King Saud University: Mathematics Department M-254 Semester II (1st Midterm Exam) 1438-1439 H Max Marks=25 Time Allowed: 90 Mins.

Questions: $\quad(6+6+7+6)$

Q1: Show that the iterative procedure for evaluating $N^{\frac{1}{p}}$ by using secant method can be written

$$
x_{n+1}=\frac{x_{n} x_{n-1}\left(x_{n}^{p-1}-x_{n-1}^{p-1}\right)+N\left(x_{n}-x_{n-1}\right)}{x_{n}^{p}-x_{n-1}^{p}} .
$$

Then use it to find the second approximation x_{3} of the square root of 9 using the initial approximations $x_{0}=2, x_{1}=2.5$. Compute the absolute error.

Q2: Consider the nonlinear equation $e^{x}-1=x$, which has a multiple root. Use a quadratic convergent method to find the second approximation x_{2} of this root using the initial approximation $x_{0}=0.5$.

Q3: Consider solving the nonlinear equation $x^{3}-1=3 x$ in the interval [1,2].
(a) Show that the iterative scheme $x_{n+1}=\left(3 x_{n}+1\right)^{\frac{1}{3}}, n \geq 0$ is suitable for solving this equation.
(b) Use this iterative scheme to compute the third approximation x_{3} when $x_{0}=1.0$.
(c) Compute an error bound of your approximation.

Q4: Consider the iterative scheme $x_{n+1}=x_{n}+\lambda\left(1-2 e^{-x_{n}}\right)$.
(a) Show that this iterative scheme converges to the root $\alpha=\ln (2)$ for $\lambda=-1$.
(b) Find the values of λ for which the scheme converges.
(c) Find the values of λ giving a quadratic convergence of the scheme in (b).

King Saud University: Mathematics Department M-254 Semester II (1st Midterm Exam Solution) 1438-1439 H Max Marks=25 Time Allowed: 90 Mins.

Questions:

$$
(6+6+7+6)
$$

Q1: Show that the iterative procedure for evaluating $N^{\frac{1}{p}}$ by using secant method can be written

$$
x_{n+1}=\frac{x_{n} x_{n-1}\left(x_{n}^{p-1}-x_{n-1}^{p-1}\right)+N\left(x_{n}-x_{n-1}\right)}{x_{n}^{p}-x_{n-1}^{p}} .
$$

Then use it to find the second approximation x_{3} of the square root of 9 using the initial approximations $x_{0}=2, x_{1}=2.5$. Compute the absolute error.

Solution. We shall compute $x=N^{1 / p}$ by finding a positive root for the nonlinear equation

$$
x^{p}-N=0,
$$

where $N>0$ is the number whose root is to be found. If $f(x)=0$, then $x=\alpha=N^{1 / p}$ is the exact zero of the function

$$
f(x)=x^{p}-N .
$$

Since the secant formula is

$$
x_{n+1}=x_{n}-\frac{\left(x_{n}-x_{n-1}\right) f\left(x_{n}\right)}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}, \quad n \geq 1 .
$$

Hence, assuming the initial estimates to the root, say, $x=x_{0}, x=x_{1}$, and by using the Secant iterative formula, we have

$$
x_{2}=x_{1}-\frac{\left(x_{1}-x_{0}\right)\left(x_{1}^{p}-N\right)}{\left(x_{1}^{p}-N\right)-\left(x_{0}^{p}-N\right)}=x_{1}-\frac{\left(x_{1}-x_{0}\right)\left(x_{1}^{p}-N\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}+x_{0}\right)},
$$

or

$$
x_{2}=\frac{x_{1} x_{0}\left(x_{1}^{p-1}-x_{0}^{p-1}\right)+N\left(x_{1}-x_{0}\right)}{x_{1}^{p}-x_{0}^{p}} .
$$

In general, we have

$$
x_{n+1}=\frac{x_{n} x_{n-1}\left(x_{n}^{p-1}-x_{n-1}^{p-1}\right)+N\left(x_{n}-x_{n-1}\right)}{x_{n}^{p}-x_{n-1}^{p}}, \quad n=1,2, \ldots,
$$

the Secant formula for approximation of the square root of number N. Now using this formula for approximation of the square root of $N=9$, taking $x_{0}=2$ and $x_{1}=2.5$, we have

$$
x_{2}=3.1111 \quad \text { and } \quad x_{3}=2.9901 .
$$

Hence

$$
\text { Absolute Error }=\left|9^{1 / 2}-x_{3}\right|=|3-2.9901|=0.0099
$$

is the possible absolute error.

Q2: Consider the nonlinear equation $e^{x}-1=x$, which has a multiple root.
Use a quadratic convergent method to find the second approximation x_{2} of this root using the initial approximation $x_{0}=0.5$.
Solution. Since $f(x)=e^{x}-x-1$, we have $f^{\prime}(x)=e^{x}-1$ and $f^{\prime \prime}(x)=e^{x}$. Now using the Modified Newton's formula (second modified)

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right) f^{\prime}\left(x_{n}\right)}{\left[f^{\prime}\left(x_{n}\right)\right]^{2}-\left[f\left(x_{n}\right)\right]\left[f^{\prime \prime}\left(x_{n}\right)\right]}, \quad n \geq 0
$$

we have

$$
x_{n+1}=x_{n}-\frac{\left(e^{x_{n}}-x_{n}-1\right)\left(e^{x_{n}}-1\right)}{\left[e^{x_{n}}-1\right]^{2}-\left(e^{x_{n}}-x_{n}-1\right)\left(e^{x_{n}}\right)}, \quad n \geq 0 .
$$

For $n=0$ and the initial approximation $x_{0}=0.5$, we have

$$
x_{1}=x_{0}-\frac{\left(e^{x_{0}}-x_{0}-1\right)\left(e^{x_{0}}-1\right)}{\left[e^{x_{0}}-1\right]^{2}-\left(e^{x_{0}}-x_{0}-1\right)\left(e^{x_{0}}\right)}=-0.0493
$$

and

$$
x_{2}=x_{1}-\frac{\left(e^{x_{1}}-x_{1}-1\right)\left(e^{x_{1}}-1\right)}{\left[e^{x_{1}}-1\right]^{2}-\left(e^{x_{1}}-x_{1}-1\right)\left(e^{x_{1}}\right)}=-0.0004
$$

which is the required second approximation.
Q3: Consider solving the nonlinear equation $x^{3}-1=3 x$ in the interval $[1,2]$.
(a) Show that the iterative scheme $x_{n+1}=\left(3 x_{n}+1\right)^{\frac{1}{3}}, n \geq 0$ is suitable for solving this equation.
(b) Use this iterative scheme to compute the third approximation x_{3} when $x_{0}=1.0$.
(c) Compute an error bound of your approximation.

Solution. Since, we observe that $f(1) f(2)<0$, then the solution we seek is in the interval [1, 2].
(a) For $g(x)=(3 x+1)^{\frac{1}{3}}, g$ is increasing function of x, as $g(1)=(4)^{\frac{1}{3}}=1.5874$ and $g(2)=(7)^{\frac{1}{3}}=1.9129$ both lie in the interval [1, 2]. Thus $g(x) \in[1,2]$, for all $x \in[1,2]$. Also, we have $g^{\prime}(x)=1 /(3 x+1)^{\frac{2}{3}}<1$, for all x in the given interval $[1,2]$, so from fixed-point theorem the $g(x)$ has a unique fixed-point.
(b) using the given initial approximation $x_{0}=1.5$, we have the other approximations as

$$
x_{1}=g\left(x_{0}\right)=1.5874, \quad x_{2}=g(1.5874)=1.7928, \quad x_{3}=g(1.7928)=1.8545 .
$$

(c) Since $a=1$ and $b=2$, then the value of k can be found as follows

$$
k_{1}=\left|g^{\prime}(1)\right|=\left|1 /(4)^{\frac{2}{3}}\right|=0.3969 \quad \text { and } \quad k_{2}=\left|g^{\prime}(2)\right|=\left|1 /(7)^{\frac{2}{3}}\right|=0.2733,
$$

which give $k=\max \left\{k_{1}, k_{2}\right\}=0.3969$. Thus using the error formula, we have

$$
\left|\alpha-x_{3}\right| \leq \frac{(0.3969)^{3}}{1-0.3969}|1.5874-1.0|=0.0609
$$

Q4: Consider the iterative scheme $x_{n+1}=x_{n}+\lambda\left(1-2 e^{-x_{n}}\right)$.
(a) Show that this iterative scheme converges to the root $\alpha=\ln (2)$ for $\lambda=-1$.
(b) Find the values of λ for which the scheme converges.
(c) Find the values of λ giving a quadratic convergence of the scheme in (b).

Solution. (a) Given $\lambda=-1$,

$$
g(x)=x-\left(1-2 e^{-x}\right),
$$

and at fixed-point $\alpha=\ln (2)$, we have

$$
g(\ln (2))=\ln (2)
$$

Also

$$
g^{\prime}(x)=1-2 e^{-x}, \quad\left|g^{\prime}(\ln (2))\right|=\left|1-2 e^{-\ln (2)}\right|=|1-1|=0,
$$

so the iterative scheme converges to the root $\alpha=\ln (2)$.
(b) Given

$$
g(x)=x+\lambda\left(1-2 e^{-x}\right), \quad g^{\prime}(x)=1+\lambda\left(2 e^{-x}\right)
$$

Since

$$
\left|g^{\prime}(\ln (2))\right|<1, \quad\left|1+\lambda\left(2 e^{-\ln (2)}\right)\right|<1
$$

so

$$
|1+\lambda|<1, \quad \text { gives } \quad-2<\lambda<0
$$

(c) Given

$$
g^{\prime}(\ln (2))=0, \quad \text { gives } \quad 1+\lambda=0, \quad \lambda=-1 .
$$

Note that

$$
g^{\prime \prime}(x)=-2 \lambda e^{-x} \quad \text { and } \quad g^{\prime \prime}(\ln (2))=-\lambda \neq 0 .
$$

