King Saud University Department of Mathematics

1 Mid Term Exam

280-Math

1Semester (1440/1441)H

Question 1(2+2+1*). (a) Determine $\sup E$ if $E = \{ x \in \Re, x^3 + 4x^2 < -3x \}$

(b) Determine inf E if
$$E = \{x \in \Re, x^3 + 4x^2 > -3x\}$$

 $(c)^*$ Determine $\sup E$, $\min E$, $\inf E$ and $\max E$ if $E = \{ x \in [-4, 1], x^3 + 4x^2 + 3x < 0 \}$

Question 2(1+2+4*). (a) Show that the set $E = \{\frac{m}{2m+3n}, n, m \in \mathbb{N}\}$ is bounded.

- (b) Using the definition of inf find inf E.
- $(c)^*$ Using the definition of sup find sup E.

Question 3 (3). (a) Find $\lim_{n \to \infty} x_n$ if $x_n = \frac{2a^n - 3b^n}{a^n + 2b^n}$, a > 0; b > 0

Question 4 (3). Decide whether the set $E = \{\frac{4^n}{n!}, n \in \mathbb{N}\}$ is bounded.

Question 5 (3). Using the $(\varepsilon - N)$ definition of convergence show that:

$$\lim_{n\to\infty}\frac{n}{2n+100}=\frac{1}{2}$$

Question 6 (3). Find the sum of the following series if it converges:

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + \frac{1}{3}n - \frac{2}{9}}$$

Question 7 (2+2+2). Determine whether each series converges or diverges:

(a)
$$\sum_{n=1}^{\infty} (-1)^n \ln (1 + \frac{1}{n})$$
 (b) $\sum_{n=1}^{\infty} (e^{\frac{1}{n^2}} - 1)$ (c) $\sum_{n=1}^{\infty} \frac{(-1)^n n}{e^{n^2 + 1}}$

(b)
$$\sum_{n=1}^{\infty} (e^{\frac{1}{n^2}} - 1)$$

(c)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{e^{n^2+1}}$$