Dr. Tariq A. AlFadhel ${ }^{1}$
Solution of the First Mid-Term Exam First semester 1435-1436 H
Q. 1 Let $\mathbf{A}=\left(\begin{array}{lll}2 & 4 & 0 \\ 1 & 3 & 1\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{ll}1 & 2 \\ 3 & 1 \\ 0 & 1\end{array}\right)$

Compute (if possible) : AB and BA

Solution :

$$
\begin{aligned}
& \mathbf{A B}=\left(\begin{array}{lll}
2 & 4 & 0 \\
1 & 3 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 1 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
2+12+0 & 4+4+0 \\
1+9+0 & 2+3+1
\end{array}\right)=\left(\begin{array}{ll}
14 & 8 \\
10 & 6
\end{array}\right) \\
& \mathbf{B A}=\left(\begin{array}{ll}
1 & 2 \\
3 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{lll}
2 & 4 & 0 \\
1 & 3 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
2+2 & 4+6 & 0+2 \\
6+1 & 12+3 & 0+1 \\
0+1 & 0+3 & 0+1
\end{array}\right)=\left(\begin{array}{ccc}
4 & 10 & 2 \\
7 & 15 & 1 \\
1 & 3 & 1
\end{array}\right)
\end{aligned}
$$

Q. 2 Compute The determinant $\left|\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 1 & 3\end{array}\right|$

Solution (1) : Using Sarrus Method

1	2	3	1	2
3	2	1	3	2
2	1	3	2	1

$\left|\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 1 & 3\end{array}\right|=(6+4+9)-(12+1+18)=19-31=-12$
Solution (2) : Using The definition

$$
\begin{aligned}
& \left|\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1 \\
2 & 1 & 3
\end{array}\right|=1 \times\left|\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right|-2 \times\left|\begin{array}{ll}
3 & 1 \\
2 & 3
\end{array}\right|+3 \times\left|\begin{array}{ll}
3 & 2 \\
2 & 1
\end{array}\right| \\
& =(6-1)-2(9-2)+3(3-4)=5-14-3=5-17=-12
\end{aligned}
$$

[^0]Q. 3 Find all the elements of the conic section $x^{2}=2 y+2 x$ and sketch it.

Solution :

$x^{2}-2 x=2 y$
$x^{2}-2 x+1=2 y+1$
$(x-1)^{2}=2\left(y+\frac{1}{2}\right)$
The conic section is a parabola opens upwards.
The vertex is $V\left(1,-\frac{1}{2}\right)$.
$4 a=2 \quad \Longrightarrow \quad a=\frac{2}{4}=\frac{1}{2}$.
The focus is $F\left(1,-\frac{1}{2}+\frac{1}{2}\right)=(1,0)$.
The equation of the directrix is $y=-\frac{1}{2}-\frac{1}{2} \Longrightarrow y=-1$

Q. 4 Find the standard equation of the ellipse with vertex $(1,2)$ and with foci $(2,2)$ and $(10,2)$, and then sketch it.

Solution :

The equation of the ellipse has the form $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$.
The center of the ellipse is the mid-point of the two foci .

The center is $P\left(\frac{2+10}{2}, \frac{2+2}{2}\right)=(6,2)$, hence $h=6$ and $k=2$.
The two foci lie on a line parallel to the x-axis, hence $a>b$
c is the distance between the center and one of the foci, hence $c=4$
a is the distance between the center $(6,2)$ and the vertex $V_{1}(1,2)$, hence $a=5$.
$c^{2}=a^{2}-b^{2} \quad \Longrightarrow 4^{2}=5^{2}-b^{2} \quad \Longrightarrow \quad b^{2}=25-16=9 \quad \Longrightarrow \quad b=3$.
The equation of the ellipse is $\frac{(x-6)^{2}}{25}+\frac{(y-2)^{2}}{9}=1$.
The other vertex is $V_{2}(11,2)$.
The end-points of the minor axis are $W_{1}(6,5)$ and $W_{2}(6,-1)$

Q. 5 Solve by Cramer's Rule the following linear system $\left\{\begin{array}{c}2 x-3 y=3 \\ x+y=4\end{array}\right.$

Solution :

$\mathbf{A}=\left(\begin{array}{cc}2 & -3 \\ 1 & 1\end{array}\right), \mathbf{A}_{x}=\left(\begin{array}{cc}3 & -3 \\ 4 & 1\end{array}\right), \mathbf{A}_{y}=\left(\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right)$
$|\mathbf{A}|=\left|\begin{array}{cc}2 & -3 \\ 1 & 1\end{array}\right|=(2 \times 1)-(-3 \times 1)=2-(-3)=5$
$\left|\mathbf{A}_{x}\right|=\left|\begin{array}{cc}3 & -3 \\ 4 & 1\end{array}\right|=(3 \times 1)-(-3 \times 4)=3-(-12)=15$
$\left|\mathbf{A}_{y}\right|=\left|\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right|=(2 \times 4)-(3 \times 1)=8-3=5$

$$
\begin{aligned}
& x=\frac{\left|\mathbf{A}_{x}\right|}{|\mathbf{A}|}=\frac{15}{5}=3 \\
& y=\frac{\left|\mathbf{A}_{y}\right|}{|\mathbf{A}|}=\frac{5}{5}=1
\end{aligned}
$$

The solution of the linear system is $\binom{x}{y}=\binom{3}{1}$

M 104 - GENERAL MATHEMATICS -2-

Dr. Tariq A. AlFadhel ${ }^{2}$

Solution of the Second Mid-Term Exam

 First semester 1435-1436 HQ. 1 Solve by Gauss Elimination method the linear system :
$\left\{\begin{array}{l}x+3 y+2 z=2 \\ 2 x-y-3 z=-3 \\ 3 x-4 y-z=5\end{array}\right.$
Solution : The augmented matrix is
$\left[\begin{array}{ccc|c}1 & 3 & 2 & 2 \\ 2 & -1 & -3 & -3 \\ 3 & -4 & -1 & 5\end{array}\right] \xrightarrow{-2 R_{1}+R_{2}}\left[\begin{array}{ccc|c}1 & 3 & 2 & 2 \\ 0 & -7 & -7 & -7 \\ 3 & -4 & -1 & 5\end{array}\right]$
$\xrightarrow{-3 R_{1}+R_{3}}\left[\begin{array}{ccc|c}1 & 3 & 2 & 2 \\ 0 & -7 & -7 & -7 \\ 0 & -13 & -7 & -1\end{array}\right] \xrightarrow{-\frac{1}{7} R_{2}}\left[\begin{array}{ccc|c}1 & 3 & 2 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & -13 & -7 & -1\end{array}\right]$
$\xrightarrow{13 R_{2}+R_{3}}\left[\begin{array}{lll|c}1 & 3 & 2 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 6 & 12\end{array}\right]$
$6 z=12 \Longrightarrow z=2$
$y+z=1 \Longrightarrow y+2=1 \Longrightarrow y=-1$
$x+3 y+2 z=2 \Longrightarrow x-3+4=2 \Longrightarrow x+1=2 \Longrightarrow x=1$
The solution of the linear system is $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)$.
Q. 2 Compute the integrals :
(a) $\int_{0}^{1} x e^{x} d x$
(b) $\int \frac{x+1}{(x+2)(x-3)} d x$
(c) $\int 4 x\left(2 x^{2}+3\right)^{3} d x$
(d) $\int x \ln x d x$
(e) $\int \frac{x}{(x-1)^{2}} d x$

Solution :

[^1](a) Using integration by parts :
\[

$$
\begin{aligned}
& u=x \quad d v=e^{x} d x \\
& d u=d x \quad v=e^{x} \\
& \int_{0}^{1} x e^{x} d x=\left[x e^{x}\right]_{0}^{1}-\int_{0}^{1} e^{x} d x=\left[x e^{x}\right]_{0}^{1}-\left[e^{x}\right]_{0}^{1} \\
& =\left[\left(1 e^{1}\right)-\left(0 e^{0}\right)\right]-\left[e^{1}-e^{0}\right]=(e-0)-(e-1)=e-e+1=1
\end{aligned}
$$
\]

(b) Using the method of partial fractions :
$\frac{x+1}{(x+2)(x-3)}=\frac{A_{1}}{x+2}+\frac{A_{2}}{x-3}$
$x+1=A_{1}(x-3)+A_{2}(x+2)$
Put $x=-2:-2+1=A_{1}(-2-3) \Longrightarrow-1=-5 A_{1} \Longrightarrow A_{1}=\frac{1}{5}$
Put $x=3: 3+1=A_{2}(3+2) \Longrightarrow 4=5 A_{2} \Longrightarrow A_{2}=\frac{4}{5}$
$\int \frac{x+1}{(x+2)(x-3)} d x=\int\left(\frac{\frac{1}{5}}{x+2}+\frac{\frac{4}{5}}{x-3}\right) d x$
$=\frac{1}{5} \int \frac{1}{x+2} d x+\frac{4}{5} \int \frac{1}{x-3} d x=\frac{1}{5} \ln |x+2|+\frac{4}{5} \ln |x-3|+c$
(c) Using the formula $\int[f(x)]^{n} f^{\prime}(x) d x=\frac{[f(x)]^{n+1}}{n+1}+c$, where $n \neq-1$
$\int 4 x\left(2 x^{2}+3\right)^{3} d x=\int\left(2 x^{2}+3\right)^{3} 4 x d x=\frac{\left(2 x^{2}+3\right)^{4}}{4}+c$
(d) Using integration by parts :

$$
\begin{aligned}
& u=\ln x \quad d v=x d x \\
& d u=\frac{1}{x} d x \quad v=\frac{x^{2}}{2} \\
& \int x \ln x d x=\frac{x^{2}}{2} \ln x-\int \frac{x^{2}}{2} \frac{1}{x} d x \\
& =\frac{x^{2}}{2} \ln x-\frac{1}{2} \int x d x=\frac{x^{2}}{2} \ln x-\frac{1}{2} \frac{x^{2}}{2}+c
\end{aligned}
$$

(e) Using the method of partial fractions:
$\frac{x}{(x-1)^{2}}=\frac{A_{1}}{(x-1)}+\frac{A_{2}}{(x-1)^{2}}$
$x=A_{1}(x-1)+A_{2}=A_{1} x-A_{1}+A_{2}$
Comparing the coefficients of both sides
$A_{1}=1$
$-A_{1}+A_{2}=0 \Longrightarrow-1+A_{2}=0 \Longrightarrow A_{2}=1$
$\int \frac{x}{(x-1)^{2}} d x=\int\left(\frac{1}{x-1}+\frac{1}{(x-1)^{2}}\right) d x$
$=\int \frac{1}{x-1} d x+\int \frac{1}{(x-1)^{2}}=\int \frac{1}{x-1} d x+\int(x-1)^{-2} d x$
$=\ln |x-1|+\frac{(x-1)^{-1}}{-1}+c$
Q. 3 (a) Sketch the region \mathbf{R} determined by the curves :
$y=x^{2}, x=1, x=2$ and $y=0$.
(b) Find the area of the region \mathbf{R}.

Solution :
(a) $y=x^{2}$ is a parabola opens upwards with vertex $(0,0)$.
$x=1$ is a straight line parallel to the y-axis and passes through $(1,0)$.
$x=2$ is a straight line parallel to the y-axis and passes through $(2,0)$.
$y=0$ is the x-axis.

(b) Area $=\int_{1}^{2} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{1}^{2}=\frac{2^{3}}{3}-\frac{1^{3}}{3}=\frac{8}{3}-\frac{1}{3}=\frac{7}{3}$

M 104-GENERAL MATHEMATICS -2-

Dr. Tariq A. AlFadhel ${ }^{3}$
Solution of the Final Exam First semester 1435-1436 H
Q. 1 (a) Compute $\mathbf{A B}$ and $\mathbf{B A}$ for $\mathbf{A}=\left(\begin{array}{ccc}0 & 2 & 5 \\ -3 & 2 & 3 \\ -3 & 2 & 1\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{ccc}3 & 2 & 1 \\ 3 & -2 & 1 \\ 3 & 2 & 1\end{array}\right)$
(b) Compute the determinant $\left|\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2 \\ 3 & 2 & 1\end{array}\right|$.
(c) Solve by Cramer's rule : $\begin{array}{ll}4 x-2 y & =2 \\ x-3 y & =-2\end{array}$

Solution :
(a) $\mathbf{A B}=\left(\begin{array}{ccc}0 & 2 & 5 \\ -3 & 2 & 3 \\ -3 & 2 & 1\end{array}\right)\left(\begin{array}{ccc}3 & 2 & 1 \\ 3 & -2 & 1 \\ 3 & 2 & 1\end{array}\right)$
(b) Solution (1): Using Sarrus Method

$$
\begin{array}{lllll}
1 & 2 & 3 & 1 & 2 \\
1 & 3 & 2 & 1 & 3 \\
3 & 2 & 1 & 3 & 2
\end{array}
$$

$$
\left|\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2 \\
3 & 2 & 1
\end{array}\right|=(3+12+6)-(27+4+2)=21-33=-12
$$

Solution (2): $\left|\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2 \\ 3 & 2 & 1\end{array}\right| \xrightarrow{-R_{1}+R_{2}}\left|\begin{array}{ccc}1 & 2 & 3 \\ 0 & 1 & -1 \\ 3 & 2 & 1\end{array}\right|$

[^2]\[

$$
\begin{aligned}
& =\left(\begin{array}{ccc}
0+6+15 & 0-4+10 & 0+2+5 \\
-9+6+9 & -6-4+6 & -3+2+3 \\
-9+6+3 & -6-4+2 & -3+2+1
\end{array}\right)=\left(\begin{array}{ccc}
21 & 6 & 7 \\
6 & -4 & 2 \\
0 & -8 & 0
\end{array}\right) \\
& \mathbf{B A}=\left(\begin{array}{ccc}
3 & 2 & 1 \\
3 & -2 & 1 \\
3 & 2 & 1
\end{array}\right)\left(\begin{array}{ccc}
0 & 2 & 5 \\
-3 & 2 & 3 \\
-3 & 2 & 1
\end{array}\right) \\
& =\left(\begin{array}{lll}
0-6-3 & 6+4+2 & 15+6+1 \\
0+6-3 & 6-4+2 & 15-6+1 \\
0-6-3 & 6+4+2 & 15+6+1
\end{array}\right)=\left(\begin{array}{ccc}
-9 & 12 & 22 \\
3 & 4 & 10 \\
-9 & 12 & 22
\end{array}\right)
\end{aligned}
$$
\]

$\xrightarrow{-3 R_{1}+R_{3}}\left|\begin{array}{ccc}1 & 2 & 3 \\ 0 & 1 & -1 \\ 0 & -4 & -8\end{array}\right| \xrightarrow{4 R_{2}+R_{3}}\left|\begin{array}{ccc}1 & 2 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & -12\end{array}\right|=1 \times 1 \times-12=-12$
Solution (3) : Using the definition of the determinant

$$
\begin{aligned}
& \left|\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2 \\
3 & 2 & 1
\end{array}\right|=1 \times\left|\begin{array}{ll}
3 & 2 \\
2 & 1
\end{array}\right|-2 \times\left|\begin{array}{ll}
1 & 2 \\
3 & 1
\end{array}\right|+3 \times\left|\begin{array}{ll}
1 & 3 \\
3 & 2
\end{array}\right| \\
& =1 \times(3-4)-2 \times(1-6)+3 \times(2-9)=-1+10-21=-12
\end{aligned}
$$

(c) Using Cramer's rule :
$\mathbf{A}=\left(\begin{array}{ll}4 & -2 \\ 1 & -3\end{array}\right), \mathbf{A}_{x}=\left(\begin{array}{cc}2 & -2 \\ -2 & -3\end{array}\right), \mathbf{A}_{y}=\left(\begin{array}{cc}4 & 2 \\ 1 & -2\end{array}\right)$
$|\mathbf{A}|=\left|\begin{array}{ll}4 & -2 \\ 1 & -3\end{array}\right|=(4 \times-3)-(1 \times-2)=-12-(-2)=-12+2=-10$
$\left|\mathbf{A}_{x}\right|=\left|\begin{array}{cc}2 & -2 \\ -2 & -3\end{array}\right|=(2 \times-3)-(-2 \times-2)=-6-4=-10$
$\left|\mathbf{A}_{y}\right|=\left|\begin{array}{cc}4 & 2 \\ 1 & -2\end{array}\right|=(4 \times-2)-(1 \times 2)=-8-2=-10$
$x=\frac{\left|\mathbf{A}_{x}\right|}{|\mathbf{A}|}=\frac{-10}{-10}=1$
$y=\frac{\left|\mathbf{A}_{y}\right|}{|\mathbf{A}|}=\frac{-10}{-10}=1$
The solution of the linear system is $\binom{x}{y}=\binom{1}{1}$
Q. 2 (a) Find the standard equation of the ellipse with foci $(-2,3)$ and $(6,3)$ and the length of its major axis is 10 , and then sketch it.
(b) Find The elements of the conic section $9 x^{2}-4 y^{2}-16 y-18 x-43=0$

Solution :

(a) The standard equation of the ellipse is $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$

The center $P=(h, k)$ is located between the two foci.
The center is $P=(h, k)=\left(\frac{-2+6}{2}, \frac{3+3}{2}\right)=(2,3)$
The major axis (where the two foci are located) is parallel to the x-axis, hence $a>b$.

The length of the major axis equals 10 means $2 a=10 \Longrightarrow a=5$.
c is the distance between the two foci, hence $c=4$
$c^{2}=a^{2}-b^{2} \Longrightarrow 16=25-b^{2} \Longrightarrow b^{2}=25-16=9 \Longrightarrow b=3$
The standard equation of the ellipse is $\frac{(x-2)^{2}}{25}+\frac{(y-3)^{2}}{9}=1$
The vertices are $V_{1}=(-3,3)$ and $V_{2}=(7,3)$
The end-points of the minor axis are $W_{1}=(2,6)$ and $W_{2}=(2,0)$

(b) $9 x^{2}-4 y^{2}-16 y-18 x-43=0$
$9 x^{2}-18 x-4 y^{2}-16 y=43$
$9\left(x^{2}-2 x\right)-4\left(y^{2}+4 y\right)=43$
By completing the square
$9\left(x^{2}-2 x+1\right)-4\left(y^{2}+4 y+4\right)=43+9-16$
$9(x-1)^{2}-4(y+2)^{2}=36$
$\frac{9(x-1)^{2}}{36}-\frac{4(y+2)^{2}}{36}=1$
$\frac{(x-1)^{2}}{4}-\frac{(y+2)^{2}}{9}=1$
The conic section is a hyperbola with transverse axis parallel to the x-axis.
The ceneter is $P=(1,-2)$.
$a^{2}=4 \Longrightarrow a=2$ and $b^{2}=9 \Longrightarrow b=3$.
$c^{2}=a^{2}+b^{2}=9+4=13 \Longrightarrow c=\sqrt{13}$.
The vertices are $V_{1}=(-1,-2)$ and $V_{2}=(3,-2)$.

The foci are $F_{1}=(1-\sqrt{13},-2)$ and $F_{2}=(1+\sqrt{13},-2)$.
The equations of the asymptotes are $L_{1}: y+2=\frac{3}{2}(x-1)$ and $L_{2}: y+2=-\frac{3}{2}(x-1)$

Q. 3 (a) Compute the integrals :
(i) $\int \frac{10}{x^{2}+6 x+10} d x$
(ii) $\int x^{2} \ln x d x$
(iii) $\int \frac{x-1}{(x+1)(x-1)^{2}} d x$
(b) Find the area of the surface delimited by the curves :
$y=0, x=0, x=4$ and $y=\sqrt{x}+5$.
(c) The region R between the curves $y=0, y=x^{2}$, and $y=-x+2$ is rotated about the y-axis to form a solid of revolution S. Find the volume of S.

Solution :

(a) (i) $\int \frac{10}{x^{2}+6 x+10} d x$

Using the formula $\int \frac{f^{\prime}(x)}{[f(x)]^{2}+a^{2}} d x=\frac{1}{a} \tan ^{-1}\left(\frac{f(x)}{a}\right)+c$
$\int \frac{10}{x^{2}+6 x+10} d x=10 \int \frac{1}{\left(x^{2}+6 x+9\right)+1} d x$
$=10 \int \frac{1}{(x+3)^{2}+1^{2}} d x=10 \tan ^{-1}(x+3)+c$
(ii) $\int x^{2} \ln x d x$

Using integration by parts

$$
u=\ln x \quad d v=x^{2} d x
$$

$$
d u=\frac{1}{x} d x \quad v=\frac{x^{3}}{3}
$$

$$
\int x^{2} \ln x d x=\frac{x^{3}}{3} \ln x-\int \frac{1}{x} \frac{x^{3}}{3} d x
$$

$$
=\frac{x^{3}}{3} \ln x-\frac{1}{3} \int x^{2} d x=\frac{x^{3}}{3} \ln x-\frac{1}{3} \frac{x^{3}}{3}+c
$$

(iii) $\int \frac{x-1}{(x+1)(x-1)^{2}} d x=\int \frac{1}{(x-1)(x+1)} d x$

Using the method of partial fractions
$\frac{1}{(x+1)(x-1)}=\frac{A_{1}}{x+1}+\frac{A_{2}}{x-1}$
$\frac{1}{(x+1)(x-1)}=\frac{A_{1}(x-1)}{(x+1)(x-1)}+\frac{A_{2}(x+1)}{(x+1)(x-1)}$
$1=A_{1}(x-1)+A_{2}(x+1)$
Put $x=-1$ then $1=-2 A_{1} \Longrightarrow A_{1}=-\frac{1}{2}$
Put $x=1$ then $1=2 A_{2} \Longrightarrow A_{2}=\frac{1}{2}$
$\int \frac{1}{(x+1)(x-1)} d x=\int\left(\frac{-\frac{1}{2}}{x+1}+\frac{\frac{1}{2}}{x-1}\right) d x$
$=-\frac{1}{2} \int \frac{1}{x+1} d x+\frac{1}{2} \int \frac{1}{x-1} d x=-\frac{1}{2} \ln |x+1|+\frac{1}{2} \ln |x-1|+c$
(b) $y=0$ is the x-axis.
$x=0$ is the y-axis.
$x=4$ is a straight line parallel to the y-axis and passes through $(4,0)$.
$y=\sqrt{x}+5 \Longrightarrow(y-5)^{2}=x$ is the upper-half of the parabola with vertex $(0,5)$ and opens to the right

$$
\begin{aligned}
& \text { Area }=\int_{0}^{4}(\sqrt{x}+5) d x=\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}+5 x\right]_{0}^{4}=\left[\frac{2}{3} x^{\frac{3}{2}}+5 x\right]_{0}^{4} \\
& =\left(\frac{2}{3}(4)^{\frac{3}{2}}+5 \times 4\right)-\left(\frac{2}{3}(0)^{\frac{3}{2}}+5 \times 0\right)=\frac{2}{3}(8)+20=\frac{16}{3}+20=\frac{76}{3}
\end{aligned}
$$

(c)

$y=0$ is the x-axis.
$y=-x+2$ is a straight line passes through $(0,2)$ and its slope is -1.
$y=x^{2}$ is a parabola opens upwards with vertex $(0,0)$.
Points of intersection of $y=x^{2}$ and $y=-x+2$:
$x^{2}=-x+2 \Rightarrow x^{2}+x-2=0 \Rightarrow(x+2)(x-1)=0 \Rightarrow x=1, x=-2$
Points of intersection are $(-2,4)$ and $(1,1)$.
Using Washer Method :
In this case $y=-x+2 \Longrightarrow x=-y+2$ and $y=x^{2} \Longrightarrow x=\sqrt{y}$
Volume $=\pi \int_{0}^{1}\left((-y+2)^{2}-(\sqrt{y})^{2}\right) d y=\pi \int_{0}^{1}\left(4-4 y+y^{2}-y\right) d y$
$=\pi \int_{0}^{1}\left(y^{2}-5 y+4\right) d y=\pi\left[\frac{y^{3}}{3}-5 \frac{y^{2}}{2}+4 y\right]_{0}^{1}$
$=\pi\left[\left(\frac{1}{3}-\frac{5}{2}+4\right)-(0-0+0)\right]=\pi\left(\frac{2-15+24}{6}\right)=\frac{11}{6} \pi$
Q. 4 (a) Find f_{x} and f_{y} for the function $f(x, y)=x^{2} y^{3}+y e^{x}+\frac{x}{x+y}$
(b) Solve the differential equation $x \frac{d y}{d x}-y=x^{2} e^{x}$

Solution :

(a) $f_{x}=\frac{\partial f}{\partial x}=2 x y^{3}+y e^{x}+\frac{1(x+y)-x(1+0)}{(x+y)^{2}}=2 x y^{3}+y e^{x}+\frac{y}{(x+y)^{2}}$
$f_{y}=3 x^{2} y^{2}+e^{x}+\frac{0(x+y)-x(0+1)}{(x+y)^{2}}=3 x^{2} y^{2}+e^{x}-\frac{x}{(x+y)^{2}}$
(b) $x \frac{d y}{d x}-y=x^{2} e^{x}$
$x y^{\prime}-y=x^{2} e^{x}$
$y^{\prime}-\frac{1}{x} y=x e^{x}$
It is a first-order linear differential equation.
$P(x)=-\frac{1}{x}$ and $Q(x)=x e^{x}$
The integrating factor is:
$u(x)=\int P(x) d x=e^{\int-\frac{1}{x} d x}=e^{-\ln x}=e^{\ln x^{-1}}=x^{-1}=\frac{1}{x}$
The general solution of the differential equation is :
$y=\frac{1}{u(x)} \int u(x) Q(x) d x=\frac{1}{x^{-1}} \int x^{-1} x e^{x} d x=x \int e^{x} d x$
$=x\left(e^{x}+c\right)=x e^{x}+c x$

Dr. Tariq A. AlFadhel ${ }^{4}$
Solution of the First Mid-Term Exam

Second semester 1435-1436 H

Q. 1 Let $\mathbf{A}=\left(\begin{array}{lll}2 & 4 & 0 \\ 1 & 2 & 1\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{ll}1 & 2 \\ 3 & 1 \\ 0 & 4\end{array}\right)$

Compute (if possible) : AB and BA

Solution :

$$
\begin{aligned}
& \mathbf{A B}=\left(\begin{array}{lll}
2 & 4 & 0 \\
1 & 2 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 1 \\
0 & 4
\end{array}\right) \\
& =\left(\begin{array}{cc}
2+12+0 & 4+4+0 \\
1+6+0 & 2+2+4
\end{array}\right)=\left(\begin{array}{cc}
14 & 8 \\
7 & 8
\end{array}\right) \\
& \mathbf{B A}=\left(\begin{array}{ll}
1 & 2 \\
3 & 1 \\
0 & 4
\end{array}\right)\left(\begin{array}{lll}
2 & 4 & 0 \\
1 & 2 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
2+2 & 4+4 & 0+2 \\
6+1 & 12+2 & 0+1 \\
0+4 & 0+8 & 0+4
\end{array}\right)=\left(\begin{array}{ccc}
4 & 8 & 2 \\
7 & 14 & 1 \\
4 & 8 & 4
\end{array}\right)
\end{aligned}
$$

Q. 2 Compute The determinant $\left|\begin{array}{lll}1 & 2 & 4 \\ 3 & 2 & 1 \\ 4 & 1 & 3\end{array}\right|$

Solution (1) : Using Sarrus Method

1	2	4	1	2
3	2	1	3	2
4	1	3	4	1

$\left|\begin{array}{lll}1 & 2 & 4 \\ 3 & 2 & 1 \\ 4 & 1 & 3\end{array}\right|=(6+8+12)-(32+1+18)=26-51=-25$
Solution (2) : Using The definition

$$
\begin{aligned}
& \left|\begin{array}{lll}
1 & 2 & 4 \\
3 & 2 & 1 \\
4 & 1 & 3
\end{array}\right|=1 \times\left|\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right|-2 \times\left|\begin{array}{ll}
3 & 1 \\
4 & 3
\end{array}\right|+4 \times\left|\begin{array}{ll}
3 & 2 \\
4 & 1
\end{array}\right| \\
& =(6-1)-2(9-4)+4(3-8)=5-10-20=5-30=-25
\end{aligned}
$$

[^3]Q. 3 Find all the elements of the conic section $y^{2}-4 y=4 x+4$ and sketch it.

Solution : By completing the square

$$
\begin{aligned}
& y^{2}-4 y=4 x+4 \\
& y^{2}-4 y+4=4 x+4+4 \\
& y^{2}-4 y+4=4 x+8 \\
& (y-2)^{2}=4(x+2)
\end{aligned}
$$

The conic section is a parabola opens to the right.
The vertex is $V(-2,2)$.
$4 a=4 \quad \Longrightarrow \quad a=\frac{4}{4}=1$.
The focus is $F(-2+1,2)=(-1,2)$.
The equation of the directrix is $x=-2-1=-3$

Q. 4 Find the standard equation of the ellipse with vertex $(1,4)$ and with foci $(2,4)$ and $(10,4)$, and then sketch it.

Solution :

The equation of the ellipse has the form $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$.
The center of the ellipse is the mid-point of the two foci .
The center is $P\left(\frac{2+10}{2}, \frac{4+4}{2}\right)=(6,4)$, hence $h=6$ and $k=2$.

The two foci lie on a line parallel to the x-axis, hence $a>b$
c is the distance between the center and one of the foci, hence $c=4$
a is the distance between the center $(6,4)$ and the vertex $V_{1}(1,4)$, hence $a=5$.
$c^{2}=a^{2}-b^{2} \quad \Longrightarrow \quad 4^{2}=5^{2}-b^{2} \quad \Longrightarrow \quad b^{2}=25-16=9 \quad \Longrightarrow \quad b=3$.
The equation of the ellipse is $\frac{(x-6)^{2}}{25}+\frac{(y-4)^{2}}{9}=1$.
The other vertex is $V_{2}(11,4)$.
The end-points of the minor axis are $W_{1}(6,7)$ and $W_{2}(6,1)$

Q. 5 Solve by Cramer's Rule the following linear system $\left\{\begin{array}{l}4 x-3 y=1 \\ 2 x+y=3\end{array}\right.$

Solution :

$\mathbf{A}=\left(\begin{array}{cc}4 & -3 \\ 2 & 1\end{array}\right), \mathbf{A}_{x}=\left(\begin{array}{cc}1 & -3 \\ 3 & 1\end{array}\right), \mathbf{A}_{y}=\left(\begin{array}{ll}4 & 1 \\ 2 & 3\end{array}\right)$
$|\mathbf{A}|=\left|\begin{array}{cc}4 & -3 \\ 2 & 1\end{array}\right|=(4 \times 1)-(2 \times-3)=4-(-6)=4+6=10$
$\left|\mathbf{A}_{x}\right|=\left|\begin{array}{cc}1 & -3 \\ 3 & 1\end{array}\right|=(1 \times 1)-(3 \times-3)=1-(-9)=1+9=10$
$\left|\mathbf{A}_{y}\right|=\left|\begin{array}{ll}4 & 1 \\ 2 & 3\end{array}\right|=(4 \times 3)-(2 \times 1)=12-2=10$
$x=\frac{\left|\mathbf{A}_{x}\right|}{|\mathbf{A}|}=\frac{10}{10}=1$

$$
y=\frac{\left|\mathbf{A}_{y}\right|}{|\mathbf{A}|}=\frac{10}{10}=1
$$

The solution of the linear system is $\binom{x}{y}=\binom{1}{1}$

M 104-GENERAL MATHEMATICS -2-

Dr. Tariq A. AlFadhel ${ }^{5}$

Solution of the Second Mid-Term Exam

Second semester 1435-1436 H

Q. 1 Find the area of the surface bounded by the curves :
$y=x^{2}+2$ and $y=3$.

Solution :

$y=x^{2}+2 \Longrightarrow y-2=x^{2}$ is a parabola opens upwards with vertex $(0,2)$.
$y=3$ is a straight line parallel to the x-axis and passes through $(0,3)$.
Points of intersection of $y=x^{2}+2$ and $y=3$:
$x^{2}+2=3 \Longrightarrow x^{2}=1 \Longrightarrow x= \pm 1$.

Area $=\int_{-1}^{1}\left[3-\left(x^{2}+2\right)\right] d x=\int_{-1}^{1}\left(1-x^{2}\right) d x$
$=\left[x-\frac{x^{3}}{3}\right]_{-1}^{1}=\left(1-\frac{1}{3}\right)-\left(-1-\frac{-1}{3}\right)=\frac{2}{3}-\left(-\frac{2}{3}\right)=\frac{2}{3}+\frac{2}{3}=\frac{4}{3}$
Q. 2 Compute the integrals :
(a) $\int \frac{2 x+5}{(x+2)(x+1)} d x$
(b) $\int \frac{2 x+3}{x^{2}+3 x+6} d x$
(c) $\int \frac{3}{x^{2}+2 x+5} d x$

[^4](d) $\int 3 x^{2} \sin \left(x^{3}+3\right) d x$
(e) $\int x \cos x d x$
(f) $\int x\left(x^{2}+1\right)^{5} d x$

Solution :
(a) $\int \frac{2 x+5}{(x+2)(x+1)} d x$

Using the method of partial fractions:
$\frac{2 x+5}{(x+2)(x+1)}=\frac{A_{1}}{x+2}+\frac{A_{2}}{x+1}$
$2 x+5=A_{1}(x+1)+A_{2}(x+2)$
Put $x=-2: 2(-2)+5=A_{1}(-2+1) \Longrightarrow 1=-A_{1} \Longrightarrow A_{1}=-1$
Put $x=-1: 2(-1)+5=A_{2}(-1+2) \Longrightarrow A_{2}=-2+5=3$
$\int \frac{2 x+5}{(x+2)(x+1)} d x=\int\left(\frac{-1}{x+2}+\frac{3}{x+1}\right) d x$
$=-\int \frac{1}{x+2} d x+3 \int \frac{1}{x+1} d x=-\ln |x+2|+3 \ln |x+1|+c$
(b) $\int \frac{2 x+3}{x^{2}+3 x+6} d x$

Using the formula $\int \frac{f^{\prime}(x)}{f(x)} d x=\ln |f(x)|+c$
$\int \frac{2 x+3}{x^{2}+3 x+6} d x=\ln \left|x^{2}+3 x+6\right|+c$
(c) $\int \frac{3}{x^{2}+2 x+5} d x$

Using the formula $\int \frac{f^{\prime}(x)}{a^{2}+[f(x)]^{2}} d x=\frac{1}{a} \tan ^{-1}\left(\frac{f(x)}{a}\right)+c$, where $a>0$
$\int \frac{3}{x^{2}+2 x+5} d x=3 \int \frac{1}{\left(x^{2}+2 x+1\right)+4} d x=3 \int \frac{1}{(x+1)^{2}+2^{2}} d x$
$=3 \times \frac{1}{2} \tan ^{-1}\left(\frac{x+1}{2}\right)+c=\frac{3}{2} \tan ^{-1}\left(\frac{x+1}{2}\right)+c$
(d) $\int 3 x^{2} \sin \left(x^{3}+3\right) d x$

Using the formula $\int \sin (f(x)) f^{\prime}(x) d x=-\cos (f(x))+c$
$\int 3 x^{2} \sin \left(x^{3}+3\right) d x=\int \sin \left(x^{3}+3\right)\left(3 x^{2}\right) d x=-\cos \left(x^{3}+3\right)+c$
(e) $\int x \cos x d x$

Using integration by parts :

$$
\begin{array}{ll}
u=x & d v=\cos x d x \\
d u=d x & v=\sin x \\
\int x \cos x & d x=x \sin x-\int \sin x d x \\
=x \sin x-(-\cos x)+c=x \sin x+\cos x+c
\end{array}
$$

(f) $\int x\left(x^{2}+1\right)^{5} d x$

Using the formula $\int[f(x)]^{n} f^{\prime}(x) d x=\frac{[f(x)]^{n+1}}{n+1}+c$, where $n \neq-1$
$\int x\left(x^{2}+1\right)^{5} d x=\frac{1}{2} \int\left(x^{2}+1\right)^{5}(2 x) d x=\frac{1}{2} \frac{\left(x^{2}+1\right)^{6}}{6}+c$
Q. 3 Find the area of the srface bounded by the curves :
$y=\sqrt{x}, y=0$ and $y=-x+2$

Solution :

$y=\sqrt{x} \Longrightarrow y^{2}=x$ is the upper half of a parabola opens to the right with vertex $(0,0)$.
$y=-x+2$ is a straight line passes through $(0,2)$ with slope -1.
$y=0$ is the x-axis .
$y=\sqrt{x} \Longrightarrow y^{2}=x$ and $y=-x+2 \Longrightarrow x=-y+2$
Points of intersection of $x=y^{2}$ and $x=-y+2$:
$y^{2}=-y+2 \Longrightarrow y^{2}+y-2=0 \Longrightarrow(y+2)(y-1)=0$
$\Longrightarrow y=1, y=-2$

Area $=\int_{0}^{1}\left[(-y+2)-y^{2}\right] d y=\int_{0}^{1}\left(-y^{2}-y+2\right) d y=\left[-\frac{y^{3}}{3}-\frac{y^{2}}{2}+2 y\right]_{0}^{1}$
$=\left(-\frac{1}{3}-\frac{1}{2}+2\right)-(0-0+0)=\frac{-2-3+12}{6}=\frac{7}{6}$

Another solution :

$$
\begin{aligned}
& \text { Area }=\int_{0}^{1} \sqrt{x} d x+\int_{1}^{2}(-x+2) d x=\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{1}+\left[-\frac{x^{2}}{2}+2 x\right]_{1}^{2} \\
& =\left[\frac{2}{3}-0\right]+\left[(-2+4)-\left(-\frac{1}{2}+2\right)\right]=\frac{2}{3}+2-\frac{3}{2}=\frac{4+12-9}{6}=\frac{7}{6}
\end{aligned}
$$

M 104-GENERAL MATHEMATICS -

Dr. Tariq A. AlFadhel ${ }^{6}$
Solution of the Final Exam Second semester 1435-1436 H
Q. 1 (a) Compute $\mathbf{B A}+\mathbf{A B}$ for $\mathbf{A}=\left(\begin{array}{lll}2 & 2 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 3\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{lll}1 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 0 & 1\end{array}\right)$
(b) Compute the determinant $\left|\begin{array}{ccc}3 & 1 & -2 \\ 1 & 2 & 3 \\ 4 & -1 & 0\end{array}\right|$.
(c) Solve by Gauss Elimination Method : $\left\{\begin{array}{l}x+y+z=3 \\ x-y-2=1 \\ 2 x+y-z=3\end{array}\right.$

Solution :

(a) $\mathbf{B A}=\left(\begin{array}{lll}1 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 0 & 1\end{array}\right)\left(\begin{array}{lll}2 & 2 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 3\end{array}\right)$

$$
\begin{aligned}
& =\left(\begin{array}{lll}
2+2+0 & 2+0+1 & 0+2+3 \\
4+1+0 & 4+0+2 & 0+1+6 \\
2+0+0 & 2+0+1 & 0+0+3
\end{array}\right)=\left(\begin{array}{lll}
4 & 3 & 5 \\
5 & 6 & 7 \\
2 & 3 & 3
\end{array}\right) \\
& \mathbf{A B}=\left(\begin{array}{lll}
2 & 2 & 0 \\
1 & 0 & 1 \\
0 & 1 & 3
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 1 & 2 \\
1 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{lll}
2+4+0 & 4+2+0 & 2+4+0 \\
1+0+1 & 2+0+0 & 1+0+1 \\
0+2+3 & 0+1+0 & 0+2+3
\end{array}\right)=\left(\begin{array}{lll}
6 & 6 & 6 \\
2 & 2 & 2 \\
5 & 1 & 5
\end{array}\right)
\end{aligned}
$$

$$
\mathbf{B A}+\mathbf{A B}=\left(\begin{array}{lll}
4 & 3 & 5 \\
5 & 6 & 7 \\
2 & 3 & 3
\end{array}\right)+\left(\begin{array}{lll}
6 & 6 & 6 \\
2 & 2 & 2 \\
5 & 1 & 5
\end{array}\right)=\left(\begin{array}{ccc}
10 & 9 & 11 \\
7 & 8 & 9 \\
7 & 4 & 8
\end{array}\right)
$$

(b) Using Sarrus Method

$$
\begin{array}{ccccc}
3 & 1 & -2 & 3 & 1 \\
1 & 2 & 3 & 1 & 2 \\
1 & -1 & 0 & 1 & -1
\end{array}
$$

$$
\left|\begin{array}{ccc}
3 & 1 & -2 \\
1 & 2 & 3 \\
4 & -1 & 0
\end{array}\right|=(0+12+2)-(-16-9+0)=14-(-25)=14+25=39
$$

[^5](c) Using Gauss Elimination Method
\[

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & 1 & 1 & 3 \\
1 & -1 & -1 & 1 \\
2 & 1 & -1 & 3
\end{array}\right) \xrightarrow{-R_{1}+R_{2}}\left(\begin{array}{ccc|c}
1 & 1 & 1 & 3 \\
0 & -2 & -2 & -2 \\
2 & 1 & -1 & 3
\end{array}\right) \\
& \xrightarrow{-2 R_{1}+R_{3}}\left(\begin{array}{ccc|c}
1 & 1 & 1 & 3 \\
0 & -2 & -2 & -2 \\
0 & -1 & -3 & -3
\end{array}\right) \xrightarrow{-\frac{1}{2} R_{2}}\left(\begin{array}{ccc|c}
1 & 1 & 1 & 3 \\
0 & 1 & 1 & 1 \\
0 & -1 & -3 & -3
\end{array}\right) \\
& \xrightarrow{R_{2}+R_{3}}\left(\begin{array}{ccc|c}
1 & 1 & 1 & 3 \\
0 & 1 & 1 & 1 \\
0 & 0 & -2 & -2
\end{array}\right) \\
& -2 z=-2 \quad \Longrightarrow \quad z=1 \\
& y+z=1 \quad \Longrightarrow \quad y+1=1 \quad \Longrightarrow \quad y=0 \\
& x+y+z=3 \quad \Longrightarrow \quad x+0+1=3 \quad \Longrightarrow \quad x=2
\end{aligned}
$$
\]

The solution of the linear system is $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right)$
Q. 2 Find all the elements of the two following conic sections and sketch their graphs :
(a) $9 y^{2}+4 x^{2}+18 y-8 x=23$
(b) $9 x^{2}-4 y^{2}-16 y-18 x-43=0$

Solution :
(a) $9 y^{2}+4 x^{2}+18 y-8 x=23$
$4 x^{2}-8 x+9 y^{2}+18 y=23$
$4\left(x^{2}-2 x\right)+9\left(y^{2}+2 y\right)=23$
By completing the square
$4\left(x^{2}-2 x+1\right)+9\left(y^{2}+2 y+1\right)=23+4+9$
$4(x-1)^{2}+9(y+1)^{2}=36$
$\frac{4(x-1)^{2}}{36}+\frac{9(y+1)^{2}}{36}=1$
$\frac{(x-1)^{2}}{9}+\frac{(y+1)^{2}}{4}=1$
The conic sectionis an ellipse with center $P=(1,-1)$

$$
\begin{aligned}
& a^{2}=9 \Longrightarrow a=3 \text { and } b^{2}=4 \Longrightarrow b=2 \\
& c^{2}=a^{2}-b^{2}=9-4=5 \Longrightarrow c=\sqrt{5}
\end{aligned}
$$

The vertices are $V_{1}=(-2,-1)$ and $V_{2}=(4,-1)$
The Foci are $F_{1}=(1-\sqrt{5},-1)$ and $F_{2}=(1+\sqrt{5},-1)$
The end-points of the minor axis are $W_{1}=(1,1)$ and $W_{2}=(1,-3)$

(b) $9 x^{2}-4 y^{2}-16 y-18 x-43=0$
$9 x^{2}-18 x-4 y^{2}-16 y=43$
$9\left(x^{2}-2 x\right)-4\left(y^{2}+4 y\right)=43$
By completing the square
$9\left(x^{2}-2 x+1\right)-4\left(y^{2}+4 y+4\right)=43+9-16$
$9(x-1)^{2}-4(y+2)^{2}=36$
$\frac{9(x-1)^{2}}{36}-\frac{4(y+2)^{2}}{36}=1$
$\frac{(x-1)^{2}}{4}-\frac{(y+2)^{2}}{9}=1$
The conic section is a hyperbola with transverse axis parallel to the x-axis.
The ceneter is $P=(1,-2)$.
$a^{2}=4 \Longrightarrow a=2$ and $b^{2}=9 \Longrightarrow b=3$.
$c^{2}=a^{2}+b^{2}=9+4=13 \Longrightarrow c=\sqrt{13}$.
The vertices are $V_{1}=(-1,-2)$ and $V_{2}=(3,-2)$.
The foci are $F_{1}=(1-\sqrt{13},-2)$ and $F_{2}=(1+\sqrt{13},-2)$.
The equations of the asymptotes are $L_{1}: y+2=\frac{3}{2}(x-1)$ and
$L_{2}: y+2=-\frac{3}{2}(x-1)$

Q. 3 (a) Compute the integrals :
(i) $\int \frac{2}{(x-1)(x+1)} d x$
(ii) $\int x \sin x d x$
(iii) $\int \frac{2 x-4}{x^{2}-4 x+5} d x$
(b) Find the area of the region delimited by the curves:
$y=2$ and $y=x^{2}+1$.
(c) The region R in the first quadrant lying between the curves $y=0$ and $y=1-x^{2}$ is rotated about the x-axis to form a solid of revolution S. Find the volume of S.

Solution :

(a) (i) $\int \frac{2}{(x-1)(x+1)} d x$

Using the method of partial fractions
$\frac{2}{(x-1)(x+1)}=\frac{A_{1}}{x-1}+\frac{A_{2}}{x+1}$
$2=A_{1}(x+1)+A_{2}(x-1)$
Put $x=1: 2=2 A_{1} \Longrightarrow A_{1}=1$
Put $x=-1: 2=-2 A_{2} \Longrightarrow A_{2}=-1$
$\frac{2}{(x-1)(x+1)}=\frac{1}{x-1}+\frac{-1}{x+1}$
$\int \frac{2}{(x-1)(x+1)} d x=\int\left(\frac{1}{x-1}+\frac{-1}{x+1}\right) d x$
$=\int \frac{1}{x-1} d x-\int \frac{1}{x+1} d x=\ln |x-1|-\ln |x+1|+c$
(ii) $\int x \sin x d x$

Using integration by parts

$$
u=x \quad d v=\sin x d x
$$

$$
d u=d x \quad v=-\cos x
$$

$\int x \sin x d x=-x \cos x-\int-\cos x d x=-x \cos x+\int \cos x d x$

$$
=-x \cos x+\sin x+c
$$

(iii) $\int \frac{2 x-4}{x^{2}-4 x+5} d x$

Using the formula $\int \frac{f^{\prime}(x)}{f(x)} d x=\ln |f(x)|+c$
$\int \frac{2 x-4}{x^{2}-4 x+5} d x=\ln \left|x^{2}-4 x+5\right|+c$
(b) $y=2$ is a straight line parallel to the x-axis and passes through $(0,2)$ $y=x^{2}+1 \Longrightarrow y-1=x^{2}$ is a parabola with vertex $(0,1)$ and opens upwards
Points of intersection of $y=2$ and $y=x^{2}+1$:
$x^{2}+1=2 \Longrightarrow x^{2}-1=0 \Longrightarrow(x-1)(x+1)=0 \Longrightarrow x=-1, x=1$

Area $=\int_{-1}^{1}\left[2-\left(x^{2}+1\right)\right] d x=\int_{-1}^{1}\left(1-x^{2}\right) d x=\left[x-\frac{x^{3}}{3}\right]_{-1}^{1}$
$=\left(1-\frac{1}{3}\right)-\left(-1-\frac{-1}{3}\right)=\frac{2}{3}-\left(-1+\frac{1}{3}\right)=\frac{2}{3}-\frac{-2}{3}=\frac{4}{3}$
(c) $y=0$ is the x-axis.
$y=1-x^{2} \Longrightarrow(y-1)=-x^{2}$ is a parabola opens downwards with vertex $(0,1)$.

Points of intersection of $y=1-x^{2}$ and $y=2$:

$$
1-x^{2}=2 \Rightarrow x^{2}-1=0 \Rightarrow(x-1)(x+1)=0 \Rightarrow x=-1, x=1
$$

Using Disk Method :
Volume $=\pi \int_{0}^{1}\left(1-x^{2}\right)^{2} d x=\pi \int_{0}^{1}\left(1-2 x^{2}+x^{4}\right) d x=\left[x-\frac{2 x^{2}}{3}+\frac{x^{5}}{5}\right]_{0}^{1}$
$=\pi\left[\left(1-\frac{2}{3}+\frac{1}{5}\right)-(0-0+0)\right]=\frac{15-10+3}{15} \pi=\frac{8}{15} \pi$
Q. 4 (a) Find f_{x}, f_{y} and f_{z} for the function $f(x, y, z)=x^{2} y^{3}+z^{5} y e^{y}$
(b) Solve the differential equation $x d y+y^{2} d x=0, y(1)=1$

Solution :

(a) $f_{x}=2 x y^{3}+0=2 x y^{3}$
$f_{y}=x^{2}\left(3 y^{2}\right)+z^{5}\left(1 \times e^{y}+y e^{y}\right)=3 x^{2} y^{2}+z^{5}\left(e^{y}+y e^{y}\right)$
$f_{z}=0+5 z^{4} y e^{y}=5 z^{4} y e^{y}$
(b) $x d y+y^{2} d x=0$
$x d y=-y^{2} d x$
$\frac{-1}{y^{2}} d y=\frac{1}{x} d x$
$-y^{-2} d y=\frac{1}{x} d x$
It is a separable differential equation

$$
\begin{aligned}
& \int-y^{2} d y=\int \frac{1}{x} d x \\
& -\frac{y^{-1}}{-1}=\ln |x|+c \\
& y^{-1}=\ln |x|+c
\end{aligned}
$$

The general solution of the differential equation is :
$y=\frac{1}{\ln |x|+c}$
$y(1)=1 \Longrightarrow 1=\frac{1}{\ln (1)+c}=\frac{1}{0+c}=\frac{1}{c} \Longrightarrow c=1$
The particular solution of the differential equation is :

$$
y=\frac{1}{\ln |x|+1}
$$

[^0]: ${ }^{1}$ E-mail : alfadhel@ksu.edu.sa

[^1]: ${ }^{2}$ E-mail : alfadhel@ksu.edu.sa

[^2]: ${ }^{3}$ E-mail : alfadhel@ksu.edu.sa

[^3]: ${ }^{4}$ E-mail : alfadhel@ksu.edu.sa

[^4]: ${ }^{5}$ E-mail : alfadhel@ksu.edu.sa

[^5]: ${ }^{6}$ E-mail : alfadhel@ksu.edu.sa

