King Saud University
 Department of Mathematics

Mid Term Exam
280-Math
1Semester (1441/1442)H

Question1(6). (a) Decide whether the set $E=\{\sqrt{n+1}-\sqrt{n}, n \in \mathbb{N}\}$ is bounded or not.
(b) Determine $\sup E$ and $\inf E$ (without using the limit).

Question2(6). Find $\lim _{n \rightarrow \infty} x_{n}$ or show that it is divergent if
(a) $x_{n}=\frac{n^{2}}{\sqrt{n^{6}+1}}+\frac{n^{2}}{\sqrt{n^{6}+2}}+\cdots+\frac{n^{2}}{\sqrt{n^{6}+n}}$
(b) $x_{n}=\frac{1}{1^{2}+1}+\frac{1}{2^{2}+2}+\cdots+\frac{1}{n^{2}+n}$

Question3 (6). (a) Use appropriate method to decide whether the sequence $x_{n}=\sum_{k=1}^{n} \frac{3 k^{2}+2 k}{2^{k}}$
converges or diverges.
(b) Decide whether the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{(1)(3)(5) \ldots(2 n-1)}{3^{n} n!}$
converges (absolutely or conditionally) or diverges
Question4(6). (a) Show that the equation $2^{x^{2}+x+1}-x^{3}-20 x+2=0$ has at least two real solutions.
(b) Show that if $f(x):[0,1] \rightarrow[0,1]$ and $f(x)$ is continuous on $[0,1]$, then $\exists c \in[0,1]$ such that $f(c)=2 c$

Question5(6). (a) Explain whether the following function is bounded or not

$$
f(x)=\frac{(1+\sqrt{x})^{2 n}-(1-\sqrt{x})^{2 n}}{\left(1+\sqrt{x^{2}+1}\right)^{n}} \text { on the interval }[0,2 n]
$$

(b) Decide whether the function $f(x)=e^{-\frac{1}{x}}$ is uniformly continuous on the interval $(0,1)$.

Solutions

Question1(6). (a) Let $x_{n}=\sqrt{n+1}-\sqrt{n}=\frac{1}{\sqrt{n+1}+\sqrt{n}}$
It is obvious that $0<\frac{1}{\sqrt{n+1}+\sqrt{n}}<\frac{1}{\sqrt{n}} \leq 1$ or $0<x_{n}<1 \forall n \in \mathbb{N}$
So the set E is bounded .
(b) It is clear that $x_{n+1}=\frac{1}{\sqrt{n+2}+\sqrt{n+1}}<\frac{1}{\sqrt{n+1}+\sqrt{n}}=x_{n}$

The conclusion one can make is the following: $x \leq x_{1} \quad \forall x \in E$
Since $\quad x_{1} \in E$, we get $\sup E=x_{1}=\frac{1}{\sqrt{2}+1}=\sqrt{2}-1$.
Now we will prove that $\inf E=0$.
First we have $0<x_{n}<1 \forall n \in \mathbb{N}$. Hence 0 is a lower bound of the set E. Let $0<x$.
Using $\operatorname{Ar} \mathrm{p}$ for the positive number x^{2} there is $n \in \mathbb{N}$ such that $\frac{1}{n}<x^{2}$.
It follows that $\frac{1}{\sqrt{n+1}+\sqrt{n}}<\frac{1}{\sqrt{n}}<x$. Since the number $\frac{1}{\sqrt{n+1}+\sqrt{n}} \in E$, we conclude that the number x is not an lower bound of the set E. thus 0 is the largest lower bound of E. it means that $\inf E=0$.

Question2(6). (a) If $x_{n}=\frac{n^{2}}{\sqrt{n^{6}+1}}+\frac{n^{2}}{\sqrt{n^{6}+2}}+\cdots+\frac{n^{2}}{\sqrt{n^{6}+n}}$, then

$$
\frac{1}{\sqrt{1+\frac{1}{n^{5}}}}=\frac{n n^{2}}{\sqrt{n^{6}+n}} \leq x_{n} \leq \frac{n n^{2}}{\sqrt{n^{6}+1}}<\frac{n n^{2}}{\sqrt{n^{6}}}=1
$$

Passing to the limit we get $\lim _{n \rightarrow \infty} x_{n}=1$ (by squeezing rule)
(b) $x_{n}=\frac{1}{1^{2}+1}+\frac{1}{2^{2}+2}+\cdots+\frac{1}{n^{2}+n}$

$$
=\frac{1}{1(1+1)}+\frac{1}{2(2+1)}+\cdots+\frac{1}{n(n+1)}
$$

$=\frac{1}{1.2}+\frac{1}{2.3}+\cdots+\frac{1}{n(n+1)}$
$=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots+\left(\frac{1}{n}-\frac{1}{n+1}\right)$
$=1-\frac{1}{n+1} \quad$. So $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n+1}\right)=1$
Question3 (6). (a) note that the sequence $x_{n}=\sum_{k=1}^{n} \frac{3 k^{2}+2 k}{2^{k}}$ is the partial sum of the series $\sum_{n=1}^{\infty} \frac{3 n^{2}+2 n}{2^{n}}$
Appling the Ratio test (or root test) we get: $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\frac{1}{2}<1$
Hence we get that the series converges and therefore the sequence x_{n} converges .
(b) Appling the Ratio test to the series $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} \frac{(1)(3)(5) \ldots(2 n-1)}{3^{n} n!}$,
we have $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{2 n+1}{3(n+1)}=\frac{2}{3}<1$. So the series $\sum_{n=1}^{\infty} a_{n}$ converges. Therefore the given series absolutely converges, hence it converges.

Question4(6). (a) Define $f(x)=2^{x^{2}+x+1}-x^{3}-20 x+2$
Noting that $f(0)=4>0$ and $f(1)=-11<0$ we deduce that $\exists c_{1} \in(0,1)$ st $f\left(c_{1}\right)=0$
Noting that $f(2)=2^{7}-8-40+2=82>0$ we deduce that $\exists c_{2} \in(1,2)$ st $f\left(c_{2}\right)=0$
Thus the equation $2^{x^{2}+x+1}-x^{3}-20 x+2=0$ has at least two real solutions.
(b) If $f(0)=0$, then the number 0 satisfies the requirement.

Now let $f(0) \neq 0$, then $f(0)>0$. Let $F(x)=f(x)-2 x$.
We have $F(0)=f(0)>0$ and $F(1)=f(1)-2<0$.
The function $F(x)$ is continuous on $[0,1]$. Appling the MVT we deduce that $\exists c \in[0,1]$ such that

$$
F(c)=0 \Rightarrow f(c)-2 c=0 \Rightarrow f(c)=2 c
$$

Question5(6). (a) By properties of continuous functions we see that the function $f(x)=\frac{(1+\sqrt{x})^{2 n}-(1-\sqrt{x})^{2 n}}{\left(1+\sqrt{x^{2}+1}\right)^{n}}$ is continuous on the closed and bounded interval [0, 2n] .

Using boundedness theorem we conclude that $f(x)$ is bounded on the interval $[0,2 n]$.
(b) Define the function $g(x)=\left\{\begin{aligned} e^{-\frac{1}{x}} & , x \in(0,1] \\ 0 & , x=0\end{aligned}\right.$

Because $\lim _{x \rightarrow 0} g(x)=0$, the function $g(x)$ is continuous on the interval $[0,1]$.
Furthermore $g(x) \equiv f(x)$ on the interval $(0,1)$.
Using Continuous Extension Theorem we conclude that the function $f(x)=e^{-\frac{1}{x}}$ is uniformly continuous on the interval $(0,1)$.

