)(x-2)} d x$
(b) Find the area of the region bounded by the graphs:
$y=5$ and $y=x^{2}+1$.
(c) The region R between the curves $y=x^{2}$ and $y=x$ is rotated about the y-axis to form a solid of revolution S. Find the volume of S.
(d) Using polar coordinates find the area of the region lying in the first quadrant bounded by the circles with polar equations $r=1$ and $r=2$.

Solution :

(a) (i) $\int 6 x\left(3 x^{2}+9\right)^{15} d x=\frac{\left(3 x^{2}+9\right)^{16}}{16}+c$

Using the formula $\int[f(x)]^{n} f^{\prime}(x) d x=\frac{[f(x)]^{n+1}}{n+1}+c$ where $n \neq-1$.
(ii) $\int x^{10} \ln x d x$

Using integration by parts

$$
\begin{aligned}
& u=\ln x \quad d v=x^{10} d x \\
& d u=\frac{1}{x} d x \quad v=\frac{x^{11}}{11} \\
& \int x^{10} \ln x d x=\frac{x^{11}}{11} \ln x-\int \frac{x^{11}}{11} \frac{1}{x} x d x \\
& =\frac{x^{11}}{11} \ln x-\frac{1}{11} \int x^{10} d x=\frac{x^{11}}{11} \ln x-\frac{1}{11} \frac{x^{11}}{11}+c \\
& \text { (iii) } \int \frac{1}{(x-1)(x-2)} d x
\end{aligned}
$$

Using the method of partial fractions
$\frac{1}{(x-1)(x-2)}=\frac{A_{1}}{x-1}+\frac{A_{2}}{x-2}$
$1=A_{1}(x-2)+A_{2}(x-1)$
Put $x=1$ then $1=A_{1}(1-2) \Longrightarrow A_{1}=-1$
Put $x=2$ then $1=A_{2}(2-1) \Longrightarrow A_{2}=1$
$\int \frac{1}{(x-1)(x-2)} d x=\int\left(\frac{-1}{x-1}+\frac{1}{x-2}\right) d x$
$=-\int \frac{1}{x-1} d x+\int \frac{1}{x-2} d x=-\ln |x-1|+\ln |x-2|+c$
(b) $y=5$ is a straight line parallel to the x-axis and passes through $(0,5)$. $y=x^{2}+1 \Longrightarrow y-1=x^{2}$ is a parabola with vertex $(1,0)$ and opens upwards.

Points of intersection of $y=5$ and $y=x^{2}+1$:

$$
\begin{aligned}
& x^{2}+1=5 \Longrightarrow x^{2}-4=0 \Longrightarrow(x-2)(x+2)=0 \Longrightarrow x=-2, x=2 \\
& \text { Area }=\int_{-2}^{2}\left[5-\left(x^{2}+1\right)\right] d x=\int_{-2}^{2}\left(4-x^{2}\right) d x=\left[4 x-\frac{x^{3}}{3}\right]_{-2}^{2} \\
& =\left(4 \times 2-\frac{2^{3}}{3}\right)-\left(4 \times-2-\frac{(-2)^{3}}{3}\right)=\left(8-\frac{8}{3}\right)-\left(-8+\frac{8}{3}\right) \\
& =8-\frac{8}{3}+8-\frac{8}{3}=16-\frac{16}{3}=\frac{48-16}{3}=\frac{32}{3}
\end{aligned}
$$

(c) $y=x$ is a straight line passing through $(0,0)$ with slope equals 1.
$y=x^{2}$ is a parabola opens upwards with vertex $(0,0)$.
Points of intersection of $y=x^{2}$ and $y=x$:

$$
x^{2}=x \Longrightarrow x^{2}-x=0 \Longrightarrow x(x-1)=0 \Longrightarrow x=0, x=1
$$

Using Cylindrical shells Method :
Volume $=2 \pi \int_{0}^{1} x\left(x-x^{2}\right) d x=2 \pi \int_{0}^{1}\left(x^{2}-x^{3}\right) d x=2 \pi\left[\frac{x^{3}}{3}-\frac{x^{4}}{4}\right]_{0}^{1}$
$=2 \pi\left[\left(\frac{1}{3}-\frac{1}{4}\right)-(0-0)\right]=2 \pi\left(\frac{4-3}{12}\right)=\frac{\pi}{6}$
(d) $r=1$ is a circle with center $(0,0)$ and radius equals 1 .
$r=2$ is a circle with center $(0,0)$ and radius equals 2.

Area $=\frac{1}{2} \int_{0}^{\frac{\pi}{2}}\left[(2)^{2}-(1)^{2}\right] d \theta=\frac{1}{2} \int_{0}^{\frac{\pi}{2}}(4-1) d \theta=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} 3 d \theta$
$=\frac{3}{2} \int_{0}^{\frac{\pi}{2}} d \theta=\frac{3}{2}[\theta]_{0}^{\frac{\pi}{2}}=\frac{3}{2}\left(\frac{\pi}{2}-0\right)=\frac{3 \pi}{4}$
Q. 4 (a) Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ for the implicit function z defined by the equation $x^{3} z^{2} \sin (y)+(x+y) e^{z}=0$.
(b) Solve the differential equation $\frac{d y}{d x}-2 x y^{2}=0$.

Solution :
(a) Put $F(x, y, z)=x^{3} z^{2} \sin (y)+(x+y) e^{z}$
$F_{x}=\left(3 x^{2}\right) z^{2} \sin (y)+(1+0) e^{z}=3 x^{2} z^{2} \sin (y)+e^{z}$
$F_{y}=x^{3} z^{2} \cos (y)+(0+1) e^{z}=x^{3} z^{2} \cos (y)+e^{z}$
$F_{z}=x^{3}(2 z) \sin (y)+(x+y) e^{z}=2 x^{3} z \sin (y)+(x+y) e^{z}$
$\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}=-\frac{3 x^{2} z^{2} \sin (y)+e^{z}}{2 x^{3} z \sin (y)+(x+y) e^{z}}$
$\frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}=-\frac{x^{3} z^{2} \cos (y)+e^{z}}{2 x^{3} z \sin (y)+(x+y) e^{z}}$
(b) $\frac{d y}{d x}-2 x y^{2}=0$
$\frac{d y}{d x}=2 x y^{2}$
$\frac{1}{y^{2}} d y=2 x d x$
It is a separable differential equation.
$\int \frac{1}{y^{2}} d y=\int 2 x d x$
$\int y^{-2} d y=\int 2 x d x$
$\frac{y^{-1}}{-1}=x^{2}+c$
$\frac{-1}{y}=x^{2}+c$
$\frac{1}{y}=-x^{2}-c$
$y=\frac{1}{-x^{2}-c}$

M 104-GENERAL MATHEMATICS -2-
 Dr. Tariq A. AlFadhel

Solution of the First Mid-Term Exam

 Second semester 1437-1438 HQ. 1 Let $\mathbf{A}=\left(\begin{array}{lll}2 & 2 & 1 \\ 0 & 3 & 2 \\ 2 & 0 & 1\end{array}\right), \mathbf{B}=\left(\begin{array}{ll}1 & 1 \\ 2 & 0 \\ 1 & 1\end{array}\right)$ and $\mathbf{C}=\left(\begin{array}{cc}2 & 1 \\ 3 & -3 \\ 1 & 7\end{array}\right)$.

Compute (if possible) : AB and $\mathbf{B C}$

Solution :

$\mathbf{A B}=\left(\begin{array}{lll}2 & 2 & 1 \\ 0 & 3 & 2 \\ 2 & 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 2 & 0 \\ 1 & 1\end{array}\right)$
$=\left(\begin{array}{ll}2+4+1 & 2+0+1 \\ 0+6+2 & 0+0+2 \\ 2+0+1 & 2+0+1\end{array}\right)=\left(\begin{array}{ll}7 & 3 \\ 8 & 2 \\ 3 & 3\end{array}\right)$
$\mathbf{B C}$ is impossible, because the number of columns of \mathbf{B} does not equal the number of rows of \mathbf{C}
Q. 2 Compute The determinant $\left|\begin{array}{lll}1 & 2 & 1 \\ 2 & 1 & 1 \\ 2 & 0 & 1\end{array}\right|$

Solution (1) : Using Sarrus Method

1	2	1	1	2
2	1	1	2	1
2	0	1	2	0

$\left|\begin{array}{lll}1 & 2 & 1 \\ 2 & 1 & 1 \\ 2 & 0 & 1\end{array}\right|=(1+4+0)-(2+0+4)=5-6=-1$
Solution (2) : By the definition (using third row)

$$
\begin{aligned}
& \left|\begin{array}{lll}
1 & 2 & 1 \\
2 & 1 & 1 \\
2 & 0 & 1
\end{array}\right|=2 \times\left|\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right|-0 \times\left|\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right|+1 \times\left|\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right| \\
& =2(2-1)-0+1(1-4)=2(1)+1(-3)=2-3=-1
\end{aligned}
$$

Q. 3 Solve by Gauss method the linear system :

$$
\left\{\begin{array}{c}
x-2 y+z=0 \\
2 x-3 y-z=3 \\
-x+y+z=-2
\end{array}\right.
$$

Solution : The augmented matrix is
$\left(\begin{array}{ccc|c}1 & -2 & 1 & 0 \\ 2 & -3 & -1 & 3 \\ -1 & 1 & 1 & -2\end{array}\right) \xrightarrow{-2 R_{1}+R_{2}}\left(\begin{array}{ccc|c}1 & -2 & 1 & 0 \\ 0 & 1 & -3 & 3 \\ -1 & 1 & 1 & -2\end{array}\right)$
$\xrightarrow{R_{1}+R_{3}}\left(\begin{array}{ccc|c}1 & -2 & 1 & 0 \\ 0 & 1 & -3 & 3 \\ 0 & -1 & 2 & -2\end{array}\right) \xrightarrow{R_{2}+R_{3}}\left(\begin{array}{ccc|c}1 & -2 & 1 & 0 \\ 0 & 1 & -3 & 3 \\ 0 & 0 & -1 & 1\end{array}\right)$
$-z=1 \Longrightarrow z=-1$
$y-3 z=3 \Longrightarrow y+3=3 \Longrightarrow y=0$
$x-2 y+z=0 \Longrightarrow x-2(0)+(-1)=0 \Longrightarrow x=1$
The solution is $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$
Q. 4 Find the elements of the conic section $5 y^{2}-4 x^{2}+10 y+8 x-19=0$ and sketch it.

Solution :

$5 y^{2}-4 x^{2}+10 y+8 x-19=0$
$5 y^{2}+10 y-4 x+8 x=19$
$5\left(y^{2}+2 y\right)-4\left(x^{2}-2 x\right)=19$
By completing the square
$5\left(y^{2}+2 y+1\right)-4\left(x^{2}-2 x+1\right)=19+5-4$
$5(y+1)^{2}-4(x-1)^{2}=20$
$\frac{5(y+1)^{2}}{20}+\frac{4(x-1)^{2}}{20}=1$
$\frac{(y+1)^{2}}{4}+\frac{(x-1)^{2}}{5}=1$
The conic section is a Hyperbola.
The center is $P(1,-1)$.
$a^{2}=5 \Longrightarrow a=\sqrt{5}$
$b^{2}=4 \Longrightarrow b=2$
$c^{2}=a^{2}+b^{2}=5+4=9 \Longrightarrow c=3$
The vertices are $V_{1}(1,1)$ and $V_{2}(1,-3)$
The foci are $F_{1}(1,2)$ and $F_{2}(1,-4)$
The equations of the asymptotes are $L_{1}:(y+1)=\frac{2}{\sqrt{5}}(x-1)$ and $L_{2}:(y+1)=-\frac{2}{\sqrt{5}}(x-1)$

Q. 5 Find the standard equation of the ellipse with foci $F_{1}(5,1), F_{2}(-5,1)$ and with vertex $V_{1}(6,1)$, and sketch it.

Solution :

The general formula of the ellipse is $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-b)^{2}}{b^{2}}=1$
From the positions of F_{1} and F_{2} the major axis is parallel to the x-axis, hence $a>b$.
$P(h, k)=\left(\frac{5+(-5)}{2}, \frac{1+1}{2}\right)=(0,1)$
c is the distance between P and one of the foci, hence $c=5$
a is the distance between P and the vertex $V_{1}(6,1)$, hence $a=6$
$c^{2}=a^{2}-b^{2} \Longrightarrow 25=36-b^{2} \Longrightarrow b^{2}=36-25=11 \Longrightarrow b=\sqrt{11}$

The standard equation of the ellipse is $\frac{x^{2}}{36}+\frac{(y-1)^{2}}{11}=1$
The other vertex is $V_{2}(-6,1)$
The end-points of the minor axis are $W_{1}(0,1+\sqrt{11})$ and $W_{2}(0,1-\sqrt{11})$

Dr. Tariq A. AlFadhel
Solution of the Final Exam Second semester 1437-1438 H
Q. 1 (a) Compute (if possible) $\mathbf{A B}$ for $\mathbf{A}=\left(\begin{array}{lll}1 & 4 & 2 \\ 3 & 0 & 3 \\ 0 & 2 & 0\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{lll}1 & 0 & 1 \\ 3 & 1 & 6 \\ 0 & 1 & 1\end{array}\right)$
(b) Compute the determinant $\left|\begin{array}{lll}4 & 1 & 2 \\ 2 & 3 & 3 \\ 4 & 0 & 1\end{array}\right|$.
(c) Solve by Cramer's rule : $\left\{\begin{array}{ccccc}x & - & y & =1 \\ 3 x & - & 5 y & = & -1\end{array}\right.$

Solution :
(a) $\mathbf{A B}=\left(\begin{array}{lll}1 & 4 & 2 \\ 3 & 0 & 3 \\ 0 & 2 & 0\end{array}\right)\left(\begin{array}{lll}1 & 0 & 1 \\ 3 & 1 & 6 \\ 0 & 1 & 1\end{array}\right)$

$$
=\left(\begin{array}{ccc}
1+12+0 & 0+4+2 & 1+24+2 \\
3+0+0 & 0+0+3 & 3+0+3 \\
0+6+0 & 0+2+0 & 0+12+0
\end{array}\right)=\left(\begin{array}{ccc}
13 & 6 & 27 \\
3 & 3 & 6 \\
6 & 2 & 12
\end{array}\right)
$$

(b) Solution (1): Using Sarrus Method

4	1	2	4	1
2	3	3	2	3
4	0	1	4	0

$\left|\begin{array}{lll}4 & 1 & 2 \\ 2 & 3 & 3 \\ 4 & 0 & 1\end{array}\right|=(12+12+0)-(24+0+2)=24-26=-2$

Solution (2) : Using the definition (using the third row) :

$$
\begin{aligned}
& \left|\begin{array}{lll}
4 & 1 & 2 \\
2 & 3 & 3 \\
4 & 0 & 1
\end{array}\right|=4 \times\left|\begin{array}{ll}
1 & 2 \\
3 & 3
\end{array}\right|-0 \times\left|\begin{array}{ll}
4 & 2 \\
2 & 3
\end{array}\right|+1 \times\left|\begin{array}{ll}
4 & 1 \\
2 & 3
\end{array}\right| \\
& =4(3-6)-0+(12-2)=-12+10=-2
\end{aligned}
$$

(c) Using Cramer's rule :

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & -1 \\
3 & -5
\end{array}\right), \quad \mathbf{A}_{x}=\left(\begin{array}{cc}
1 & -1 \\
-1 & -5
\end{array}\right), \mathbf{A}_{y}=\left(\begin{array}{cc}
1 & 1 \\
3 & -1
\end{array}\right)
$$

$|\mathbf{A}|=\left|\begin{array}{ll}1 & -1 \\ 3 & -5\end{array}\right|=(1 \times-5)-(-1 \times 3)=-5-(-3)=-5+3=-2 \neq 0$
$\left|\mathbf{A}_{x}\right|=\left|\begin{array}{cc}1 & -1 \\ -1 & -5\end{array}\right|=(1 \times-5)-(-1 \times-1)=-5-1=-6$
$\left|\mathbf{A}_{y}\right|=\left|\begin{array}{cc}1 & 1 \\ 3 & -1\end{array}\right|=(1 \times-1)-(1 \times 3)=-1-3=-4$
$x=\frac{\left|\mathbf{A}_{x}\right|}{|\mathbf{A}|}=\frac{-6}{-2}=3$
$y=\frac{\left|\mathbf{A}_{y}\right|}{|\mathbf{A}|}=\frac{-4}{-2}=2$
The solution of the linear system is $\binom{x}{y}=\binom{3}{2}$
Q. 2 (a) Find the standard equation of the hyperbola with foci $(-2,3),(4,3)$ and a vertex $(3,3)$ then sketch it.
(b) Find the elements of the conic section $y^{2}-2 y+4 x^{2}+8 x+1=0$ and sketch it.

Solution :

(a) The two foci and the vertex are located on a line parallel to the x-axis.

The standard equation of the hyperbola is $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$
$P=(h, k)=\left(\frac{-2+4}{2}, \frac{3+3}{2}\right)=(1,3)$, hence $h=1$ and $k=3$
a is the distance between $V_{1}=(3,3)$ and P, hence $a=2$
c is the distance between $F_{1}=(4,3)$ and P, hence $c=3$
$c^{2}=a^{2}+b^{2} \Longrightarrow 9=4+b^{2} \Longrightarrow b^{2}=9-4=5 \Longrightarrow b=\sqrt{5}$
The standard equation of the hyperbola is $\frac{(x-1)^{2}}{4}-\frac{(y-3)^{2}}{5}=1$
The other vertex is $V_{2}=(1-2,3)=(-1,3)$
The equations of the asymptotes are :
$L_{1}: y-3=\frac{\sqrt{5}}{2}(x-1)$ and $L_{2}: y-3=-\frac{\sqrt{5}}{2}(x-1)$

(b) $y^{2}-2 y+4 x^{2}+8 x+1=0$
$4 x^{2}+8 x+y^{2}-2 y=-1$
$4\left(x^{2}+2 x\right)+\left(y^{2}-2 y\right)=-1$
By completing the square
$4\left(x^{2}+2 x+1\right)+\left(y^{2}-2 y+1\right)=-1+4+1$
$4(x+1)^{2}+(y-1)^{2}=4$
$\frac{4(x+1)^{2}}{4}+\frac{(y-1)^{2}}{4}=1$
$(x+1)^{2}+\frac{(y-1)^{2}}{4}=1$
The conic section is an ellipse.
The center is $P=(-1,1)$.
$a^{2}=1 \Longrightarrow a=1$.
$b^{2}=4 \Longrightarrow b=2$.
$c^{2}=b^{2}-a^{2}=4-1=3 \Longrightarrow c=\sqrt{3}$.
The vertices are $V_{1}=(-1,3)$ and $V_{2}=(-1,-1)$
The foci are $F_{1}=(-1,1+\sqrt{3})$ and $F_{2}=(-1,1-\sqrt{3})$.
The end-points of the minor axis are $W_{1}=(-2,1)$ and $W_{2}=(0,1)$.

Q. 3 (a) Compute the integrals :
(i) $\int \frac{x}{(x-1)(x-2)} d x$
(ii) $\int \ln x d x$
(iii) $\int(2 x+1) \cos \left(x^{2}+x\right) d x$
(b) Find the area of the region determined by the curves :
$y=\sqrt{x}$ and $y=x$.
(c) The region R between the curves $y=0, x=2$ and $y=x^{2}$ is rotated about the y-axis to form a solid of revolution S. Find the volume of S.

Solution :

(a) (i) $\int \frac{x}{(x-1)(x-2)} d x$

Using the method of partial fractions
$\frac{x}{(x-1)(x-2)}=\frac{A_{1}}{x-1}+\frac{A_{2}}{x-2}$
$x=A_{1}(x-2)+A_{2}(x-1)$
Put $x=1$ then $1=A_{1}(1-2) \Longrightarrow A_{1}=-1$
Put $x=2$ then $2=A_{2}(2-1) \Longrightarrow A_{2}=2$
$\int \frac{x}{(x-1)(x-2)} d x=\int\left(\frac{-1}{x-1}+\frac{2}{x-2}\right) d x$
$=-\int \frac{1}{x-1} d x+2 \int \frac{1}{x-2} d x=-\ln |x-1|+2 \ln |x-2|+c$
(ii) $\int \ln x d x$

Using integration by parts

$$
\begin{array}{ll}
u=\ln x & d v=1 d x \\
d u=\frac{1}{x} d x & v=x
\end{array}
$$

$$
\int \ln x d x=x \ln x-\int x \frac{1}{x} d x
$$

$$
=x \ln x-\int 1 d x=x(\ln x)-x+c
$$

(iii) $\int(2 x+1) \cos \left(x^{2}+x\right) d x$
$\int(2 x+1) \cos \left(x^{2}+x\right) d x=\sin \left(x^{2}+x\right)+c$
Using the formula $\int \cos (f(x)) f^{\prime}(x) d x=\sin (f(x))+c$
(b) $y=x$ is a straight line passing through the origin with slope equals 1 .
$y=\sqrt{x}$ is the upper half of the parabola $x=y^{2}$ with vertex $(0,0)$ and opens to the right.

Points of intersection of $y=x$ and $y=\sqrt{x}$:

$$
\begin{aligned}
& x=\sqrt{x} \Longrightarrow x^{2}=x \Longrightarrow x^{2}-x=0 \Longrightarrow x(x-1)=0 \Longrightarrow x=0, x=1 \\
& \text { Area }=\int_{0}^{1}(\sqrt{x}-x) d x=\int_{0}^{1}\left(x^{\frac{1}{2}}-x\right) d x=\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}-\frac{x^{2}}{2}\right]_{0}^{1} \\
& =\left[\frac{2}{3} x^{\frac{3}{2}}-\frac{x^{2}}{2}\right]_{0}^{1}=\left(\frac{2}{3}-\frac{1}{2}\right)-(0-0)=\frac{1}{6}
\end{aligned}
$$

(c) $y=0$ is the x-axis
$x=2$ is a straight line parallel to the y-axis and passing through $(2,0)$. $y=x^{2}$ is a parabola opens upwards with vertex $(0,0)$.

Using Cylindrical shells Method :
Volume $=2 \pi \int_{0}^{2} x\left(x^{2}\right) d x=2 \pi \int_{0}^{2} x^{3} d x=2 \pi\left[\frac{x^{4}}{4}\right]_{0}^{2}$
$=2 \pi\left(\frac{2^{4}}{4}-\frac{0^{4}}{4}\right)=2 \pi(4)=8 \pi$
Q. 4 Find f_{x}, f_{y} and f_{z} for the function $f(x, y, z)=x^{2} y z+x z^{4} \sin \left(2 x+y^{2}\right)$.

Solution :

$$
\begin{aligned}
& f_{x}=(2 x) y z+z^{4}\left[(1) \sin \left(2 x+y^{2}\right)+x \cos \left(2 x+y^{2}\right)(2+0)\right] \\
& =2 x y z+z^{4}\left[\sin \left(2 x+y^{2}\right)+2 x \cos \left(2 x+y^{2}\right)\right]
\end{aligned}
$$

$f_{y}=x^{2} z(1)+x z^{4} \cos \left(2 x+y^{2}\right)(0+2 y)$
$=x^{2} z+2 x y z^{4} \cos \left(2 x+y^{2}\right)$
$f_{z}=x^{2} y(1)+\left(4 z^{3}\right) x \sin \left(2 x+y^{2}\right)$
$=x^{2} y+4 x z^{3} \sin \left(2 x+y^{2}\right)$

[^0]: ${ }^{1}$ E-mail : alfadhel@ksu.edu.sa

