King Saud University: Math. Dept. M-254
 Semester I (1st Midterm Exam) 1438-1439 H
 Max Marks=25 Time Allowed: 90 Mins.

Questions:

Q1: Which of the following iterations

$$
\text { (i) } \quad x_{n+1}=e^{x_{n}}-x_{n}-1, \quad n \geq 0 \quad \text { (ii) } \quad x_{n+1}=\ln \left(2 x_{n}+1\right), \quad n \geq 0
$$

is most suitable to approximate the root of the equation $e^{x}-2 x=1$ in the interval [1,2] ? Starting with $x_{0}=1.5$, find the second approximation x_{2} of the root. Also, compute the error bound for the approximation.

Q2: Successive approximations x_{n} to the desired root $\sqrt{3}$ are generated by the scheme

$$
x_{n+1}=\frac{1}{2} x_{n}+\frac{3}{2 x_{n}}, \quad n \geq 0 .
$$

Use Newton's method to find the second approximation x_{2} of the root, starting with $x_{0}=2$. Show that the order of convergence of Newton's method is at least quadratic.

Q3: Use Secant method to find the second approximation, using $x_{0}=1$ and $x_{1}=2$, of the value of x that produces the point on the graph of $y=\frac{1}{x}$ that is closest to the point $(2,1)$.

Q4: Show that $\alpha=1$ is the root for the equation $x^{4}-8 x^{3}+18 x^{2}=16 x-5$. Use quadratic convergent iterative method to find the first approximation of α starting with $x_{0}=0.5$. Compute absolute error.

Q5: Find the first approximation for the nonlinear system

$$
\begin{array}{ll}
y^{2}(1-x) & =x^{3} \\
x^{2}+y^{2} & =1
\end{array}
$$

using Newton's method, starting with initial approximation $\left(x_{0}, y_{0}\right)^{T}=(1,1)^{T}$.

Solution of the Midterm I Examination

King Saud University: Math. Dept. M-254 Semester I (1st Midterm Exam) 1438-1439 H Max Marks=25 Time Allowed: 90 Mins.

Question 1: Which of the following iterations

$$
\text { (i) } \quad x_{n+1}=e^{x_{n}}-x_{n}-1, \quad n \geq 0 \quad \text { (ii) } \quad x_{n+1}=\ln \left(2 x_{n}+1\right), \quad n \geq 0
$$

is most suitable to approximate the root of the equation $e^{x}-2 x=1$ in the interval $[1,2]$? Starting with $x_{0}=1.5$, find the second approximation x_{2} of the root. Also, compute the error bound for the approximation.

Solution. Since $f(x)=e^{x}-2 x-1$, we observe that

$$
f(1) \cdot f(2)=(-0.2817)(2.3891)<0,
$$

then the solution we seek is in the interval $[1,2]$.
For the first scheme, we are given $g(x)=e^{x}-x-1$.
For this $g(x)=e^{x}-x-1$, we have $g^{\prime}(x)=e^{x}-1$, which is greater than unity throughout the interval $[1,2]$. So by the Fixed-Point Theorem, this iteration will fail to converge.

For the second scheme, we are given $g(x)=\ln (2 x+1)$.
For this $g(x)=\ln (2 x+1)$, we have $g^{\prime}(x)=2 /(2 x+1)<1$, for all x in the given interval $[1,2]$. Also, g is increasing function of x, and $g(1)=\ln (3)=1.0986123$ and $g(2)=\ln (5)=1.6094379$ both lie in the interval [1, 2]. Thus $g(x) \in[1,2]$, for all $x \in[1,2]$, so from Fixed-Point Theorem, this $\mathrm{g}(\mathrm{x})$ has a unique fixed-point.

For finding the second approximation of the root lying in the interval [1, 2], we will use the following suitable scheme

$$
x_{n+1}=\ln \left(2 x_{n}+1\right), \quad n \geq 0 .
$$

Using the given initial approximation $x_{0}=1.5$, we get the first approximation as

$$
x_{1}=g\left(x_{0}\right)=\ln \left(2 x_{0}+1\right)=\ln (2(1.5)+1)=\ln (4)=1.386294,
$$

and similarly, the second approximation is

$$
x_{2}=g\left(x_{1}\right)=\ln \left(2 x_{1}+1\right)=\ln (2(1.386294)+1)=1.327761 .
$$

To compute the error bound, we will use the following formula:

$$
\left|\alpha-x_{n}\right| \leq \frac{k^{n}}{1-k}\left|x_{1}-x_{0}\right| .
$$

Since $a=1, b=2$ are given, and the value of k can be found as follows

$$
\begin{aligned}
& k_{1}=\left|g^{\prime}(1)\right|=|2 / 3|=0.66667 \\
& k_{2}=\left|g^{\prime}(2)\right|=|2 / 5|=0.40
\end{aligned}
$$

which give $k=\max \left\{k_{1}, k_{2}\right\}=0.66667$, therefore, the error bound for our approximation will be as follows:

$$
\left|\alpha-x_{2}\right| \leq \frac{k^{2}}{1-k}\left|x_{1}-x_{0}\right|
$$

and it gives

$$
\left|\alpha-x_{2}\right| \leq \frac{(0.66667)^{2}}{1-0.66667}|1.386294-1.5|
$$

or

$$
\left|\alpha-x_{3}\right| \leq(1.33336)(0.113706)=0.151611 .
$$

Question 2: Successive approximations x_{n} to the desired root $\sqrt{3}$ are generated by the scheme

$$
x_{n+1}=\frac{1}{2} x_{n}+\frac{3}{2 x_{n}}, \quad n \geq 0 .
$$

Use Newton's method to find the second approximation x_{2} of the root, starting with $x_{0}=2$. Show that the order of convergence of Newton's method is at least quadratic.

Solution. Given

$$
x=\frac{1}{2} x+\frac{3}{2 x}=g(x),
$$

and

$$
f(x)=x-g(x)=\frac{1}{2} x-\frac{3}{2 x} .
$$

So

$$
f\left(x_{n}\right)=\frac{1}{2} x_{n}-\frac{3}{2 x_{n}} \quad \text { and } \quad f^{\prime}\left(x_{n}\right)=\frac{1}{2}+\frac{3}{2 x_{n}^{2}}
$$

Using these functions values in the Newton's iterative formula, we have

$$
x_{n+1}=x_{n}-\frac{\left(\frac{x_{n}}{2}-\frac{3}{2 x_{n}}\right)}{\left(\frac{1}{2}+\frac{3}{2 x_{n}^{2}}\right)} .
$$

Finding the first approximation of the root using the initial approximation $x_{0}=2$, we get

$$
x_{1}=x_{0}-\frac{\left(\frac{x_{0}}{2}-\frac{3}{2 x_{0}}\right)}{\left(\frac{1}{2}+\frac{3}{2 x_{0}^{2}}\right)}=1.7143 .
$$

Similarly, the other approximations can be obtained as

$$
x_{2}=x_{1}-\frac{\left(\frac{x_{1}}{2}-\frac{3}{2 x_{1}}\right)}{\left(\frac{1}{2}+\frac{3}{2 x_{1}^{2}}\right)}=1.7319 .
$$

Since

$$
g(x)=x-\frac{\left(\frac{x}{2}-\frac{3}{2 x}\right)}{\left(\frac{1}{2}+\frac{3}{2 x^{2}}\right)}=\frac{6 x}{x^{2}+3},
$$

so

$$
g^{\prime}(x)=\frac{18-6 x^{2}}{\left(x^{2}+3\right)^{2}}
$$

and

$$
g^{\prime}(\sqrt{3})=\frac{18-6(3)}{(3+3)^{2}}=\frac{0}{36}=0 .
$$

Thus at least quadratic.

Question 3: Use Secant method to find the second approximation, using $x_{0}=1$ and $x_{1}=2$, of the value of x that produces the point on the graph of $y=\frac{1}{x}$ that is closest to the point $(2,1)$.

Solution. The distance between an arbitrary point $(x, 1 / x)$ on the graph of $y=1 / x$ and the point $(2,1)$ is

$$
d(x)=\sqrt{(x-2)^{2}+(1 / x-1)^{2}}=\sqrt{x^{2}-4 x+4+1 / x^{2}-2 / x+1} .
$$

Because a derivative is needed to find the critical point of d, it is easier to work with the square of this function

$$
F(x)=[d(x)]^{2}=x^{2}-4 x+4+1 / x^{2}-2 / x+1,
$$

whose minimum will occur at the same value of x as the minimum of $d(x)$. To minimize $F(x)$, we need x so that

$$
F^{\prime}(x)=2 x-4-2 / x^{3}+2 / x^{2}=0, \quad \text { gives, } \quad f(x)=2 x-4-2 / x^{3}+2 / x^{2}
$$

Applying Secant iterative formula to find the approximation of this equation, we have

$$
x_{n+1}=x_{n}-\frac{\left(x_{n}-x_{n-1}\right)\left(2 x_{n}-4-2 / x_{n}^{3}+2 / x_{n}^{2}\right)}{\left(2 x_{n}-4-2 / x_{n}^{3}+2 / x_{n}^{2}\right)-\left(2 x_{n-1}-4-2 / x_{n-1}^{3}+2 / x_{n-1}^{2}\right)}, \quad n \geq 1 .
$$

Finding the second approximation using the initial approximations $x_{0}=1$ and $x_{1}=2$, we get

$$
x_{2}=2-1 / 9=1.8889,
$$

and

$$
x_{3}=1.8667 .
$$

The point on the graph that is closest to $(2,1)$ has the approximate coordinates $(1.8667,0.5356)$.

Question 4: Show that $\alpha=1$ is the root for the equation $x^{4}-8 x^{3}+18 x^{2}=16 x-5$. Use quadratic convergent iterative method to find the first approximation of α starting with $x_{0}=0.5$. Compute absolute error.

Solution. Since

$$
\begin{array}{ll}
f(x)=x^{4}-8 x^{3}+18 x^{2}-16 x+5, & f(1)=0, \\
f^{\prime}(x)=4 x^{3}-24 x^{2}+36 x-16, & f^{\prime}(1)=0, \\
f^{\prime \prime}(x)=12 x^{2}-48 x+36, & f^{\prime \prime}(1)=0, \\
f^{\prime \prime \prime}(x)=24 x-48, & f^{\prime \prime \prime}(1)=-24 \neq 0,
\end{array}
$$

$$
m=3
$$

So using Modified Newton's method, we have

$$
x_{1}=0.5-3 \frac{0.5625}{-3.5}=0.9821
$$

The absolute error is

$$
\left|\alpha-x_{1}\right|=|1-0.9821|=0.0179 .
$$

Question 5: Find the first approximation for the nonlinear system

$$
\begin{array}{ll}
y^{2}(1-x) & =x^{3} \\
x^{2}+y^{2} & =1
\end{array}
$$

using Newton's method, starting with initial approximation $\left(x_{0}, y_{0}\right)^{T}=(1,1)^{T}$.
Solution. Given

$$
\begin{array}{lll}
f_{1}(x, y)=y^{2}(1-x)-x^{3}, & f_{1 x}=-y^{2}-3 x^{2}, & f_{1 y}=2 y(1-x), \\
f_{2}(x, y)=x^{2}+y^{2}-1, & f_{2 x}=2 x, & f_{2 y}=2 y .
\end{array}
$$

At the given initial approximation $x_{0}=1$ and $y_{0}=1$, we have

$$
\begin{aligned}
& f_{1}(1,-1)=-1, \quad \frac{\partial f_{1}}{\partial x}=f_{1_{x}}=-4, \quad \frac{\partial f_{1}}{\partial y}=f_{1_{y}}=0 \\
& f_{2}(1,1)=1, \quad \frac{\partial f_{1}}{\partial x}=f_{2_{x}}=2, \quad \frac{\partial f_{2}}{\partial y}=f_{2_{y}}=2
\end{aligned}
$$

The Jacobian matrix J at the given initial approximation can be calculated as

$$
J=\left(\begin{array}{ll}
\frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} \\
\frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y}
\end{array}\right)=\left(\begin{array}{rr}
-4 & 0 \\
2 & 2
\end{array}\right) \quad \text { and } \quad J^{-1}=\frac{1}{-8}\left(\begin{array}{rr}
2 & 0 \\
-2 & -4
\end{array}\right)
$$

is the inverse of the Jacobian matrix.Now to find the first approximation we have to solve the following equation

$$
\binom{x_{1}}{y_{1}}=\binom{1}{1}-\frac{1}{-8}\left(\begin{array}{rr}
2 & 0 \\
-2 & -4
\end{array}\right)\binom{-1}{1}=\binom{0.75}{0.75},
$$

the required first approximation.

