Q1: Use Newton's method with $x_{0}=0$ to find the second approximation of the value of x that produces the point on the graph of $y=x^{2}$ that is closest to the point $(3,2)$. What is the value of the point (x, y) on the graph of $y=x^{2}$.
Solution. The distance between an arbitrary point $\left(x, x^{2}\right)$ on the graph of $y=x^{2}$ and the point $(1,0)$ is

$$
d(x)=\sqrt{(x-3)^{2}+\left(x^{2}-2\right)^{2}}=\sqrt{x^{4}-3 x^{2}-6 x+13}
$$

Because a derivative is needed to find the critical point of d, it is easier to work with the square of this function

$$
F(x)=[d(x)]^{2}=x^{4}-3 x^{2}-6 x+13,
$$

whose minimum will occur at the same value of x as the minimum of $d(x)$. To minimize $F(x)$, we need x so that

$$
F^{\prime}(x)=4 x^{3}-6 x-6=0, \quad \text { gives } \quad f(x)=4 x^{3}-6 x-6 \quad \text { and } \quad f^{\prime}(x)=12 x^{2}-6
$$

Applying Newton's iterative formula to find the approximation of this equation, we have

$$
x_{n+1}=x_{n}-\frac{4 x_{n}^{3}-6 x_{n}-6}{12 x_{n}^{2}-6} .
$$

Using the initial approximation $x_{0}=0$, we get

$$
x_{1}=x_{0}-\frac{4 x_{0}^{3}-6 x_{0}-6}{12 x_{0}^{2}-6}=-1 .
$$

Continue in the same manner, we get, $x_{2}=-1 / 3$. So the point on the graph that is closest to $(3,2)$ has the approximate coordinates $(-1 / 3,1 / 9)$.

Q2: Show that the rate of convergence of the Newton's method at the root $x=0$ of the equation $x^{2} e^{x}=0$ is linear. Use quadratic convergence method to find second approximation to the root using $x_{0}=0.1$. Also, compute the absolute error.

Solution. Given $f(x)=x^{2} e^{x}$ and so $f^{\prime}(x)=\left(x^{2}+2 x\right) e^{x}$. Using Newton's iterative formula, we get

$$
x_{n+1}=x_{n}-\frac{\left(x_{n}^{2} e^{x_{n}}\right)}{\left(x_{n}^{2}+2 x_{n}\right) e_{n}^{x}}=\frac{\left(x_{n}+x_{n}^{2}\right)}{\left(2+x_{n}\right)}, \quad n \geq 0 .
$$

The fixed point form of the developed Newton's formula is

$$
x_{n+1}=g\left(x_{n}\right)=\frac{\left(x_{n}+x_{n}^{2}\right)}{\left(2+x_{n}\right)} .
$$

Then

$$
g(x)=\frac{\left(x+x^{2}\right)}{(2+x)}, \quad g^{\prime}(x)=\frac{\left(x^{2}+4 x+2\right)}{(2+x)^{2}}, \quad g^{\prime}(0)=\frac{1}{2} \neq 0 .
$$

Thus the method converges linearly to the given root.
The quadratic convergent method is modified Newton's method

$$
x_{n+1}=x_{n}-m \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \quad n \geq 0
$$

where m is the order of multiplicity of the zero of the function. To find m, we do

$$
f^{\prime \prime}(x)=\left(x^{2}+4 x+2\right) e^{x}, \quad \text { and } \quad f^{\prime \prime}(0)=2 \neq 0
$$

so $m=2$. Thus

$$
x_{n+1}=x_{n}-2 \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-2 \frac{x_{n}^{2} e^{x_{n}}}{\left(x_{n}^{2}+2 x_{n}\right) e_{n}^{x}}=x_{n}-2 \frac{x_{n}^{2}}{\left(x_{n}^{2}+2 x_{n}\right)}, \quad n \geq 0 .
$$

Now using initial approximation $x_{0}=0.1$, we have

$$
x_{1}=x_{0}-2 \frac{x_{0}^{2}}{\left(x_{0}^{2}+2 x_{0}\right)}=0.00476, \quad x_{2}=x_{1}-2 \frac{x_{1}^{2}}{\left(x_{1}^{2}+2 x_{1}\right)}=0.0000311,
$$

the required two approximations. The possible absolute error is

$$
\left.\mid \alpha-x_{2}\right)|=|0.0-0.0000311|=0.0000311 .
$$

Q3: Show that the secant method for finding approximation of the cubic root of a positive number N is

$$
x_{n+1}=\frac{x_{n} x_{n-1}\left(x_{n}+x_{n-1}\right)+N}{x_{n}^{2}+x_{n} x_{n-1}+x_{n-1}^{2}}, \quad n \geq 1 .
$$

Carry out the first two approximations for the cubic root of 27 , using $x_{0}=2, x_{1}=2.5$ and also compute absolute error.

Solution. We shall compute $x=N^{1 / 3}$ by finding a positive root for the nonlinear equation

$$
x^{3}-N=0,
$$

where $N>0$ is the number whose root is to be found. If $f(x)=0$, then $x=\alpha=N^{1 / 3}$ is the exact zero of the function

$$
f(x)=x^{3}-N .
$$

Since the secant formula is

$$
x_{n+1}=x_{n}-\frac{\left(x_{n}-x_{n-1}\right) f\left(x_{n}\right)}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}, \quad n \geq 1 .
$$

Hence, assuming the initial estimates to the root, say, $x=x_{0}, x=x_{1}$, and by using the secant iterative formula, we have
$x_{2}=x_{1}-\frac{\left(x_{1}-x_{0}\right)\left(x_{1}^{3}-N\right)}{\left(x_{1}^{3}-N\right)-\left(x_{0}^{3}-N\right)}=x_{1}-\frac{\left(x_{1}-x_{0}\right)\left(x_{1}^{3}-N\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}^{2}+x_{1} x_{0}+x_{0}^{2}\right)}=\frac{x_{1} x_{0}\left(x_{1}+x_{0}\right)+N}{x_{1}^{2}+x_{1} x_{0}+x_{0}^{2}}$.
In general, we have

$$
x_{n+1}=\frac{x_{n} x_{n-1}\left(x_{n}+x_{n-1}\right)+N}{x_{n}^{2}+x_{n} x_{n-1}+x_{n-1}^{2}}, \quad n=1,2, \ldots,
$$

the secant formula for approximation of the square root of number N. Now using this formula for approximation of the square root of $N=27$, taking $x_{0}=2$ and $x_{1}=2.5$, we have

$$
x_{2}=3.2459, \quad \text { and } \quad x_{3}=2.9568
$$

Hence

$$
\text { Absolute Error }=\left|27^{1 / 3}-x_{3}\right|=|3-2.9568|=0.0431,
$$

is the possible absolute error.

Q4: Find the first approximation of the point of intersection of the circle $x^{2}+y^{2}=1$ and the ellipse $\frac{1}{3} x^{2}+\frac{1}{2} y^{2}=1$ using Newton's method, starting with initial approximation $\left(x_{0}, y_{0}\right)^{T}=(1,1)^{T}$.

Solution. We are given the nonlinear system

$$
\begin{gathered}
x^{2}+y^{2}=1 \\
\frac{1}{3} x^{2}+\frac{1}{2} y^{2}=1
\end{gathered}
$$

and it gives the functions and the first partial derivatives as follows:

$$
\begin{array}{lll}
f_{1}(x, y)=x^{2}+y^{2}-1, & f_{1 x}=2 x, & f_{1 y}=2 y, \\
f_{1}(x, y)=\frac{1}{3} x^{2}+\frac{1}{2} y^{2}-1, & f_{2 x}=\frac{2}{3} x, & f_{2 y}=y .
\end{array}
$$

At the given initial approximation $x_{0}=1$ and $y_{0}=1$, we get

$$
\begin{aligned}
& f_{1}(1,1)=1, \quad \frac{\partial f_{1}}{\partial x}=f_{1_{x}}=2, \quad \frac{\partial f_{1}}{\partial y}=f_{1_{y}}=2 \\
& f_{2}(1,1)=-\frac{1}{6}, \quad \frac{\partial f_{1}}{\partial x}=f_{2_{x}}=\frac{2}{3}, \quad \frac{\partial f_{2}}{\partial y}=f_{2_{y}}=1
\end{aligned}
$$

The Jacobian matrix J and its inverse J^{-1} at the given initial approximation can be calculated as follows:

$$
J=\left(\begin{array}{ll}
\frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} \\
\frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y}
\end{array}\right)=\left(\begin{array}{cc}
2 & 2 \\
\frac{2}{3} & 1
\end{array}\right) \quad \text { and } \quad J^{-1}=\frac{1}{2 / 3}\left(\begin{array}{rr}
1 & -2 \\
-\frac{2}{3} & 2
\end{array}\right) .
$$

Substituting all these values, we get the first approximation as follows:

$$
\binom{x_{1}}{y_{1}}=\binom{1}{1}-\frac{1}{2 / 3}\left(\begin{array}{rr}
1 & -2 \\
-\frac{2}{3} & 2
\end{array}\right)\binom{1}{-\frac{1}{6}}=\binom{-1}{2.5} .
$$

Q5: Convert the equation $2^{x}-5 x+1=0$ to the fixed-point problem

$$
x=\frac{1}{1+c}\left(c x+\frac{2^{x}+1}{5}\right),
$$

with c a constant. Find a value of c to ensure rapid convergence of the following scheme near $x=0.1$

$$
x_{n+1}=\frac{1}{1+c}\left(c x_{n}+\frac{2^{x_{n}}+1}{5}\right), \quad n \geq 0
$$

Compute the third iterates, starting with $x_{0}=0.1$.

Solution. Given $2^{x}-5 x+1=0$ and it can be written as for any c

$$
x(c-c+1)=\frac{2^{x}+1}{5} \quad \text { or } \quad x(c+1)-x c=\frac{2^{x}+1}{5} \quad \text { or } \quad x(c+1)=x c+\frac{2^{x}+1}{5} .
$$

From this we have

$$
x=\frac{1}{1+c}\left(c x+\frac{2^{x}+1}{5}\right)=g(x)
$$

and it gives the iterative scheme

$$
x_{n+1}=\frac{1}{1+c}\left(c x_{n}+\frac{2^{x_{n}}+1}{5}\right)=g\left(x_{n}\right), \quad n \geq 0 .
$$

For guaranteed the convergence will be rapid if

$$
g^{\prime}(x)=0, \quad \text { gives } \quad c=-\frac{2^{x} \ln 2}{5}
$$

Thus, $c=g^{\prime}(0.1)=-\frac{2^{x} \ln 2}{5}=-0.1486$. Now to find third iterates when $x_{0}=0.5$

$$
\begin{aligned}
& x_{1}=\frac{1}{1+c}\left(c x_{0}+\frac{2^{x_{0}}+1}{5}\right)=0.4692 \\
& x_{2}=\frac{1}{1+c}\left(c x_{1}+\frac{2^{x_{1}}+1}{5}\right)=0.4782 \\
& x_{3}=\frac{1}{1+c}\left(c x_{2}+\frac{2^{x_{2}}+1}{5}\right)=0.4787
\end{aligned}
$$

the required approximations at the value of $c=-0.1486$.

