205-Math

Summer Semester (1439/1440)

Question 1(1). Find initial point of the vector $\overrightarrow{PQ} = \mathbf{j} - 2\mathbf{k}$ if the terminal point is Q(-3,-1,2)

Question2 (3). show that the line
$$\begin{cases} x = 1 + 2t \\ y = -1 + 6t \text{ is orthogonal to the plane } x + 3y - 4z + 5 = 0 \\ z = 3 - 8t \end{cases}$$

Question3 (5). Given that the points P(6,-3,-7), Q(2,5,13) and $R(-3,\lambda,-6)$ form a right angle triangle. (a) Find the value of the real number λ if the right angle is P.

- (b) Find the value of the real number λ if the right angle is Q.
- (c) Find the value of the real number λ if the right angle is R.

Question4 (3+2+3).

- (a) Write and sketch the domain of the function $f(x, y) = \frac{\sqrt{1 x^2 y^2}}{y} + \frac{\sqrt{1 + x^2 + y^2}}{x}$
- (b) Find the $\lim_{(x,y)\to(4,0)} \frac{\sqrt{x}-2\sqrt{y+1}}{x-4y-4}$ (c) Find the $\lim_{(x,y)\to(0,0)} \frac{x^4\cos y-y^4\cos x}{x^2+y^2}$

Question5 (3+3). (a) Find the value of $\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}$ at the point (-1,0,e) if the equation

 $yz - \ln z = x + y$ defines z as a function of x and y.

(b) show that
$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} = 2u \frac{\partial f}{\partial u}$$
 if $f = f(e^{x+y}, e^{x-y})$ and $u = e^{x+y}$.

Question6 (3+3+1). (a) Find the equation of the tangent plane P_1 to the surface S given by the equation $z^2 = y \cos x - \sin x$ at the point M(0,1,1).

- (b) find one point Q on the above surface S at which the tangent plane is parallel to the plane P_2 : -2x + 2y + 4z + 23 = 0.
- (c) Find the equations of the normal line L to the surface given by the equation: $z^2 = y \cos x \sin x$ at the point M(0,1,1).