Questions :

Q1: Consider the two schemes:
(i) $x_{n+1}=\sqrt{\frac{5}{x_{n}}}$,
(ii) $\quad x_{n+1}=\frac{1}{3}\left[2 x_{n}+\frac{5}{x_{n}^{2}}\right], n=0,1,2, \ldots$

Which iteration will converge faster to $\sqrt[3]{5}$? Explain your answer. Use the faster scheme to find the second approximation, starting with $x_{0}=1.5$.

Solution. It can be easily verify as follows. From the first sequence, we have

$$
g_{1}(x)=5^{1 / 2} x^{-1 / 2} \quad \text { and } \quad g_{1}^{\prime}(x)=5^{1 / 2}\left[-\frac{1}{2} x^{-3 / 2}\right]
$$

which implies that

$$
\left|g_{1}^{\prime}\left(5^{1 / 3}\right)\right|=\left|-\frac{5^{1 / 2}}{2}\left[\left(5^{1 / 3}\right)^{-3 / 2}\right]\right|=\frac{1}{2}=0.5<1 .
$$

Similarly, from the second sequence, we have

$$
g_{2}(x)=\frac{1}{3}\left[2 x+\frac{5}{x^{2}}\right] \quad \text { and } \quad g_{2}^{\prime}(x)=\frac{1}{3}\left[2-\frac{10}{x^{3}}\right]
$$

gives

$$
\left|g_{2}^{\prime}\left(5^{1 / 3}\right)\right|=\frac{1}{3}\left[2-\frac{10}{\left(5^{1 / 3}\right)^{3}}\right]=\frac{1}{3}[2-2]=0.0 .
$$

We note that both sequences are converging to $\sqrt[3]{5}$ but the second sequence (ii) will converges faster than the first sequence (i) because the value of $\left|g_{2}^{\prime}(\sqrt[3]{5})\right|$ is smaller than by $\left|g_{1}^{\prime}(\sqrt[3]{5})\right|$.
Given $x_{0}=1.5$, using faster convergent sequence (first one), we have

$$
\begin{aligned}
& x_{1}=\frac{1}{3}\left[2 x_{0}+\frac{5}{x_{0}^{2}}\right]=\frac{1}{3}\left[2(1.5)+\frac{5}{(1.5)^{2}}\right]=1.7407, \\
& x_{2}=\frac{1}{3}\left[2 x_{1}+\frac{5}{x_{1}^{2}}\right]=\frac{1}{3}\left[2(1.7407)+\frac{5}{(1.7407)^{2}}\right]=1.7105,
\end{aligned}
$$

the required second approximation.

Q2: Successive approximations x_{n} to the desired root of an equation $f(x)=0$ are generated by the scheme

$$
x_{n+1}=\frac{1+3 x_{n}^{2}}{4+x_{n}^{3}}, \quad n \geq 0 .
$$

Find $f\left(x_{n}\right)$ and $f^{\prime}\left(x_{n}\right)$ and then use the Newton's method to find the approximation of the root accurate to 10^{-2}, starting with $x_{0}=0.5$.
Solution. Given

$$
x=\frac{1+3 x^{2}}{4+x^{3}}=g(x)
$$

and

$$
x-g(x)=x-\frac{1+3 x^{2}}{4+x^{3}}=\frac{x^{4}-3 x^{2}+4 x-1}{4+x^{3}}
$$

Since

$$
f(x)=x-g(x)=0,
$$

therefore, we have

$$
f\left(x_{n}\right)=x_{n}^{4}-3 x_{n}^{2}+4 x_{n}-1 \quad \text { and } \quad f^{\prime}\left(x_{n}\right)=4 x_{n}^{3}-6 x_{n}+4 .
$$

Using these functions values in the Newton's iterative formula,

$$
x_{n+1}=x_{n}-\frac{x_{n}^{4}-3 x_{n}^{2}+4 x_{n}-1}{4 x_{n}^{3}-6 x_{n}+4} .
$$

Finding the first approximation of the root using the initial approximation $x_{0}=0.5$, we get

$$
x_{1}=x_{0}-\frac{x_{0}^{4}-3 x_{0}^{2}+4 x_{0}-1}{4 x_{0}^{3}-6 x_{0}+4}=0.5-\frac{0.3125}{1.5}=0.2917 .
$$

Similarly, the other approximations can be obtained as

$$
x_{2}=0.2917-\frac{(-0.0813)}{2.3491}=0.3263 ; \quad x_{3}=0.3263-\frac{(-0.0029)}{2.1812}=0.3276
$$

Notice that $\quad\left|x_{3}-x_{2}\right|=|0.3276-0.3263|=0.0013$.

Q3: Show that the secant method for finding approximation of the $p t h$ root of a positive number N is

$$
x_{n+1}=\frac{\left(x_{n}-x_{n-1}\right) N+\left(x_{n}^{p-1}-x_{n-1}^{p-1}\right) x_{n} x_{n-1}}{x_{n}^{p}-x_{n-1}^{p}}, \quad n \geq 1 .
$$

Carry out the first two approximations for the square root of 9 , using $x_{0}=2, x_{1}=2.5$ and also compute absolute error.

Solution. We shall compute $x=N^{1 / p}$ by finding a positive root for the nonlinear equation

$$
x^{p}-N=0,
$$

where $N>0$ is the number whose root is to be found. If $f(x)=0$, then $x=\alpha=N^{1 / p}$ is the exact zero of the function

$$
f(x)=x^{p}-N .
$$

Since the secant formula is

$$
x_{n+1}=x_{n}-\frac{\left(x_{n}-x_{n-1}\right) f\left(x_{n}\right)}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}, \quad n \geq 1 .
$$

Hence, by using the secant iterative formula, we have

$$
x_{2}=x_{n}-\frac{\left(x_{n}-x_{n-1}\right)\left(x_{n}^{p}-N\right)}{\left(x_{n}^{p}-N\right)-\left(x_{n-1}^{p}-N\right)}=x_{n}-\frac{\left(x_{n}-x_{n-1}\right)\left(x_{n}^{p}-N\right)}{\left(x_{n}^{p}-x_{n-1}^{p}\right)} .
$$

After, simplifying, we have

$$
x_{n+1}=\frac{\left(x_{n}-x_{n-1}\right) N+\left(x_{n}^{p-1}-x_{n-1}^{p-1}\right) x_{n} x_{n-1}}{x_{n}^{p}-x_{n-1}^{p}}, \quad n \geq 1,
$$

the secant formula for approximation of the pth root of number N. Now using this formula for approximation of the square root $(p=2)$ of $N=9$, taking $x_{0}=2$ and $x_{1}=2.5$, we have

$$
x_{2}=3.1111 \quad \text { and } \quad x_{3}=2.9901 .
$$

Hence

$$
\text { Absolute Error }=\left|9^{1 / 2}-x_{3}\right|=|3-2.9901|=0.0099,
$$

is the possible absolute error.

Q4: Find the values of a, b and c such that the iterative scheme

$$
x_{n+1}=a x_{n}+\frac{b N}{x_{n}^{2}}+\frac{c N^{2}}{x_{n}^{5}}, \quad n \geq 0
$$

converges at least cubically to $\alpha=N^{\frac{1}{3}}$.

Solution. Given the iterative scheme converges at least cubically means $g^{\prime}=g^{\prime \prime}=0$ at $\alpha=N^{\frac{1}{3}}$. Let

$$
\begin{gathered}
g(x)=a x+\frac{b N}{x^{2}}+\frac{c N^{2}}{x^{5}}, \quad g\left(N^{\frac{1}{3}}\right)=1=a+b+c, \\
g^{\prime}(x)=a-\frac{2 b N}{x^{3}}-\frac{5 c N^{2}}{x^{6}}, \quad g^{\prime}\left(N^{\frac{1}{3}}\right)=0=a-2 b-5 c, \\
g^{\prime \prime}(x)=0+\frac{6 b N}{x^{4}}+\frac{30 c N^{2}}{x^{7}}, \quad g^{\prime \prime}\left(N^{\frac{1}{3}}\right)=0=3 b+15 c,
\end{gathered}
$$

Solving these three equations for unknowns a, b and c, we obtain $a=1, b=\frac{1}{9}$ and $c=-\frac{1}{9}$. Thus

$$
x_{n+1}=x_{n}+\frac{N}{9 x_{n}^{2}}-\frac{N^{2}}{9 x_{n}^{5}}, \quad n \geq 0
$$

the required iterative scheme which converges at least cubically to $\alpha=N^{\frac{1}{3}}$.

Q5: If $x=\alpha$ is a root of $f(x)=0$, with $f(\alpha)=f^{\prime}(\alpha)=f^{\prime \prime}(\alpha)=f^{\prime \prime \prime}(\alpha)=f^{(4)}(\alpha)=0$ but $f^{(5)}(\alpha) \neq 0$, then show that the rate of convergence of the Modified Newton's method is at least quadratic.

Solution. The first modified Newton's iteration function is define as follows:

$$
g(x)=x-m \frac{f(x)}{f^{\prime}(x)} .
$$

Since the function $f(x)$ has multiple root of multiplicity 5 , so

$$
f(x)=(x-\alpha)^{5} h(x)
$$

and its derivative is

$$
f^{\prime}(x)=5(x-\alpha)^{4} h(x)+(x-\alpha)^{5} h^{\prime}(x) .
$$

Substituting the values of the $f(x)$ and $f^{\prime}(x)$, we get

$$
g(x)=x-\frac{5(x-\alpha)^{5} h(x)}{\left(5(x-\alpha)^{4} h(x)+(x-\alpha)^{5} h^{\prime}(x)\right)},
$$

or

$$
g(x)=x-\frac{5(x-\alpha) h(x)}{\left(5 h(x)+(x-\alpha) h^{\prime}(x)\right)} .
$$

Then

$$
\begin{aligned}
g^{\prime}(x)=1- & 5\left\{\left([5 h(x)+(x-\alpha)]\left[h(x)+(x-\alpha) h^{\prime}(x)\right]-[(x-\alpha) h(x)]\right.\right. \\
& {\left.\left.\left[5 h^{\prime}(x)+h^{\prime}(x)+(x-\alpha) h^{\prime \prime}(x)\right]\right)\right\} /\left(\left[5 h(x)+(x-\alpha) h^{\prime}(x)\right]^{2}\right) . }
\end{aligned}
$$

At $x=\alpha$, and since $f(\alpha)=0$, we have

$$
g^{\prime}(\alpha)=1-\frac{\left[5^{2} h^{2}(\alpha)\right]}{[5 h(\alpha)]^{2}}, \quad g^{\prime}(\alpha)=0
$$

Therefore, the modified Newton's method converges to a multiple root α and the convergence is at least quadratically.

