King Saud University
 Department of Mathematics

1 Mid Term Exam
205-Math
2Semester (1439/1440)

Question $1(3+1+1)$. a) Find the angle between the vectors $\overrightarrow{M_{1} M_{2}}$ and $\overrightarrow{M_{1} M_{3}}$ if

$$
M_{1}(6,-3,-7), M_{2}(2,5,13) \text { and } M_{3}(4,1,3)
$$

b) Show that the points M_{1}, M_{2} and M_{3} lie on a straight line.
c) Find the area of the parallelogram formed by the vectors $\overrightarrow{M_{1} M_{2}}$ and $\overrightarrow{M_{2} M_{3}}$.

Question $2(2+2+2)$. a) Find the equations of the tangent plane U to the surface given by the equation $x^{3}-y^{2}+z^{2}+2=0$ at the point $M(1,2,1)$.
b) Find symmetric and parametric equations of the line L through the point $M(2,3,-1)$ and parallel to the normal vector to the plane U .
c) Find the equation of the plane passing the point $M(2,3,-1)$ and perpendicular to the line L .

Question $3(2+2)$. a) write and sketch the domain of the function $f(x, y)=\frac{x}{y}+\ln \frac{x}{y}$.
b) Find the $\lim _{(x, y) \rightarrow(0,0)} \frac{x-y+2 \sqrt{x}-2 \sqrt{y}}{\sqrt{x}-\sqrt{y}}$

Question 4 (3). Define $f(0,0)$ in a way that extends $f(x, y)=\frac{x^{6} y+x^{2} y^{3}}{\left(x^{4}+y^{2}\right)^{2}}$
to be continuous at the origin.
Question 5 (3). Find $f_{x}(0,0)$ and $f_{y}(0,0)$ if $f(x, y)=\left\{\begin{array}{cc}\frac{\sin \left(x^{3}+y^{4}\right)}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{array}\right.$
Question 6 (4). Find the derivative of $f(x, y)=\frac{x-y}{x y+2}$ at (1,1) in the direction of $v=12 i+5 j$.

