King Saud University
 Department of Mathematics

1 Mid Term Exam
205-Math
Summer Semester (1439/1440)

Question1(1). Find initial point of the vector $\overrightarrow{P Q}=\mathbf{j}-2 \mathbf{k}$ if the terminal point is $Q(-3,-1,2)$
Question2 (3). show that the line $\left\{\begin{array}{l}x=1+2 t \\ y=-1+6 t \\ z=3-8 t\end{array}\right.$ is orthogonal to the plane $x+3 y-4 z+5=0$
Question3 (5). Given that the points $P(6,-3,-7), Q(2,5,13)$ and $R(-3, \lambda,-6)$ form a right angle triangle. (a) Find the value of the real number λ if the right angle is P.
(b) Find the value of the real number λ if the right angle is Q.
(c) Find the value of the real number λ if the right angle is R.

Question4 (3+2+3).
(a) Write and sketch the domain of the function $f(x, y)=\frac{\sqrt{1-x^{2}-y^{2}}}{y}+\frac{\sqrt{1+x^{2}+y^{2}}}{x}$
(b) Find the $\lim _{(x, y) \rightarrow(4,0)} \frac{\sqrt{x}-2 \sqrt{y+1}}{x-4 y-4} \quad$ (c) Find the $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4} \cos y-y^{4} \cos x}{x^{2}+y^{2}}$

Question5 (3+3). (a) Find the value of $\frac{\partial z}{\partial x}-\frac{\partial z}{\partial y}$ at the point $(-1,0, e)$ if the equation

$$
y z-\ln z=x+y \text { defines } z \text { as a function of } x \text { and } y .
$$

(b) show that $\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}=2 u \frac{\partial f}{\partial u}$ if $f=f\left(e^{x+y}, e^{x-y}\right)$ and $u=e^{x+y}$.

Question6 $(3+3+1)$. (a) Find the equation of the tangent plane P_{1} to the surface S given by the equation $z^{2}=y \cos x-\sin x$ at the point $M(0,1,1)$.
(b) find one point Q on the above surface S at which the tangent plane is parallel to the plane $P_{2}:-2 x+2 y+4 z+23=0$.
(c) Find the equations of the normal line L to the surface given by the equation: $z^{2}=y \cos x-\sin x$ at the point $M(0,1,1)$.

