M 104-GENERAL MATHEMATICS -2-

Dr. Tariq A. AlFadhel ${ }^{1}$
Solution of the First Mid-Term Exam
First semester 1436-1437 H
Q. 1 Let $\mathbf{A}=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 4 & 2 \\ 2 & 0 & 1\end{array}\right), \mathbf{B}=\left(\begin{array}{ll}1 & 1 \\ 3 & 2 \\ 0 & 1\end{array}\right)$ and $\mathbf{C}=\left(\begin{array}{ll}0 & 1 \\ 3 & 2 \\ 1 & 3\end{array}\right)$.

Compute (if possible) : AB and BC

Solution :

$\mathbf{A B}=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 4 & 2 \\ 2 & 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 3 & 2 \\ 0 & 1\end{array}\right)$
$=\left(\begin{array}{cc}1+6+0 & 1+4+3 \\ 3+12+0 & 3+8+2 \\ 2+0+0 & 2+0+1\end{array}\right)=\left(\begin{array}{cc}7 & 8 \\ 15 & 13 \\ 2 & 3\end{array}\right)$
$\mathbf{B C}$ is impossible, because the number of columns of \mathbf{B} does not equal the number of rows of \mathbf{C}.
Q. 2 Compute The determinant $\left|\begin{array}{lll}2 & 1 & 3 \\ 1 & 2 & 1 \\ 0 & 1 & 2\end{array}\right|$

Solution (1) : Using Sarrus Method

2	1	3	2	1
1	2	1	1	2
0	1	2	0	1

$\left|\begin{array}{lll}2 & 1 & 3 \\ 1 & 2 & 1 \\ 0 & 1 & 2\end{array}\right|=(8+0+3)-(0+2+2)=11-4=7$
Solution (2) : By the definition (using third row)

$$
\begin{aligned}
& \left|\begin{array}{lll}
2 & 1 & 3 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right|=0 \times\left|\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right|-1 \times\left|\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right|+2 \times\left|\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right| \\
& =0-(2-3)+2(4-1)=1+6=7
\end{aligned}
$$

[^0]Q. 3 Solve by Gauss elimination : $\left\{\begin{array}{lll}x & -2 y+z & =-1 \\ x+y-2 z & + & -1 \\ 4 x+y+z & +\end{array}\right.$

Solution : The augmented matrix is
$\left(\begin{array}{ccc|c}1 & -2 & 1 & -1 \\ 1 & 1 & -2 & -1 \\ 4 & 1 & 1 & 2\end{array}\right) \xrightarrow{-R_{1}+R_{2}}\left(\begin{array}{ccc|c}1 & -2 & 1 & -1 \\ 0 & 3 & -3 & 0 \\ 4 & 1 & 1 & 2\end{array}\right)$
$\xrightarrow{-4 R_{1}+R_{3}}\left(\begin{array}{ccc|c}1 & -2 & 1 & -1 \\ 0 & 3 & -3 & 0 \\ 0 & 9 & -3 & 6\end{array}\right) \xrightarrow{-3 R_{2}+R_{3}}\left(\begin{array}{ccc|c}1 & -2 & 1 & -1 \\ 0 & 3 & -3 & 0 \\ 0 & 0 & 6 & 6\end{array}\right)$
$6 z=6 \Longrightarrow z=1$
$3 y-3 z=0 \Longrightarrow 3 y-3=0 \Longrightarrow y=1$
$x-2 y+z=-1 \Longrightarrow x-2+1=-1 \Longrightarrow x=0$
The solution is $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$
Q. 4 Find all the elements of the conic section $9 y^{2}+4 x^{2}+18 y-8 x=23$ and sketch it.

Solution :

$9 y^{2}+4 x^{2}+18 y-8 x=23$
$4 x^{2}-8 x+9 y^{2}+18 y=23$
$4\left(x^{2}-2 x\right)+9\left(y^{2}+2 y\right)=23$
By completing the square
$4\left(x^{2}-2 x+1\right)+9\left(y^{2}+2 y+1\right)=23+4+9$
$4(x-1)^{2}+9(y+1)^{2}=36$
$\frac{4(x-1)^{2}}{36}+\frac{9(y+1)^{2}}{36}=1$
$\frac{(x-1)^{2}}{9}+\frac{(y+1)^{2}}{4}=1$
The conic section is an ellipse .
The center is $P(1,-1)$.
$a^{2}=9 \Longrightarrow a=3$
$b^{2}=4 \Longrightarrow b=2$
$c^{2}=a^{2}-b^{2}=9-4=5 \Longrightarrow c=\sqrt{5}$

The vertices are $V_{1}(-2,-1)$ and $V_{2}(4,-1)$
The foci are $F_{1}(1-\sqrt{5},-1)$ and $F_{2}(1+\sqrt{5},-1)$
The end-points of the minor axis are $W_{1}(1,1)$ and $W_{2}(1,-3)$

Q. 5 Find the standard equation of the hyperbola with foci $F_{1}(8,0)$ and $F_{2}(-8,0)$ and with vertices $V_{1}(5,0)$ and $V_{2}(-5,0)$, and then sketch it.

Solution :

Note that the two foci lie on the x-axis, hence the equation of the hyperbola has the form $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$.
The center of the hyperbola is the mid-point of the two foci (or the two vertices).

The center is $P\left(\frac{-8+8}{2}, \frac{0+0}{2}\right)=(0,0)$, hence $h=0$ and $k=0$.
a is the distance between the center P and V_{1} (or V_{2}), hence $a=5$.
c is the distance between the center P and $F_{1}\left(\right.$ or $\left.F_{2}\right)$, hence $c=8$
$c^{2}=a^{2}+b^{2} \Longrightarrow 8^{2}=5^{2}+b^{2} \Longrightarrow b^{2}=64-25=39 \Longrightarrow b=\sqrt{39}$.
The equation of the hyperbola is $\frac{x^{2}}{25}-\frac{y^{2}}{39}=1$.
The equations of the asymptotes are $L_{1}: y=\frac{\sqrt{39}}{5} x$ and $L_{2}: y=-\frac{\sqrt{39}}{5} x$

M 104-GENERAL MATHEMATICS -2-

Dr. Tariq A. AlFadhel ${ }^{2}$

Solution of the Second Mid-Term Exam

 First semester 1436-1437 HQ. 1 Compute the integrals :
(a) $\int 2 x\left(x^{2}+7\right)^{14} d x$
(b) $\int \frac{d x}{x^{2}+4 x+5}$
(c) $\int \frac{x+1}{(x-3)^{2}(x-1)} d x$
(d) $\int \ln |x| d x$
(e) $\int_{0}^{1} x e^{x} d x$

Solution

(a) $\int 2 x\left(x^{2}+7\right)^{14} d x=\frac{\left(x^{2}+7\right)^{15}}{15}+c$

Using the formula $\int[f(x)]^{n} f^{\prime}(x) d x=\frac{[f(x)]^{n+1}}{n+1}+c$, where $n \neq-1$
(b) $\int \frac{d x}{x^{2}+4 x+5}=\int \frac{1}{\left(x^{2}+4 x+4\right)+1} d x=\int \frac{1}{(x+2)^{2}+(1)^{2}} d x$ $=\tan ^{-1}(x+2)+c$

Using the formula $\int \frac{f^{\prime}(x)}{a^{2}+[f(x)]^{2}} d x=\frac{1}{a} \tan ^{-1}\left(\frac{f(x)}{a}\right)+c$, where $a>0$
(c) $\int \frac{x+1}{(x-3)^{2}(x-1)} d x$

Using the method of partial fractions

$$
\begin{aligned}
& \frac{x+1}{(x-3)^{2}(x-1)}=\frac{A_{1}}{x-1}+\frac{A_{2}}{x-3}+\frac{A_{3}}{(x-3)^{2}} \\
& x+1=A_{1}(x-3)^{2}+A_{2}(x-1)(x-3)+A_{3}(x-1) \\
& x+1=A_{1}\left(x^{2}-6 x+9\right)+A_{2}\left(x^{2}-4 x+3\right)+A_{3}(x-1) \\
& x+1=A_{1} x^{2}-6 A_{1} x+9 A_{1}+A_{2} x^{2}-4 A_{2} x+3 A_{2}+A_{3} x-A_{3}
\end{aligned}
$$

[^1]By comparing the coefficients of both sides :

$$
\begin{array}{lll}
A_{1}+A_{2}=0 & \longrightarrow & (1) \\
-6 A_{1}-4 A_{2}+A_{3}=1 & \longrightarrow & (2) \\
9 A_{1}+3 A_{2}-A_{3}=1 & \longrightarrow & (3)
\end{array}
$$

Adding the three equations : $4 A_{1}=2 \Longrightarrow A_{1}=\frac{1}{2}$
From Equation (1) : $\frac{1}{2}+A_{2}=0 \Longrightarrow A_{2}=-\frac{1}{2}$
From equation (2) : $-6\left(\frac{1}{2}\right)-4\left(-\frac{1}{2}\right)+A_{3}=1$
$\Longrightarrow-3+2+A_{3}=1 \Longrightarrow A_{3}=2$
$\int \frac{x+1}{(x-3)^{2}(x-1)} d x=\int\left(\frac{\frac{1}{2}}{x-1}+\frac{-\frac{1}{2}}{x-3}+\frac{2}{(x-3)^{2}}\right) d x$
$=\frac{1}{2} \int \frac{1}{x-1} d x-\frac{1}{2} \int \frac{1}{x-3} d x+2 \int(x-3)^{-2} d x$
$=\frac{1}{2} \ln |x-1|-\frac{1}{2} \ln |x-3|+2 \frac{(x-3)^{-1}}{-1}+c$
(d) $\int \ln |x| d x$

Using integration by parts :

$$
\begin{aligned}
& u=\ln |x| \quad d v=d x \\
& d u=\frac{1}{x} d x \quad v=x \\
& \int \ln |x| d x=x \ln |x|-\int x \frac{1}{x} d x=x \ln |x|-\int 1 d x=x \ln |x|-x+c
\end{aligned}
$$

(e) $\int_{0}^{1} x e^{x} d x$

Using integration by parts :

$$
\begin{aligned}
& u=x \quad d v=e^{x} d x \\
& d u=d x \quad v=e^{x} \\
& \int_{0}^{1} x e^{x} d x=\left[x e^{x}\right]_{0}^{1}-\int_{0}^{1} e^{x} d x=\left[x e^{x}\right]_{0}^{1}-\left[e^{x}\right]_{0}^{1} \\
& =\left(1 \times e^{1}-0 \times e^{0}\right)-\left(e^{1}-e^{0}\right)=(e-0)-(e-1)=e-e+1=1
\end{aligned}
$$

Q. 2 Find the area of the region bounded by the curves :
$y=x^{2}$ and $y=4$

Solution :

$y=4$ is a straight line parallel to the x-axis and passes through $(0,4)$
$y=x^{2}$ is a parabola opens upwards with vertex $(0,0)$
Points of intersection of $y=x^{2}$ and $y=4$:
$x^{2}=4 \Longrightarrow x= \pm 2$

Area $=\int_{-2}^{2}\left(4-x^{2}\right) d x=\left[4 x-\frac{x^{3}}{3}\right]_{-2}^{2}$
$=\left(4 \times 2-\frac{2^{3}}{3}\right)-\left(4 \times-2-\frac{(-2)^{3}}{3}\right)=\left(8-\frac{8}{3}\right)-\left(-8+\frac{8}{3}\right)$
$=16-\frac{16}{3}=\frac{32}{3}$
Q. 3 Find the volume of the solid of revolution generated by rotation about the y-axis of the region \mathbf{R} limited by the following curves :
$x=0, x=1, y=1$ and $y=x^{2}+3$

Solution :

$x=0$ is the y-axis
$x=1$ is a straight line parallel to the y-axis and passes through $(1,0)$
$y=1$ is a straight line parallel to the x-axis and passes through $(0,1)$
$y=x^{2}+3$ is a parabola opens upwards with vertex $(0,3)$

Using Cylindrical shells method:

$$
\begin{aligned}
& \text { Volume }=2 \pi \int_{0}^{1} x\left[\left(x^{2}+3\right)-1\right] d x=2 \pi \int_{0}^{1} x\left(x^{2}+2\right) d x \\
& =2 \pi \int_{0}^{1}\left(x^{3}+2 x\right) d x=2 \pi\left[\frac{x^{4}}{4}+x^{2}\right]_{0}^{1} \\
& =2 \pi\left[\left(\frac{1}{4}+1\right)-(0+0)\right]=2 \pi\left(\frac{5}{4}\right)=\frac{10 \pi}{4}
\end{aligned}
$$

M 104-GENERAL MATHEMATICS -2-

Dr. Tariq A. AlFadhel ${ }^{3}$
Solution of the Final Exam First semester 1436-1437 H
Q. 1 (a) Compute (if possible) $\mathbf{A B}$ for $\mathbf{A}=\left(\begin{array}{lll}0 & 2 & 0 \\ 3 & 0 & 3 \\ 0 & 2 & 0\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$
(b) Compute the determinant $\left|\begin{array}{lll}1 & 0 & 2 \\ 0 & 3 & 0 \\ 4 & 0 & 1\end{array}\right|$.
(c) Solve by Cramer's rule : $\begin{gathered}x-2 y=0 \\ 3 x-5 y=1\end{gathered}$

Solution :

(a) $\mathbf{A B}=\left(\begin{array}{lll}0 & 2 & 0 \\ 3 & 0 & 3 \\ 0 & 2 & 0\end{array}\right)\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$

$$
=\left(\begin{array}{lll}
0+0+0 & 0+2+0 & 0+0+0 \\
3+0+3 & 0+0+0 & 3+0+3 \\
0+0+0 & 0+2+0 & 0+0+0
\end{array}\right)=\left(\begin{array}{lll}
0 & 2 & 0 \\
6 & 0 & 6 \\
0 & 2 & 0
\end{array}\right)
$$

(b) Solution (1): Using Sarrus Method

1	0	2	1	0
0	3	0	0	3
4	0	1	4	0

$\left|\begin{array}{lll}1 & 0 & 2 \\ 0 & 3 & 0 \\ 4 & 0 & 1\end{array}\right|=(3+0+0)-(24+0+0)=3-24=-21$

Solution (2): $\left|\begin{array}{lll}1 & 0 & 2 \\ 0 & 3 & 0 \\ 4 & 0 & 1\end{array}\right| \xrightarrow{-4 R_{1}+R_{3}}\left|\begin{array}{ccc}1 & 0 & 2 \\ 0 & 3 & 0 \\ 0 & 0 & -7\end{array}\right|=1 \times 3 \times-7=-21$
Solution (3) : Using the definition of the determinant

$$
\begin{aligned}
& \left|\begin{array}{lll}
1 & 0 & 2 \\
0 & 3 & 0 \\
4 & 0 & 1
\end{array}\right|=1 \times\left|\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right|-0 \times\left|\begin{array}{ll}
0 & 0 \\
4 & 1
\end{array}\right|+2 \times\left|\begin{array}{ll}
0 & 3 \\
4 & 0
\end{array}\right| \\
& =1 \times(3-0)-0+2 \times(0-12)=3-24=-21
\end{aligned}
$$

[^2](c) Using Cramer's rule :
\[

$$
\begin{aligned}
& \mathbf{A}=\left(\begin{array}{ll}
1 & -2 \\
3 & -5
\end{array}\right), \mathbf{A}_{x}=\left(\begin{array}{ll}
0 & -2 \\
1 & -5
\end{array}\right), \mathbf{A}_{y}=\left(\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right) \\
& |\mathbf{A}|=\left|\begin{array}{ll}
1 & -2 \\
3 & -5
\end{array}\right|=(1 \times-5)-(-2 \times 3)=-5-(-6)=-5+6=1 \\
& \left|\mathbf{A}_{x}\right|=\left|\begin{array}{ll}
0 & -2 \\
1 & -5
\end{array}\right|=(0 \times-5)-(-2 \times 1)=0-(-2)=2 \\
& \left|\mathbf{A}_{y}\right|=\left|\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right|=(1 \times 1)-(0 \times 3)=1-0=1 \\
& x=\frac{\left|\mathbf{A}_{x}\right|}{|\mathbf{A}|}=\frac{2}{1}=2 \\
& y=\frac{\left|\mathbf{A}_{y}\right|}{|\mathbf{A}|}=\frac{1}{1}=1 \\
& \text { The solution of the linear system is }\binom{x}{y}=\binom{2}{1}
\end{aligned}
$$
\]

Q. 2 (a) Find the standard equation of the ellipse with foci $(-2,3)$ and $(4,3)$ and the length of its major axis is 10 , and then sketch it.
(b) Find The elements of the conic section $y^{2}-4 x-2 y+13=0$

Solution :

(a) The standard equation of the ellipse is $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$

The center $P=(h, k)$ is located between the two foci.
The center is $P=(h, k)=\left(\frac{-2+4}{2}, \frac{3+3}{2}\right)=(1,3)$
The major axis (where the two foci are located) is parallel to the x-axis , hence $a>b$.

The length of the major axis equals 10 means $2 a=10 \Longrightarrow a=5$.
c is the distance between the two foci, hence $c=3$
$c^{2}=a^{2}-b^{2} \Longrightarrow 9=25-b^{2} \Longrightarrow b^{2}=25-9=16 \Longrightarrow b=4$
The standard equation of the ellipse is $\frac{(x-1)^{2}}{25}+\frac{(y-3)^{2}}{16}=1$
The vertices are $V_{1}=(-4,3)$ and $V_{2}=(6,3)$
The end-points of the minor axis are $W_{1}=(1,7)$ and $W_{2}=(1,-1)$

(b) $y^{2}-4 x-2 y+13=0$
$y^{2}-2 y=4 x-13$
By completing the square
$y^{2}-2 y+1=4 x-13+1$
$(y-1)^{2}=4 x-12$
$(y-1)^{2}=4(x-3)$
The conic section is a parabola opens to the right.
The vertex is $V=(3,1)$.
$4 a=4 \Longrightarrow a=1$.
The focus is $F=(4,1)$.
The equation of the directrix is : $x=2$
Q. 3 (a) Compute the integrals :
(i) $\int \frac{1}{(x-2)(x-1)} d x$
(ii) $\int x \sin x d x$
(iii) $\int(2 x+1)\left(x^{2}+x+1\right)^{25} d x$
(b) Find the area of the surface delimited by the curves :
$y=x^{2}$ and $y=x$.
(c) The region R between the curves $y=0, x=1$, and $y=x^{2}$ is rotated about the x-axis to form a solid of revolution S. Find the volume of S.

Solution :

(a) (i) $\int \frac{1}{(x-2)(x-1)} d x$

Using the method of partial fractions
$\frac{1}{(x-2)(x-1)}=\frac{A_{1}}{x-1}+\frac{A_{2}}{x-2}$
$1=A_{1}(x-2)+A_{2}(x-1)$
Put $x=1$ then $1=-A_{1} \Longrightarrow A_{1}=-1$
Put $x=2$ then $1=A_{2}$
$\int \frac{1}{(x-2)(x-1)} d x=\int\left(\frac{-1}{x-1}+\frac{1}{x-2}\right) d x$
$=-\int \frac{1}{x-1} d x+\int \frac{1}{x-2} d x=-\ln |x-1|+\ln |x-2|+c$
(ii) $\int x \sin x d x$

Using integration by parts

$$
\begin{array}{ll}
u=x & d v=\sin x d x \\
d u=d x & v=-\cos x
\end{array}
$$

$\int x \sin x d x=x(-\cos x)-\int-\cos x d x$
$=-x \cos x+\int \cos x d x=-x \cos x+\sin x+c$
(iii) $\int(2 x+1)\left(x^{2}+x+1\right)^{25} d x=\frac{\left(x^{2}+x+1\right)^{26}}{26}+c$

Using the formula $\int[f(x)]^{n} f^{\prime}(x) d x=\frac{[f(x)]^{n+1}}{n+1}+c$ where $n \neq-1$.
(b) $y=x$ is a straight line passes through the origin with slope equals 1. $y=x^{2}$ is a parabola with vertex $(0,0)$ and opens upwards.

Points of intersection of $y=x$ and $y=x^{2}$:
$x^{2}=x \Longrightarrow x^{2}-x=0 \Longrightarrow x(x-1)=0 \Longrightarrow x=0, x=1$
Area $=\int_{0}^{1}\left(x-x^{2}\right) d x=\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{1}$
$=\left(\frac{1^{2}}{2}-\frac{1^{3}}{3}\right)-(0-0)=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}$
(c) $y=0$ is the x-axis.
$x=1$ is a straight line parallel to the y-axis and passes through $(1,0)$.
$y=x^{2}$ is a parabola opens upwards with vertex $(0,0)$.

Using Disk Method :
Volume $=\pi \int_{0}^{1}\left(x^{2}\right)^{2} \quad d x=\pi \int_{0}^{1} x^{4} d x=\pi\left[\frac{x^{5}}{5}\right]_{0}^{1}$
$=\pi\left(\frac{1^{5}}{5}-\frac{0^{5}}{5}\right)=\pi \frac{1}{5}=\frac{\pi}{5}$
Q. 4 (a) Find f_{x} and f_{y} for the function $f(x, y)=x^{2} y^{3}+\sin (x+y)$
(b) Solve the differential equation $\frac{d y}{d x}=2 x y^{2}, y(1)=1$

Solution :

(a) $f_{x}=(2 x) y^{3}+\cos (x+y)(1+0)=2 x y^{3}+\cos (x+y)$
$f_{y}=\left(3 y^{2}\right) x^{2}+\cos (x+y)(0+1)=3 x^{2} y^{2}+\cos (x+y)$
(b) $\frac{d y}{d x}=2 x y^{2}, y(1)=1$
$\frac{1}{y^{2}} d y=2 x d x$
$y^{-2} d y=2 x d x$
It is a separable differential equation.
$\int y^{-2} d y=\int 2 x d x$
$\frac{y^{-1}}{-1}=x^{2}+c$
$\frac{-1}{y}=2 x+c$
$y=\frac{-1}{x^{2}+c}$
The general solution of the differential equation is $y=\frac{-1}{x^{2}+c}$
Using the initial condition $y(1)=1$:
$1=\frac{-1}{1^{2}+c} \Longrightarrow 1+c=-1 \Longrightarrow c=-2$
The particular solution of the differential equation is $y=\frac{-1}{x^{2}-2}$

Dr. Tariq A. AlFadhel ${ }^{4}$
Solution of the First Mid-Term Exam

Second semester 1436-1437 H

Q. 1 Let $\mathbf{A}=\left(\begin{array}{ccc}1 & 2 & 3 \\ 3 & -2 & 2 \\ 2 & 0 & 1\end{array}\right), \mathbf{B}=\left(\begin{array}{ll}1 & 1 \\ 0 & 2 \\ 0 & 1\end{array}\right)$ and $\mathbf{C}=\left(\begin{array}{ll}0 & 1 \\ 3 & 6 \\ 1 & 3\end{array}\right)$.

Compute (if possible) : AB and BC

Solution :

$$
\begin{aligned}
& \mathbf{A B}=\left(\begin{array}{ccc}
1 & 2 & 3 \\
3 & -2 & 2 \\
2 & 0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 2 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1+0+0 & 1+4+3 \\
3+0+0 & 3+(-4)+2 \\
2+0+0 & 2+0+1
\end{array}\right)=\left(\begin{array}{ll}
1 & 8 \\
3 & 1 \\
2 & 3
\end{array}\right)
\end{aligned}
$$

$\mathbf{B C}$ is impossible, because the number of columns of \mathbf{B} does not equal the number of rows of \mathbf{C}.
Q. 2 Compute The determinant $\left|\begin{array}{cccc}1 & 2 & -3 & 4 \\ 4 & 3 & 2 & 1 \\ -1 & -2 & 3 & -4 \\ 2 & 4 & 6 & 8\end{array}\right|$

Solution :

$$
\left|\begin{array}{cccc}
1 & 2 & -3 & 4 \\
4 & 3 & 2 & 1 \\
-1 & -2 & 3 & -4 \\
2 & 4 & 6 & 8
\end{array}\right|=0
$$

Because $R_{1}=-R_{3}$
Q. 3 Solve by Cramer's rule : $\left\{\begin{array}{rlll}x & -2 y & =-1 \\ 3 x & + & = & 11\end{array}\right.$

Solution :

$$
\begin{aligned}
& \mathbf{A}=\left(\begin{array}{cc}
1 & -2 \\
3 & 1
\end{array}\right), \mathbf{A}_{x}=\left(\begin{array}{cc}
-1 & -2 \\
11 & 1
\end{array}\right), \mathbf{A}_{y}=\left(\begin{array}{cc}
1 & -1 \\
3 & 11
\end{array}\right) \\
& |\mathbf{A}|=\left|\begin{array}{cc}
1 & -2 \\
3 & 1
\end{array}\right|=(1 \times 1)-(-2 \times 3)=1-(-6)=1+6=7
\end{aligned}
$$

[^3]$\left|\mathbf{A}_{x}\right|=\left|\begin{array}{cc}-1 & -2 \\ 11 & 1\end{array}\right|=(-1 \times 1)-(-2 \times 11)=-1-(-22)=-1+22=21$
$\left|\mathbf{A}_{y}\right|=\left|\begin{array}{cc}1 & -1 \\ 3 & 11\end{array}\right|=(1 \times 11)-(-1 \times 3)=11-(-3)=11+3=14$
$x=\frac{\left|\mathbf{A}_{x}\right|}{|\mathbf{A}|}=\frac{21}{7}=3$
$y=\frac{\left|\mathbf{A}_{y}\right|}{|\mathbf{A}|}=\frac{14}{7}=2$
The solution is $\binom{x}{y}=\binom{3}{2}$
Q. 4 Find all the elements of the conic section $y^{2}+4 x^{2}+2 y-8 x+1=0$ and sketch it.

Solution :

$y^{2}+4 x^{2}+2 y-8 x+1=0$
$4 x^{2}-8 x+y^{2}+2 y=-1$
$4\left(x^{2}-2 x\right)+\left(y^{2}+2 y\right)=-1$
By completing the square
$4\left(x^{2}-2 x+1\right)+\left(y^{2}+2 y+1\right)=-1+4+1$
$4(x-1)^{2}+(y+1)^{2}=4$
$\frac{4(x-1)^{2}}{4}+\frac{(y+1)^{2}}{4}=1$
$\frac{(x-1)^{2}}{1}+\frac{(y+1)^{2}}{4}=1$
The conic section is an ellipse .
The center is $P(1,-1)$.
$a^{2}=1 \Longrightarrow a=1$
$b^{2}=4 \Longrightarrow b=2$
$c^{2}=b^{2}-a^{2}=4-1=3 \Longrightarrow c=\sqrt{3}$
The vertices are $V_{1}(1,1)$ and $V_{2}(1,-3)$
The foci are $F_{1}(1,-1+\sqrt{3})$ and $F_{2}(1,-1-\sqrt{3})$
The end-points of the minor axis are $W_{1}(0,-1)$ and $W_{2}(2,-1)$

Q. 5 Find the standard equation of the parabola with focus $F(-4,0)$ and with directrix $x=0$, and then sketch it.

Solution :

Note that the directrix $x=0$ is the y-axis and the focus is $F(-4,0)$ hence the parabola opens to the left.

The parabola has the form $(y-k)^{2}=-4 a(x-h)$.
The vertex is the midpoint between $F(-4,0)$ and the directrix $x=0$, hence $V(-2,0)$
a is the distance between $F(-4,0)$ and $V(-2,0)$, hence $a=2$
The standard equation of the parabola is $(y-0)^{2}=-8(x+2)$

M 104-GENERAL MATHEMATICS -2-

Dr. Tariq A. AlFadhel ${ }^{5}$

Solution of the Second Mid-Term Exam

Second semester 1436-1437 H

Q. 1 Compute the integrals :
(a) $\int \frac{x+2}{(x-2)(x-3)} d x$
(b) $\int 2 x \cos \left(x^{2}+1\right) d x$
(c) $\int x^{4} \ln |x| d x$
(d) $\int \frac{x+1}{(x-2)^{2}} d x$
(e) $\int \frac{2 x}{x^{2}+1} d x$

Solution :

(a) $\int \frac{x+2}{(x-2)(x-3)} d x$

Using the method of partial fractions :

$$
\begin{aligned}
& \frac{x+2}{(x-2)(x-3)}=\frac{A_{1}}{(x-2)}+\frac{A_{2}}{x-3} \\
& x+2=A_{1}(x-3)+A_{2}(x-2) \\
& \text { Put } x=2: 2+2=A_{1}(2-3) \Longrightarrow 4=-A_{1} \Longrightarrow A_{1}=-4 \\
& \text { Put } x=3: 3+2=A_{2}(3-2) \Longrightarrow A_{2}=5 \\
& \int \frac{x+2}{(x-2)(x-3)} d x=\int\left(\frac{-4}{x-2}+\frac{5}{x-3}\right) d x \\
& =-4 \int \frac{1}{x-2} d x+5 \int \frac{1}{x-3} d x=-4 \ln |x-2|+5 \ln |x-3|+c
\end{aligned}
$$

(b) $\int 2 x \cos \left(x^{2}+1\right) d x$

Using the formula $\int \cos (f(x)) f^{\prime}(x) d x=\sin (f(x))+c$

$$
\int 2 x \cos \left(x^{2}+1\right) d x=\sin \left(x^{2}+1\right)+c
$$

[^4](c) $\int x^{4} \ln |x| d x$

Using integration by parts :

$$
\begin{aligned}
& u=\ln |x| \quad d v=x^{4} d x \\
& d u=\frac{1}{x} d x \quad v=\frac{x^{5}}{5} \\
& \int x^{4} \ln |x| d x=\frac{x^{5}}{5} \ln |x|-\int \frac{x^{5}}{5} \frac{1}{x} d x=\frac{x^{5}}{5} \ln |x|-\frac{1}{5} \int x^{4} d x \\
& =\frac{x^{5}}{5} \ln |x|-\frac{1}{5} \frac{x^{5}}{5}+c
\end{aligned}
$$

(d) $\int \frac{x+1}{(x-2)^{2}} d x$

Using the method of partial fractions:
$\frac{x+1}{(x-2)^{2}}=\frac{A_{1}}{x-2}+\frac{A_{2}}{(x-2)^{2}}$
$x+1=A_{1}(x-2)+A_{2}=A_{1} x-2 A_{1}+A_{2}$
By comparing the coefficients of both sides :
$A_{1}=1$
$-2 A_{1}+A_{2}=1 \Longrightarrow-2+A_{2}=1 \Longrightarrow A_{2}=3$
$\int \frac{x+1}{(x-2)^{2}} d x=\int\left(\frac{1}{x-2}+\frac{3}{(x-2)^{2}}\right) d x$
$=\int \frac{1}{x-2} d x+3 \int(x-2)^{-2} d x=\ln |x-2|+3 \frac{(x-2)^{-1}}{-1}+c$
(e) $\int \frac{2 x}{x^{2}+1} d x$

Using the formula $\int \frac{f^{\prime}(x)}{f(x)} d x=\ln |f(x)|+c$
$\int \frac{2 x}{x^{2}+1} d x=\ln \left(x^{2}+1\right)+c$
Q. 2
(a) Sketch the region \mathbf{R} determined by the curves:

$$
y=x^{2}, y=-x+6 \text { and } y=0
$$

(b) Find the area of the region \mathbf{R} described in part (a).

Solution :

(a) $y=0$ is the x-axis .
$y=-x+6$ is a straight line passes through $(0,6)$ with slope -1.
$y=x^{2}$ is a parabola opens upwards with vertex $(0,0)$

(b) First solution :

Points of intersection of $y=x^{2}$ and $y=-x+6$:
$x^{2}=-x+6 \Longrightarrow x^{2}+x-6=0 \Longrightarrow(x-2)(x+3)=0$
$\Longrightarrow x=2, x=-3$, in this case $y=4, y=9$
$y=-x+6 \Longrightarrow x=-y+6$
$y=x^{2} \Longrightarrow x=\sqrt{y}$
Area $=\int_{0}^{4}[(-y+6)-\sqrt{y}] d y=\int_{0}^{4}(-y-\sqrt{y}+6) d y$
$=\left[-\frac{y^{2}}{2}-\frac{y^{\frac{3}{2}}}{\frac{3}{2}}+6 y\right]_{0}^{4}$
$=\left(-\frac{4^{2}}{2}-\frac{2}{3}(4)^{\frac{3}{2}}+6 \times 4\right)-\left(-\frac{0^{2}}{2}-\frac{2}{3}(0)^{\frac{3}{2}}+6 \times 0\right)$
$=-8-\frac{16}{3}+24=16-\frac{16}{3}=\frac{48-16}{3}=\frac{32}{3}$

Second solution :

Points of intersection of $y=x^{2}$ and $y=-x+6$:

$$
x^{2}=-x+6 \Longrightarrow x^{2}+x-6=0 \Longrightarrow(x-2)(x+3)=0
$$

$\Longrightarrow x=2, x=-3$.
Point of intersection of $y=-x+6$ and $y=0$:
$-x+6=0 \Longrightarrow x=6$
Area $=\int_{0}^{2} x^{2} d x+\int_{2}^{6}(-x+6) d x$
$=\left[\frac{x^{3}}{3}\right]_{0}^{2}+\left[-\frac{x^{2}}{2}+6 x\right]_{2}^{6}$
$=\left[\frac{2^{3}}{3}-\frac{0^{3}}{3}\right]+\left[\left(-\frac{6^{2}}{2}+6 \times 6\right)-\left(-\frac{2^{2}}{2}+6 \times 2\right)\right]$
$=\left(\frac{8}{3}-0\right)+[(-18+36)-(-2+12)]=\frac{8}{3}+8=\frac{8+24}{3}=\frac{32}{3}$

Q. 3

(a) Sketch the region \mathbf{R} determined by the curves:
$x=x^{2}$ and $y=-x+2$
(b) Find the volume of the solid generated by rotating the region \mathbf{R} in part(a) about the x-axis.

Solution :

(a) $y=-x+2$ is a straight line passes through $(0,2)$ with slope -1 .
$y=x^{2}$ is a parabola opens upwards with vertex $(0,0)$

(b) Points of intersection of $y=x^{2}$ and $y=-x+2$:
$x^{2}=-x+2 \Longrightarrow x^{2}+x-2=0 \Longrightarrow(x-1)(x+2)=0$
$\Longrightarrow x=1, x=-2$.
Using Washer method :

$$
\begin{aligned}
& \text { Volume }=\pi \int_{-2}^{1}\left[(-x+2)^{2}-\left(x^{2}\right)^{2}\right] d x=\pi \int_{-2}^{1}\left(x^{2}-4 x+4-x^{4}\right) d x \\
& =\pi \int_{-2}^{1}\left(-x^{4}+x^{2}-4 x+4\right) d x=\left[-\frac{x^{5}}{5}+\frac{x^{3}}{3}-2 x^{2}+4 x\right]_{-2}^{1} \\
& =\pi\left[\left(-\frac{1^{5}}{5}+\frac{1^{3}}{3}-2\left(1^{2}\right)+4 \times 1\right)-\left(-\frac{(-2)^{5}}{5}+\frac{(-2)^{3}}{3}-2\left((-2)^{2}\right)+4 \times-2\right)\right] \\
& =\pi\left[\left(-\frac{1}{5}+\frac{1}{3}-2+4\right)-\left(\frac{32}{5}-\frac{8}{3}-8-8\right)\right] \\
& =\pi\left(-\frac{1}{5}+\frac{1}{3}+2-\frac{32}{5}+\frac{8}{3}+16\right) \\
& =\pi\left(21-\frac{33}{5}\right)=\pi\left(\frac{105-33}{5}\right)=\frac{72}{5} \pi
\end{aligned}
$$

M 104 - GENERAL MATHEMATICS -2-

Dr. Tariq A. AlFadhel ${ }^{6}$
Solution of the Final Exam Second semester 1436-1437 H
Q. 1 (a) Compute $\mathbf{A B}$ for $\mathbf{A}=\left(\begin{array}{lll}0 & 2 & 1 \\ 3 & 2 & 3 \\ 3 & 2 & 1\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{ll}1 & 2 \\ 0 & 2 \\ 3 & 4\end{array}\right)$
(b) Compute the determinant $\left|\begin{array}{lll}1 & 2 & 0 \\ 0 & 3 & 1 \\ 2 & 0 & 0\end{array}\right|$.

(c) Solve by Gauss-Jordan Mehod: | x | $-2 y+z$ | $=0$ | |
| :--- | :--- | :--- | :--- |
| | x | $-3 y-z$ | $=$ |

$$
2 x-y-2 z=-1
$$

Solution :

(a) $\mathbf{A B}=\left(\begin{array}{lll}0 & 2 & 1 \\ 3 & 2 & 3 \\ 3 & 2 & 1\end{array}\right)\left(\begin{array}{ll}1 & 2 \\ 0 & 2 \\ 3 & 4\end{array}\right)$
$=\left(\begin{array}{lc}0+0+3 & 0+4+4 \\ 3+0+9 & 6+4+12 \\ 3+0+3 & 6+4+4\end{array}\right)=\left(\begin{array}{cc}3 & 8 \\ 12 & 22 \\ 6 & 14\end{array}\right)$
(b) Solution (1): Using Sarrus Method

1	2	0	1	2
0	3	1	0	3
2	0	0	2	0

$\left|\begin{array}{lll}1 & 2 & 0 \\ 0 & 3 & 1 \\ 2 & 0 & 0\end{array}\right|=(0+4+0)-(0+0+0)=4-0=4$

Solution (2): $\left|\begin{array}{lll}1 & 2 & 0 \\ 0 & 3 & 1 \\ 2 & 0 & 0\end{array}\right| \quad \xrightarrow{C_{1} \longleftrightarrow C_{3}}-1 \times\left|\begin{array}{lll}0 & 2 & 1 \\ 1 & 3 & 0 \\ 0 & 0 & 2\end{array}\right|$
$\xrightarrow{R_{1} \longleftrightarrow R_{2}} \quad-1 \times-1 \times\left|\begin{array}{lll}1 & 3 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right|=-1 \times-1 \times(1 \times 2 \times 2)=4$
Solution (3) : Using the definition (using the third row) :
$\left|\begin{array}{lll}1 & 2 & 0 \\ 0 & 3 & 1 \\ 2 & 0 & 0\end{array}\right|=2 \times\left|\begin{array}{ll}2 & 0 \\ 3 & 1\end{array}\right|-0 \times\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|+0 \times\left|\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right|$

[^5]$$
=2(2-0)-0+0=4
$$
(c) Using Gauss-Jordan Mehod :

$\left(\begin{array}{ccc|c}1 & -2 & 1 & 0 \\ 1 & -3 & -1 & -3 \\ 2 & -1 & -2 & -1\end{array}\right) \xrightarrow{-R_{1}+R_{2}}\left(\begin{array}{ccc|c}1 & -2 & 1 & 0 \\ 0 & -1 & -2 & -3 \\ 2 & -1 & -2 & -1\end{array}\right)$
$\xrightarrow{-2 R_{1}+R_{3}}\left(\begin{array}{ccc|c}1 & -2 & 1 & 0 \\ 0 & -1 & -2 & -3 \\ 0 & 3 & -4 & -1\end{array}\right) \xrightarrow{3 R_{2}+R_{3}}\left(\begin{array}{ccc|c}1 & -2 & 1 & 0 \\ 0 & -1 & -2 & -3 \\ 0 & 0 & -10 & -10\end{array}\right)$
$\xrightarrow{-\frac{1}{10} R_{3}}\left(\begin{array}{ccc|c}1 & -2 & 1 & 0 \\ 0 & -1 & -2 & -3 \\ 0 & 0 & 1 & 1\end{array}\right) \xrightarrow{2 R_{3}+R_{2}}\left(\begin{array}{ccc|c}1 & -2 & 1 & 0 \\ 0 & -1 & 0 & -1 \\ 0 & 0 & 1 & 1\end{array}\right)$
$\xrightarrow{-R_{3}+R_{1}}\left(\begin{array}{ccc|c}1 & -2 & 0 & -1 \\ 0 & -1 & 0 & -1 \\ 0 & 0 & 1 & 1\end{array}\right) \xrightarrow{-1 \times R_{2}}\left(\begin{array}{ccc|c}1 & -2 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1\end{array}\right)$
$\xrightarrow{2 R_{2}+R_{1}}\left(\begin{array}{lll|l}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1\end{array}\right)$
The solution is $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
Q. 2 (a) Find the standard equation of the parabola with focus $F(2,4)$ and vertex $V(2,3)$, and then sketch it.
(b) Find The elements of the conic section $x^{2}+4 y^{2}-16 y-2 x+1=0$ and sketch it.

Solution :

(a) The focus is upper than the vertex, hence the parabola opens upwards.

The standard equation of the parabola is $(x-h)^{2}=4 a(y-k)$
The vertex is $V(2,3)$, hence $h=2$ and $k=3$
a is the distance between V and F, hence $a=1$
The standard equation of the parabola is $(x-2)^{2}=4(y-3)$
The directrix is $y=2$

(b) $x^{2}+4 y^{2}-16 y-2 x+1=0$
$x^{2}-2 x+4 y^{2}-16 y=-1$
$x^{2}-2 x+4\left(y^{2}-4 y\right)=-1$
By completing the square
$\left(x^{2}-2 x+1\right)+4\left(y^{2}-4 y+4\right)=-1+1+16$
$(x-1)^{2}+4(y-2)^{2}=16$
$\frac{(x-1)^{2}}{16}+\frac{4(y-2)^{2}}{16}=1$
$\frac{(x-1)^{2}}{16}+\frac{(y-2)^{2}}{4}=1$
The conic section is an ellipse.
The center is $P(1,2)$.
$a^{2}=16 \Longrightarrow a=4$.
$b^{2}=4 \Longrightarrow b=2$.
$c^{2}=a^{2}-b^{2}=16-4=12 \Longrightarrow c=\sqrt{12}$.
The vertices are $V_{1}(-3,2)$ and $V_{2}(5,2)$
The foci are $F_{1}(1-\sqrt{12}, 2)$ and $F_{2}(1+\sqrt{12}, 2)$.
The end-points of the minor axis are $W_{1}(1,4)$ and $W_{2}(1,0)$.

Q. 3 (a) Compute the integrals :
(i) $\int 2 x\left(x^{2}+6\right)^{5} d x$
(ii) $\int x \cos x d x$
(iii) $\int \frac{1}{(x+1)(x-2)} d x$
(b) Find the area of the region bounded by the graphs:
$y=3$ and $y=x^{2}-1$.
(c) The region R between the curves $y=x^{2}$ and $y=\sqrt{x}$ is rotated about the x-axis to form a solid of revolution S. Find the volume of S.
(d) Using polar coordinates find the area of the circle with polar equation $r=2$.

Solution :

(a) (i) $\int 2 x\left(x^{2}+6\right)^{5} d x=\frac{\left(x^{2}+6\right)^{6}}{6}+c$

Using the formula $\int[f(x)]^{n} f^{\prime}(x) d x=\frac{[f(x)]^{n+1}}{n+1}+c$ where $n \neq-1$.
(ii) $\int x \cos x d x$

Using integration by parts

$$
\begin{array}{ll}
u=x & d v=\cos x d x \\
d u=d x & v=\sin x \\
\int x \cos x d x=x \sin x-\int \sin x d x
\end{array}
$$

$=x \sin x-(-\cos x)+c=x \sin x+\cos x+c$
(iii) $\int \frac{1}{(x+1)(x-2)} d x$

Using the method of partial fractions
$\frac{1}{(x+1)(x-2)}=\frac{A_{1}}{x+1}+\frac{A_{2}}{x-2}$
$1=A_{1}(x-2)+A_{2}(x+1)$
Put $x=-1$ then $1=-3 A_{1} \Longrightarrow A_{1}=-\frac{1}{3}$
Put $x=2$ then $1=3 A_{2} \Longrightarrow A_{1}=\frac{1}{3}$
$\int \frac{1}{(x+1)(x-2)} d x=\int\left(\frac{-\frac{1}{3}}{x+1}+\frac{\frac{1}{3}}{x-2}\right) d x$
$=-\frac{1}{3} \int \frac{1}{x+1} d x+\frac{1}{3} \int \frac{1}{x-2} d x=-\frac{1}{3} \ln |x+1|+\frac{1}{3} \ln |x-2|+c$
(b) $y=3$ is a straight line parallel to the x-axis and passes through $(0,3)$. $y=x^{2}-1 \Longrightarrow y+1=x^{2}$ is a parabola with vertex $(-1,0)$ and opens upwards.

Points of intersection of $y=3$ and $y=x^{2}-1$:
$x^{2}-1=3 \Longrightarrow x^{2}-4=0 \Longrightarrow(x-2)(x+2)=0 \Longrightarrow x=-2, x=2$
Area $=\int_{-2}^{2}\left[3-\left(x^{2}-1\right)\right] d x=\int_{-2}^{2}\left(4-x^{2}\right) d x=\left[4 x-\frac{x^{3}}{3}\right]_{-2}^{2}$
$=\left(4 \times 2-\frac{2^{3}}{3}\right)-\left(4 \times-2-\frac{(-2)^{3}}{3}\right)=\left(8-\frac{8}{3}\right)-\left(-8+\frac{8}{3}\right)$

$$
=8-\frac{8}{3}+8-\frac{8}{3}=16-\frac{16}{3}=\frac{48-16}{3}=\frac{32}{3}
$$

(c) $y=\sqrt{x}$ is the upper-half of the parabola $y^{2}=x$ with vertex $(0,0)$ and opens to the right.
$y=x^{2}$ is a parabola opens upwards with vertex $(0,0)$.
Points of intersection of $y=x^{2}$ and $y=\sqrt{x}$:
$x^{2}=\sqrt{x} \Longrightarrow x^{4}=x \Longrightarrow x^{4}-x=0$
$\Longrightarrow x\left(x^{3}-1\right)=0 \Longrightarrow x=0, x^{3}=1 \Longrightarrow x=0, x=1$

Using Washer Method :
Volume $=\pi \int_{0}^{1}\left[(\sqrt{x})^{2}-\left(x^{2}\right)^{2}\right] d x=\pi \int_{0}^{1}\left(x-x^{4}\right) d x$
$=\pi\left[\frac{x^{2}}{2}-\frac{x^{5}}{5}\right]_{0}^{1}=\pi\left[\left(\frac{1}{2}-\frac{1}{5}\right)-(0-0)\right]$
$=\pi\left(\frac{5-2}{10}\right)=\frac{3}{10} \pi$
(d) $r=2$ is a circle with center $(0,0)$ and radius equals 2.

$$
\begin{aligned}
& \text { Area }=\frac{1}{2} \int_{0}^{2 \pi}(2)^{2} d \theta=\frac{1}{2} \int_{0}^{2 \pi} 4 d \theta=4 \times \frac{1}{2} \int_{0}^{2 \pi} 1 d \theta \\
& =2[\theta]_{0}^{2 \pi}=2(2 \pi-0)=4 \pi
\end{aligned}
$$

Q. 4 (a) Find f_{x} and f_{y} for the function $f(x, y)=x^{2} y^{6}+x y e^{x}+\ln (x+y)$.
(b) Solve the differential equation $x \frac{d y}{d x}+y=e^{x}$.

Solution :

(a) $f_{x}=(2 x) y^{6}+y\left[1 \times e^{x}+x e^{x}\right]+\frac{1+0}{x+y}$

$$
=2 x y^{6}+y e^{x}+x y e^{x}+\frac{1}{x+y}
$$

$$
f_{y}=x^{2}\left(6 y^{5}\right)+x e^{x} \times 1+\frac{0+1}{x+y}
$$

$$
=6 x^{2} y^{5}+x e^{x}+\frac{1}{x+y}
$$

(b) $x \frac{d y}{d x}+y=e^{x}$
$\frac{d y}{d x}+\frac{1}{x} y=\frac{1}{x} e^{x}$
It is a First-order differential equation .
$P(x)=\frac{1}{x}$ and $Q(x)=\frac{1}{x} e^{x}$
The integrating factor is:

$$
u(x)=e^{\int P(x) d x}=e^{\int \frac{1}{x} d x}=e^{\ln |x|}=x
$$

The general solution of the differential equation is :

$$
\begin{aligned}
& y=\frac{1}{u(x)} \int u(x) Q(x) d x=\frac{1}{x} \int x \frac{1}{x} e^{x} d x=\frac{1}{x} \int e^{x} d x \\
& =\frac{1}{x}\left(e^{x}+c\right)=\frac{e^{x}}{x}+\frac{c}{x}
\end{aligned}
$$

[^0]: ${ }^{1}$ E-mail : alfadhel@ksu.edu.sa

[^1]: ${ }^{2}$ E-mail : alfadhel@ksu.edu.sa

[^2]: ${ }^{3}$ E-mail : alfadhel@ksu.edu.sa

[^3]: ${ }^{4}$ E-mail : alfadhel@ksu.edu.sa

[^4]: ${ }^{5}$ E-mail : alfadhel@ksu.edu.sa

[^5]: ${ }^{6}$ E-mail : alfadhel@ksu.edu.sa

