
 

King Saud University 

Department of Mathematics 
 

Mid Term Exam                                280-Math                          1Semester (1441/1442)H   

 

Question1(6).  (a) Decide whether the set { 1 , }E n n n     is bounded or not. 

                          (b) Determine sup E  and inf E  (without using the limit). 
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Question3 (6).  (a) Use appropriate method  to decide whether the sequence 
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                                 converges or diverges.

 

 

                               (b) Decide whether the series 
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                                     converges (absolutely or conditionally) or diverges 

Question4(6).  (a) Show that the equation 
2 1 32 20 2 0x x x x      has at least two real solutions.   

                          (b) Show that if ( ): [0,1] [0,1]f x   and ( )f x is continuous on [0,1] , then 

                               [0,1]c   such that ( ) 2f c c  

Question5(6).  (a) Explain whether the following function is bounded or not 
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   on the interval [0, 2 ]n  .  

   (b) Decide whether the function 
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  is uniformly continuous on the interval (0,1) . 

  



Solutions 

Question1(6).  (a)  Let 
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It is obvious that 
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  or 0 1nx n     

So the set E is bounded .    

(b) It is clear that 
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 The conclusion one can make is the following: 1x x x E    

Since  1x E , we get 1

1
sup 2 1

2 1
E x   


  . 

Now we will prove that inf 0E  . 

First we have 0 1nx n     . Hence 0 is a lower bound of the set E . Let  0 x  . 

 Using  Ar p for the positive number 
2x  there is nsuch that  

21
x

n
  .  

It follows that  
1 1

1
x

n n n
 

 
  . Since the number 

1

1
E

n n


 
 , we conclude that 

the number x  is not an lower bound of the set E . thus 0 is the largest lower bound of E . it 

means that inf 0E  . 

 

Question2(6).  (a)    If  
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Passing to the limit we get  lim 1n
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  (by squeezing rule)  
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Question3 (6).  (a) note that the sequence 
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is the partial sum of the series 

2

1

3 2

2n
n

n n




  

Appling the Ratio test (or root test) we get:  1 1
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Hence we get that the series converges and therefore the sequence nx

 

converges . 

(b)   Appling the Ratio test to the series  
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converges. Therefore the 

given series absolutely converges, hence it converges. 

 

Question4(6).  (a)  Define 
2 1 3( ) 2 20 2x xf x x x       

Noting that  (0) 4 0f     and (1) 11 0f     we deduce that 1 1(0,1) ( ) 0c st f c        

Noting that  
7(2) 2 8 40 2 82 0f         we deduce that 2 2(1,2) ( ) 0c st f c        

Thus the equation 
2 1 32 20 2 0x x x x      has at least two real solutions.   

(b)   If  (0) 0f   , then the number 0 satisfies the requirement.  

Now let (0) 0f   , then (0) 0f  .  Let ( ) ( ) 2F x f x x  . 

We have  (0) (0) 0F f    and   (1) (1) 2 0F f    . 

The function ( )F x  is continuous on [0,1] . Appling the MVT we deduce that [0,1]c   such that 

       ( ) 0 ( ) 2 0 ( ) 2F c f c c f c c           



Question5(6).  (a)  By properties of continuous functions we see that the function  
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   is continuous on the closed and bounded interval [0, 2 ]n  .  

Using boundedness theorem we conclude that  ( )f x  is bounded on the interval [0, 2 ]n  . 

 (b) Define the function 

1

, (0,1]( )

0 , 0

xe xg x

x


  
 

 

Because 
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 , the function ( )g x is continuous on the interval [0,1] . 

Furthermore ( ) ( )g x f x  on the interval (0,1) . 

Using Continuous Extension Theorem we conclude that the function 
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continuous on the interval (0,1) .     


