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6 CHAPTER 1. CONIC SECTIONS

1.1 Parabola

Definition: A parabola is the set of all points in the plane equidistant from
a fixed point F' (called the focus) and a fixed line D (called the directrix) in
the same plane.

Notes:

1. The line passing through the focus F' and perpendicular to the directrix
D is called the axis of the parabola .

2. The point half-way from the focus F’ to the directrix D is called the vertex
of the parabola and is denoted by V .

1.1.1 The vertex of the parabola is the origin :
This section discusses the special case where the vertex of the parabola is (0,0).
There are four different cases :

1) 2% = 4ay , where a > 0

F(0, a)

V (0, 0)
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The parabola opens upwards .
The focus is F'(0,a) .
The equation of the directrix is y = —a .

The axis of the parabola is the y-axis .

2) 22 = —day , where a > 0

V (0, 0)

F(0, —a)

The parabola opens downwards (note the negative sign in the formula).

The focus is F(0, —a) .
The equation of the directrix is y = a .

The axis of the parabola is the y-axis .

3) y? =4dax , where a > 0

V(0,0 F(a, 0)

The parabola opens to the right.
The focus is F'(a,0) .
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The equation of the directrix is x = —a .

The axis of the parabola is the x-axis .

4) y* = —daz , where a > 0

x=a

F(-a, 0) V (0, 0)

The parabola opens to the left (note the negative sign in the formula) .
The focus is F(—a,0) .
The equation of the directrix is x = a .

The axis of the parabola is the x-axis .

Example 1: Find the focus and the directrix of the parabola z? = 4y , and
sketch its graph.

Solution: Since the variable x is of degree 2 and the formula contains a positive
sign then z2 = 4y is similar to case(1), where the parabola opens upwards .
da=4 = a=1

The focus is F(0,1) , and the equation of the directrix is y = —1 .

x2:4y

1 F©O, 1)
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Example 2: Find the focus and the directrix of the parabola y? = —8x , and
sketch its graph.

Solution: Since the variable y is of degree 2 and the formula contains a nega-
tive sign then y? = —8x is similar to case(4), where the parabola opens to the
left .

—4da=-8 = a=2

The focus is F(-2,0) , and the equation of the directrix is z =2 .
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1.1.2 The general formula of a parabola :

This section discusses the general formula of a parabol where the vertex of the
parabola is any point V'(h, k) in the plane.

There are four different cases :

No. | The general formula Focus Directrix | The parabola opens
1 | (z—h)?=4da(y—k) F(h,k+a) | y=k—a | upwards
2 [ (x—h)?=—-daly—k) | F(h,k—a) | y=k+a | downwards
3 | (y—k)?=4a(x—h) F(h+a,k) | x=h—a | to the right
4 | (y—k)?=—da(x—h) | F(h—a,k) | z=h+a | to the left

Example 1: Find the focus and the directrix of the parabola (z + 1)? =

—4(y — 1) , and sketch its graph.

Solution : The equation of the parabola is similar to case (2).
(x—h)?=(@x+1)2=(@-(-1)? = h=-1.

y—k)=@w-1) = k=1.

—4da=-4 = a=1.

The vertex is V(—1,1)

The focus is F'(—1,0) and the equation of the directrix is y = 2.

The parabola opens downwards (note the negative sign in the formula).

V(L1

G+ D2=—4( -1

Example 2: Find the focus and the directrix of the parabola (y—1)% = 8(x+2)
, and sketch its graph.

Solution : The equation of the parabola is similar to case (3).
(y—k?=(@y-1° = k=1.

x—h)=@+2)=(x—-(-2)) = h=-2.

4a=8 = a=2.

The vertex is V(—2,1)

The focus is F'(0,1) and the equation of the directrix is © = —4.

The parabola opens to the right .
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/

V(-2 1) 1F O, 1)

(-1 =8 +2)

AN

Example 3: Find the focus and the directrix of the parabola 2y? —4y+8z+10 =
0, and sketch its graph.

Solution : By completing the square

292 —4y+8r+10=0 = 2y?> —4y=—-8x—10 = 2(y*—2y) = -8z — 10
= 2(y?—2y+1) = —8x—10+2 = 2(y—1)? = —8z-8 = 2(y—1)? = —8(z+1)
= (y—1)2=—-4(z+1)

The equation of the parabola is similar to case (4).

(y—kP?=@y-1° = k=1.

(z—h)=(x+1)=(x—(-1) = h=-1.

—4da=—-4 = a=1.

The vertex is V(—1,1) .

The focus is F(—2,1) and the equation of the directrix is = 0 (the y-axis).
The parabola opens to the left (note the negative sign in the formula)

F(=2,1)* ir
¢ ) V-1, 1)

(-1’ =-4@+1D
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Example 4: Find the focus and the directrix of the parabola z? —6y — 2z = —7
, and sketch its graph.

Solution : By completing the square

22 —6y—20=-7 = 2>-22=6y—7 = 22 —20+1=6y—T+1

= (r-1)2=6y—6 = (x—1)2=6(y—1)

The equation of the parabola is similar to case (1).

(x—h)2=(x-1)?2 = h=1.

(y—k)=@y-1) = k=1.

da=6 = a= 1

The vertex is V(1,1)

5 1
The focus is F' | 1, = | and the equation of the directrix is y = —5

| W

\V]

The parabola opens upwards.

Gc=D*=6(-1

Example 5: Find the equation of the parabola with vertex V(2,1) and focus
F(2,3) and sketch its graph.

Solution : Since the focus is located upper than the vertex then the parabola
opens upwards.

Hence its equation is (z — h)? = 4a(y — k) .

Since the vertex is V(2,1) then h =2 and k =1

a equals the distance between V' (2,1) and F(2,3) which equals 2 .

The equation of the parabola with V(2,1) and F(2,3) is (z — 2)? = 8(y — 1)

x-27=8(y -1
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Example 6: Find the equation of the parabola with focus F/(—1,1) and direc-
trix £ = 1 and sketch its graph.

Solution : Since the focus is located to the left of the directrix then the parabola
opens to the left.

Hence its equation is (y — k)? = —4a(z — h) .

The vertex is half-way beween the focus and the directrix , hence V'(0,1)

a equals the distance between V(0,1) and F'(—1,1) which equals 1 .

The equation of the parabola with F'(—1,1) and directrix z = 1is (y—1)? = —4x

F(-1,1)°¢ 1+V(0, 1)
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1.2 Ellipse

Definition: An ellipse is the set of all points in the plane for which the sum
of the distances to two fixed points is constant.

Notes :

1. The two fixed points are called the foci of the ellipse and are denoted by
F1 and FQ.

2. The midpoint between F; and Fj is called the center of the ellipse and
is denoted by P.

3. The endpoints of the major axis are called the vertices of the ellipse and
are denoted by V7 and V5.

4. The endpoints of the minor axis are denoted by W; and Whs.

W,

1.2.1 The center of the ellipse is the origin :
This section discusses the special case where the center of the ellipse is (0, 0).
There are two different cases :

22 2
1) =+ =1, wherea>b:

Y
a? = b?
The foci of the ellipse are Fy(—¢,0) and Fs(c,0) , where ¢ = va? — b2,
The vertices of the ellipse are Vi(—a,0) and V2(a,0).
The endpoints of the minor axis are W1(0,b) and W5(0, —b).

The major axis lies on the x-axis , and its length is 2a.

The minor axis lies on the y-axis , and its length is 2b.
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Wi(0, b)

Vi(-a,0 P0.0) Va(a, 0)

Fi(=c, 0) F(c, 0)

W10, -b)

22 42
2) 7+771 where b > a :

b2
The foci of the ellipse are Fy(0,c) and F»(0, —c) , where ¢ = v/b2 — a2.
The vertices of the ellipse are V;1(0,b) and V5(0, —b).
The endpoints of the minor axis are Wi (—a,0) and Ws(a,0).
The major axis lies on the y-axis , and its length is 2b.

The minor axis lies on the x-axis , and its length is 2a.

V1(0, b)
Fi(0, ¢)

Wi(=a, 0) IP(0, 0) Wa(a, 0)

F(0, —c)

V2(0, =b)

Example 1: Identify the features of the ellipse 922 + 25y2 = 225 , and sketch
its graph.

922 25y x? y?
=1= —+=—=1
225 = 225 25+9
a’?=25 = a:5§mdb§:9 = b=23.
Since a > b then — + = =1 is similar to case (1).

25 9
c=vVaZ—b=125-9=+16 = 4.
The foci are Fy (—4,0) and F (4,0).
The vertices are V4 (—5,0) and V2(5,0).
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The endpoints of the minor axis are W1(0, 3) and W5 (0, —3).

The length of the major axis is 2a = 10
The length of the minor axis is 2b = 6.

W1 (0, 3)
Vi(=5, 0f Fi40 54, 0) }V,(5, 0)
4 4
X2 g2
4+
» 9 W0, -3)

Example 2: Identify the features of the ellipse 1622 + 932 = 144 , and sketch

its graph.
1622 9y? x? g?
lution : 1622 2 =144 —=1= —+==1
Solution : 16z~ + 9y = 114 144 9+16
a?=9 = a:3andb22:16 = b=4.
Since b > a then %+% =1 is similar to case (2).

=2 —a?2=+16—-9=T.

The foci are F; (O, \ﬁ) and Fy (O7 f\ﬁ)

The vertices are V;(0,4) and V5(0, —4).

The endpoints of the minor axis are W7(—3,0) and W5(3,0).

The length of the major axis is 2b = 8.
The length of the minor axis is 2a = 6.

V10, 4)
\F'ﬂ (0, \/7)
Wi(=3, 0) W»(3, 0)
_\F »Fz(U 7\/77)
=Y V20, -4)
9 16
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1.2.2 The general formula of an ellipse :

This section discusses the general formula of an ellipse where the center of the
ellipse is any point P(h, k) in the plane.

There are two different cases :

No. The general Formula The Foci The Vertices | W7 and Wy
@—h° _ (y—Fk?
1 5 + 72 =1 Fi(h—c,k) | Vi(h—a,k) | Wi(h, k=)
a
(a>b)and c=+va?2—0b2 | Fo(h+c,k) | Va(h+a,k) | Walh,k+b)
(x—h)?  (y—k)
2 5 + 72 =1 Fi(h,k—c¢) | Vi(h,k—=0) | Wi(h—a,k)
a
(b>a)and c=vb?2—a? | Fa(h,k+c¢) | Va(h,k+b) | Wa(h+a,k)

Example 1: Find the equation of the ellipse with foci at (—3,1) , (5,1) , and

one of its vertices is (7,1) , and sketch its graph.

Solution : The center of the ellipse P(h, k) is located in the middle of the two
-3+5 1+1

foci, hence (h, k) = ( 2+ ,;) =(1,1).

¢ is the distance between the center and one of the foci , and it equals to 4 (see

the figure).

Since the major axis (where the two foci lie) is parallel to the x-axis , then the
(z—h)? , (y—h)
a? + b?

a is the distance between the center and one of the vertices, and it equals 6 (see

the figure).
A=a?-b = 42=(6)2-0 = b>=36—-16=20 = b=2V5.

-1 2 -1 2
The equation of the ellipse is (2 36 ) + (y ) =1

20 '
The vertices of the ellipse are V3 (—5,1) and V5(7,1).
The endpoints of the minor axis are W (1, 1+ 2\/5) and Wy (1, 1-— 2\/5)

=1, wherea>b.

general formula of the ellipse is

Wi

1-2v5 =17 -1
W, + =1
36 20
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Example 2: Find the equation of the ellipse with foci at (2,5) , (2,—3) , and

the length of its minor axis equals 6 , and sketch its graph.

Solution : The center of the ellipse P(h, k) is located in the middle of the two

2+2 —-3+5

foci, hence (h, k) = %, 2+ =(2,1).

¢ is the distance between the center and one of the foci , and it equals to 4 (see

the figure).

Since the major axis (where the two foci lie) is parallel to the y-axis , then the
—h)? —k)?

R NED
a b2

The length of the minor axis is 6 means that 2a =6 = a = 3.

A=0-a> = 4)2?=0-3)?2 = *=16+9=25 = b=>5.
—2)2 —1)2

(z —2) +(y25) _1

The vertices of the ellipse are V;(2,6) and V5(2, —4).

The endpoints of the minor axis are W1 (—1,1) and W5(5,1).

general formula of the ellipse is =1, whereb>a .

The equation of the ellipse is

Wi

v, G- 0o
9 25

Example 3: Find the equation of the ellipse with vertices at (—1,4) , (=1, —2)
and the distance between its two foci equals 4 , and sketch its graph.
Solution : The center of the ellipse P(h, k) is located in the middle of the two
-1-1 -2+14
, =(-1,1).

2 2
The distance between the two foci equals 4 means that 2c =4 = ¢=2.
Since the major axis (where the two vertices lie) is parallel to the y-axis , then
x — h)? —k)?
kP b
The length of the major axis (the distance between the two vertices) equals 6 |

vertices, hence (h, k) =

the general formula of the ellipse is =1, where b > a.
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this means 2b =6 = b= 3.

A= -a®> = (2?=03)2-a> = a®>=9-4=5 = a=1/5.
12 712

The equation of the ellipse is (z+1) + =1 =1.

9
The foci of the ellipse are Fy(—1,3) and Fp(—1,—1).
The endpoints of the minor axis are Wy (—1 — \/57 1) and Wy (—1 + \/5, 1).

W,

x+12 (y-17?
+ =1
5 9

Example 4: Identify the features of the ellipse 422 4 2y? — 8z — 8y —20 =0,
and sketch its graph.
Solution :
4% +2y* — 8z — 8y —20=0 = (422 —8x) + (2y®> — 8y) = 20
= 4(z? — 2x) +2(y* — 4y) =20
By completing the square
4(x? —22) +2(y°> —4y) =20 = 4(2® — 22+ 1) +2(y? -4y +4) =20+ 12
= 4z —1)2+2(y—2)2 =32
Mw—1)?  2y-2° | (@—1? (y—2°

=1 = =1
32 32 8 * 16

b2=16 = b=4and a’? =8 = b=+8=2/2.

A=0—-a? = 2=16—-8=8 = ¢c=+/8=2/2.

The center of the ellipse is (1,2).

The foci of the ellipse are F (1, 2+ 2\@) and Fy (1, 2 — 2ﬁ)

The vertices of the ellipse are V;(1,6) and Va(1, —2).

The endpoints of the minor axis are Wy (1 — 2\/?, 2) and Ws (1 + 2\/5, 2)

The length of the major axis is 8 and the length of the minor axis is 2v/8 = 4v/2.
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=17 (=27
+
8 16

=1
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1.3 Hyperbola

Definition: A hyperbola is the set of all points in the plane for which the
difference of the distances between two fixed points is constant.

Notes :
1. The two fixed points are called the foci of the hyperbola and are denoted
by F1 and FQ.

2. The midpoint between F; and F5 is called the center of the hyperbola
and is denoted by P.

\
\
y

ek ST

1.3.1 The center of the hyperbola is the origin :
This section discusses the special case where the center of the hyperbola is (0, 0).

There are two different cases :

2 2
1) %—%zl,wherea>0andb>0:

The foci of the hyperbola are Fy(—c,0) and Fs(c,0) , where ¢ = va? + b2.

The vertices of the hyperbola are Vi (—a,0) and V3(a, 0).

The line segment between V; and V5 is the transverse axis , it lies on

the x-axis and its length is 2a.

The equations of the asymptotes are y = —x and y = ——=x
a a
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s
s
Vi(-a, 00 ™

Fi(=c, 0)

2 2
2) y——x—zl,wherea>0andb>0:

b a?
The foci of the hyperbola are Fy (0, ¢) and F»(0, —c) , where ¢ = va? + b2.
The vertices of the hyperbola are V;(0,b) and V2(0, —b).

The line segment between V; and V5 is the transverse axis , it lies on
the y-axis and its length is 2b.

b
The equations of the asymptotes are y = —z and y = ——=x.
a a

,,,,,,,,,,
\

(0, —c)

Example 1: Identify the features of the hyperbola 42 —16y? = 64 , and sketch

its graph.
Solution : ) ) ) )
4x 16y T Y
4 2 1 2 _ 4 _ =1 — 2 =
v =167 =61 = o =, ~ 16 4

This form is similar to case (1).

a?=16 = a=4and b> =4 = b=2
c=vVa2+b2=+42+922=120=2V5

The foci of the hyperbola are Fy (—2v/5,0) and F (2v/5,0).
The vertices are V1 (—4,0) and V2(4,0).

The transverse axis lies on the x-axis and its length is 2a = 8.
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. 2 1 2
The equations of the asymptotes are y = =37 and y = —1%=3%

1

23

Example 2: Identify the features of the hyperbola 4y? — 922 = 36 , and sketch

its graph.
Solution : ) ) ) )
4y 9x Y T
4y? — 922 = - — =1 = =—-—=1
o 9em =30 = e s 9 4

This form is similar to case (2).

a?=4 = ag=2andb?=9 = b=3
c=vVaZ+2=/22+32=/1+9=+13

The foci of the hyperbola are Fy (0, \/ﬁ) and Fy (O, —\/ﬁ,).
The vertices are V4 (0,3) and V5(0, —3).

The transverse axis lies on the y-axis and its length is 2b = 6.

The equations of the asymptotes are y = iﬂc and y = —537
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1.3.2 The general formula of a hyperbola :

This section discusses the general formula of a hyperbola where the center of
the hyperbola is any point P(h, k) in the plane.

There are two different cases :

No. The general Formula The Foci The Vertices | Transverse axis
(x—h)? (y—k)?
1 — =1| Fi(h—ck Vith—a,k parallel to
a? b2
(2=a?+1b*) Fy(h+c¢,k) | Va(h+a,k) the x-axis
— k)? —h)?
o |WoRT @MY Bkse) | Vithk4b parallel to
b2 a?
c? =a®+b? Fy(hk—c Vo(h,k—b the y-axis
( ) a(hk —c)) | Va(h,k—b) y

b b
The equations of the asymptotes are y = ;(x —h)+kandy= —g(x —h)+k

Example 1: Find the equation of the hyperbola with foci at (—2,2) , (6,2)
and one of its vertices is (5,2) , and sketch its graph.

Solution :
The center of the hyperbola P(h, k) is located in the middle of the two foci ,
246 242
hence (h, k) = 2+ ,% =(2,2)
Note that the two foci lie on a line parallel to the x-axis , hence the general
(@ —h)? (y—k)?
formula of the hyperbola is 5 — 5 =1.

2¢ is the distance between the t%vo foci, hence 2c=8 = c=4.
a is the distance between the center (2,2) and the vertex (5,2) , hence a = 3 |
and the other vertex is (—1,2).
F=a?+b = 42=32402 = V¥ =16-9=7 = c=/T.
(-2 -2
9 7T

7
The equations of the asymptotes are Ly : y = g(x —2)+2and

The equation of the hyperbola is

9 7 N
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Example 2: Find the equation of the hyperbola with foci at (—1,—6) , (—1,4)
and the length of its transverse axis is 8 , and sketch its graph.

Solution :

The center of the hyperbola P(h, k) is located in the middle of the two foci ,

hence (b, k) = (" 6“) —(=1,-1)

2 2
Note that the two foci lie on a line parallel to the y-axis , hence the general
(y—k)? (z—h)?
5 i =1.

2c is the distance between the two foci , hence 2c =10 = ¢=5.
The length of the transverse axis is 8 , this means 26 =8 = b=4.
The vertices are (—1,—5) and (—1,3) .
A=a?4+b0 = 52=0a’4+4> = a>=25-16=9 = a=3.
(y+1)? (z+1)2 )

16 9
The equations of the asymptotes are Ly : y =

4
Ly: y:—g(x—i—l)—l

formula of the hyperbola is

The equation of the hyperbola is

y+17% (x+1)7

~
N
~
~
N

T
|
1
1
[}
1
I
N
N

s
~
e i o N A e

Example 3: Find the equation of the hyperbola with center at (1,1) , one of
its foci is (5,1) and one of its vertices is (—1,1) , and sketch its graph.
Solution :

Since the center and the focus lie on a line parallel to the x-axis , then the
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O U
a? b2 e

¢ is the distance between the center (1,1) and the focus (5,1) , hence ¢ =4 ,

the other foci is (—3,1).

a is the distance between the center (1,1) and the vertex (—1,1) , hence a = 2

, the other vertex is (3,1).

F=a?+0 = 42=2240 = P¥P=16-4=12 = b=1/12=2/3

-1 o1

12

general formula of the hyperbola is

The equation of the hyperbola is

The equations of the asymptotes are

Ly: y_2\[(x—1)+1—\/§(x—1)—|—1andL2: y=—V3x—-1)+1

x=-17 -17
4 2 \

Example 4: Identify the features of the hyperbola 2y? —4x? —4y —8x —34 =0
, and sketch its graph.
Solution :
2y? — 4 — 4y —8x —34=0 = (2y° —4y) — (42% + 8x) = 34
= 2(y? —2y) — 4(2® 4+ 22) = 34
= 202 —2y+1)—4(2?2+22+1)=34+2-4 = 2(y—1)2 —4(z+1)2 =32
2 2 2
R G T Y RS
32 32 16
=16 = b=4and a®* =8 = a:\/§:2\/§.
A=a?+0? = 2=16+8=24 = c=24=2V6.
The center of the hyperbola is P(—1,1).
The foci of the hyperbola are Fj (—1, 1+ 2\/(3) and Fp (—1, 1-— 2\/(3)
The vertices of the hyperbola are V;(—1,5) and Va(—1, —3).
The transverse axis is parallel to the y-axis and its length is 2b = 8.
The equations of the asymptotes are
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1.3. HYPERBOLA

—V2(x4+1)+1

y:

V2(z+1)+1and Ly :
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2.1 Matrices

Definition : A matrix A of order m X n is a set of real numbers arranged in
a rectangular array of m rows and n columns. It is written as

aii a2 ... Qin

asy a9 e agn
A =

Am1 Am2 ... Qmn

Notes :

1. a;; represents the element of the matrix A that lies in row ¢ and column
g

2. The matrix A can also be written as A = (a;;),, .-

3. If the number of rows equals the number of columns (m = n) then A is
called a square matrix of order n.

4. In a square matrix A = (a;;) , the set of elements of the form a; is called
the diagonal of the matrix.

Examples :

1. (_1 4 0> is a matrix of order 2 x 3.

2 -3 7
ain=-1,a12=4,a13=0,a2=2,a=-3and a3 =7.
5 =3 2
2. {0 1 7] is asquare matrix of order 3.
0 8 13

The diagonal is the set {a11,a22,a33} = {5,1,13}
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2.1.1 Special types of matrices :

1. Row vector : A row vector of order n is a matrix of order 1 x n, and it is
written as (a1 as ... an)

Example :(2 7 0 —1) is a row vector of order 4.

2. Column vector : A column vector of order n is a matrix of order n x 1,

ai
az
and it is written as
%
8
Example : | —1 | is a column vector of order 3.
2
3. Null matrix : The matrix (ai;),, ., of order m x n is called a null matrix

if a;; = 0 for all ¢ and j, and it is denoted by O .

0 00 0

0 0 0 0
0= )

0 00 0

00 00
Example : {0 0 0 0] is a null matrix of order 3 x 4.
0 0 00

4. Upper triangular matrix : The square matrix A = (a;;) of order n is
called an upper triangular matrix if a;; = 0 for all ¢ > j , and it is written

@11 a2 a3z ... Qin
0 a2 assz ... asp
as A = 0 0 aszz ... Qasn
0 0 0 Unn
8 5 -2 1
03 1 - . . .
Example : 00 4 1 | 1s an upper triangular matrix of order 4.
0 0 0 3

5. Lower triangular matrix : The square matrix A = (a;;) of order n is
called a lower triangular matrix if a;; = 0 for all 4 < j , and it is written as

ail 0 0 ... 0
a1 a2 0 N 0
A—|a1 azx azz ... O

apl QAp2 Gp3 ... Qpn
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2 0 O
Example: | =1 4 0| is a lower triangular matrix of order 3.
3 -5 7

6. Diagonal matrix : The square matrix A = (a;;) of order n is called a
diagonal matrix if a;; = 0 for all 4 # j , and it is written as

ail 0 0 ‘e 0
0 a22 0 e 0
A = 0 0 asg ... 0
0 0 0 ... apn
2 0 0
Example : |0 —3 0] is a diagonal matrix of order 3.
0 0 1

7. Identity matrix : The square matrix I, = (a;;) of order n is called an
identity matrix if a;; = 0 for all ¢ # j and a;; = 1 for all ¢ = j, and it is

10 0 ... O
01 0 ... 0
written as I, = [0 0 1 0
0 0 0 1

Example : I3 = is an identity matrix of order 3.

OO =
o = O
= o O
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2.1.2 Elementary matrix operations :

1. Addition and subtraction of matrices :

Addition or subtraction of two matrices is defined if the two matricest have the
same order.

If A= (aij)mxn and B = (bL])

mxn a0y two matrices of order m x n then

1. A+B= (aij +bij>

mxn®
a1 + bi1 a2 +biz ... aip+0bin
ao1 + b2y az2 +bya ... aon +bay
A+B=
Gm1 +bm1 Gm2+bma ... Apn + b
2. A — B = (aij — bij)an.
a1 — bis a1z — bia cee a1n — bin
a1 — bay a2z — baa cee a2y, — ban
A-B=
am1 — bml Am2 — bm2 oo Omp — bmn

1 -4 6
2+5 -3+2 0+1
L+ (=3) —4+7 6+ (-2

(.
o= 35 )= 5 7)

1—(=3) —4-7 6—(-2)

Example : If A = (2 -3 0) and B = (_53 ? _12> then

A+B<

Notes:

1. The addition of matrices is commutative : if A and B any two matrices
of the same order then A+ B =B+ A .

2. The null matrix is the identity element of addition : if A is any matrix
then A+0=A.

2. Multiplying a matrix by a scalar :
If A = (a;;) is a matrix of order m x n and ¢ € R then cA = (ca;;).

canl ca12 . CQ1n

cag1 caoo . CAaon
cA =

Cm1 Cam2 ... CAmnp

3 -1 4 9 -3 12
Example.IfA—<2 _9 0) then3A—<6 _6 0)
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3. Multiplying a row vector by a column vector :

If A= (a1 as ... an) is a row vector of order n and
by
ba
B = . | is a column vector of order n then
bn
b1
ba
AB:(a1 as ... an) | =a1by +agbs + ...+ a,b,
bn
4
Example : If A = (—1 2 0 5) and B = _12 then
-1
4
-2
AB=(-1 2 0 5) | | 4-440-5=-13
-1

4. Multiplication of matrices :

1. If A and B any two matrices then AB is defined if the number of columns
of A equals the number of rows of B .

2. If A = (aij),, ., and B = (bjj),,,,, then AB = (ci5),, -

c;j is calculated by multiplying the i** row of A by the j** column of B.

blj
baj
cij = (ain a2 ... ap) | = ainbyj 4 aizbyj 4 .o+ Qinbn;
bn;j
Example 1 :
-1 3 4 1 3
L -1 -2
2x3 4 0 32
+Bx-1+Ax4) (-1x3)+(Bx-2)+(4x0)
+(Ox 1)+ (Bx4) (=2x3)+(0x-2)+(5x0)/, ,

-1-3+16 —-3—-64+0 (12 -9
—24+0+20 —64+04+0 QXQ* 18 =6/, ,

5 ( —1> <0 -3 4)
-2 5 2x2 -2 0 12><3
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(

(3x0)+(—-1x-2)
(—2x0)+ (5 x —2)

(3x=3)+(-1x0)
(—2x =3)+ (5x0)

(Bx4)+(—-1x1)
(—2x4)+ (5 x1)

0+2 —-9+0 12-1 (2 -9 1
0-10 6+0 -8+5/, ., \-10 6 -3/, .
1 -2 3 1 -1
Example 2: Let A=|4 5 6|andB=]2 3
2 0 1 0 4

Compute (if possible) : 2BA and AB
Solution : A is of order 3 x 3 and B is of order 3 x 2

35

>2><3

2BA is not possible because the number of columns of B is not equal to the

number of rows of A.

1 -2 3 1 -1 (1-440) (-1-6+12)
AB=1|4 5 6 2 3 =((4+1040) (—4+15+24)
2 0 1 33 0 4 32 (2+0+40) (—=2+0+4)
-3 5
AB=|14 35
2 2 3x2
Notes :

3x2

1. The identity matrix is the identity element in matrix multiplication :

If A is a matrix of order m x n and I, is the identity matrix of order n

then AL, =1,A=A.

2. Matrix multiplication is not commutative :
-1 0 2 1
IfA—<3 2)andB—<1 1)

a= (5 0) ()= 5)
Ba=(1 1) (5 2)=( 2)

AB # BA .
. AB = 0 does not imply that A=0or B=0.

) #oman = (
)0 -

0 0

1 0
0 0

)

0 0

For example, A = ( 0 1

)

1 0
0 0

0 0
01

But AB = (

£0
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2.1.3 Transpose of a matrix :

If A = (a;;),,,,, then the transpose of A is A" = (a;;), .,
4 -3
Example : If A = 402 then A= 0 5
-3 5 1 9

Note : The transpose of a lower triangular matrix is an upper triangular matrix
, and the transpose of an upper triangular matrix is a lower triangular matrix .

Theorem :
If A and B any two matrices and A € R then

—_

(A =A .

. (A+B) =A'+B'.
3. DA =X A,

. (AB)' = B'A' .

2.1.4 Properties of operations on matrices :
1. If A , B and C any three matrices of the same order then
A+B+C=(A+B)+C=A+B+C)=(A+C)+B

2. If A, B any two matrices of order m x n and C a matrix of order n x p
then (A 4+ B)C = AC + BC

3. If A | B any two matrices of order m x n and C a matrix of order p x m
then C(A+B)=CA +CB

4. If A a matrix of order m X n , B a matrix of order n x p and C a matrix
of order p x ¢ then ABC = (AB)C = A(BC)
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2.2 Determinants

If A is a square matrix then the determinant of A is denoted by det(A) or |A[.

2.2.1 The determinant of a 2 x 2 matrix :

a11 a2 a11 a2

. a22) en |A] ’am (g| = F11022 ~ 312021
Example :
If A = <2 ‘31) then |A] = (5x3) — (2 x —1) = 15+ 2 = 17

2.2.2 The determinant of a 3 x 3 matrix :
ail a2 a3

Let A= |a21 age asz3 | beasquare matrix of order 3.
azp asz ass

1). The determinant of A is defined as :

a21 A22

Al=a

| l " azir as2

a1

a22 A23 23
a3y ass

a3z2 ass

—aiz + a3

|A| = a11 (a22a33 - a23a32) — 12 (a21a33 - a23a31) + ais (a21a32 - a22a31)
2). Sarrus Method for calculating the deteminant of a 3 x 3 matrix :

Write the first two columns to the right of the matrix to get a 3 x 5 matrix

a1y arg s fun 12

. .
ag1 ag 1 2

|A| = (a11a22a33 + a12a23a31 + a13a21a32)— (a31022a13 + A32023a11 + A33021012)

2 3 -1
Example: f A= 1 2 4
-5 0 1
1) Using the definition of the determinant of a 3 x 3 matrix
|A|2‘2 4‘3 1 4'+(1) 1 2’
0 1 -5 1 -5 0

[A|=2(2%x1-4%x0)—3(1x1—4x-5))—1(1x0-—2x —5)

|A| =2(2-0)—3(1+20)—1(0+10) =4 — 63 — 10 = —69
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2) Using Sarrus Method

2 3 -1 2 3
1 2 4 1 2
-5 0 1 -5 0

Al =(2x2x1+3x4x =5+ (1) x I1x0)—(=5x2x —14+0x4x2+1x1x3)
Al =(4-60+0) — (10+0+3) = —56 — 13 = —69 .

2.2.3 The determinant of a 4 x 4 matrix :
a1l a2 ai3 G4
a a a a

Let A — 21 G22 Q23 (24
a3l Gsz2 G33 G34
Qg1 G42 A43 Q44

|A| = a11 |[A1] — a12 |Ag| + a13 |As| — a14 |Ay]

be a 4 x 4 matrix , then

where
a22 A23 0424 a21 Aa23 424
Ay = a3 a3z axu , Ay = a3z a3z as
A42 Q43 Q44 Q41 Q43 Q44
a21 Q22 (24 21 Q22 (23
Az = a3z a3z az , Ay= a3 a3z ass
41 Q42 Q44 Q41 Q42 Q43
3 1 -2 1
0O 4 -1 5
Example : If A =
p 2 1 -3 0
1 -2 -1 3

[A] = (3) [A1] = (1) |A2] + (=2) [As] — (1) |A4]

where
4 -1 5 0 -1 5
Aj=(1 -3 0 , A,=12 -3 0
-2 -1 3 1 -1 3
0 4 5 0 4 -1
As;=(2 1 0 , A, =12 1 =3
1 -2 3 1 -2 -1

- To calculate |A;|

4 -1 5 4 -1
1 -3 0 1 =3
-2 -1 3 -2 -1

|Aq| = (-36+0—5)— (30+0—3) =—36—5—30+3=—68
- To calculate |As|

0 -1 5 0 -1
2 -3 0 2 -3
1 -1 3 1 -1
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|Ag|=(0+0—-10) = (-15+0—6) = —10+21 =11
- To calculate |As|

— N O
—

w O ot

— N O
—

|As| = (040 —20) — (54 0+ 24) = —20 — 29 = —49

- To calculate |Ay|

0 4 -1 0 4
2 1 =3 2 1
1 -2 -1 1 -2

Ay =(0—12+4) —(-1+0-8)=-8+9=1

|A| = (3) [A1] = (1) [Az| + (—2) [As] — (1) [A4]
Al = (3x —68) — (1 x 11) 4+ (-2 x —49) — (1 x 1)
|A| =—204—11+98—1=-216+98 = —118 .

2.2.4 Properties of determinants :

39

1. If A is a square matrix that contains a zero row (or a zero column) then

|A| = 0.
Examples :

3 -1

1
0 0 0| =0 (the second row Rj is a zero row)
4

0
—1 5 0| =0 (the third column Cj5 is a zero column)
0

2. If A is a square matrix that contains two equal rows (or two equal columns)

then |A| = 0.
Examples :
4 -5 4
0 2 0 | =0 (because C; = Cs).
-3 1 -3
1 -1 2
3 2 =2/ =0 (because Ry = Rj3)
3 2 =2
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3. If A is a square matrix that contains a row which is a multiple of another
row (or a column which is a multiple of another column) then |A| = 0.

Examples :

2 1 =3

0 5 1|=0 (because R3 =2Ry).

4 2 —6

-2 1 3
0 0 1| =0 (because Cy = —2C3).
2 -1 1

4. If A is a diagonal matrix or an upper triangular matrix or a lower tri-
angular matrix the |A] is the the product of the elements of the main

diagonal.

Examples :

2 0 0

0 —1 0|=2x-1x5=-10 (Diagonal matrix)
0 0 5

1 3 -7

0 5 4]|=1x5x-3=15 (Upper triangular matrix)
0 0 -3

300

1 1 0|=3x1x2=06 (Lower triangular matrix)
4 7 2

5. The determinant of the null matrix is 0 and the determinant of the identity
matrix is 1.

6. If A is a square matrix and B is the matrix formed by multiplying one of
the rows (or columns) of A by a non-zero constant A then |B| = A|A] .

7. If A is a square matrix and B is the matrix formed by interchanging two

rows (or two columns) of A then |B| = —|A].

Example :

3 0 4 6 —1 2

6 —1 o Bu—=R 1403 0 4

0 0 5 0 0 5
1 6 2

G2 1w 1x|0 3 4=-1x-1x-1x3x5=-15
0 0 5
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8. If A is a square matrix and B is the matrix formed by mutliplying a row by
a non-zero constant and adding the result to another row (or mutliplying
a column by a non-zero constant and adding the result to another column)

then |B| = |A|.
Example :
5 2 ‘ 5 2 3 5 2 3
15 8 1| =Btfe g o _g| 2Hths g o g
10 6 2 10 6 2 0 2 —4
5 2 3
TRetBs 1 9 8l =5 x2x4=40
00 4

Examples : Use properties of determinants to calculate the derminants of the
following matrices

1 2 3 4
02 3 0 3
1. 1 2 3 5= 0 (because C5 = 502)
3 0 0 0
1 2 3 4 1 2 3 4
9 1 2 3 —4| —-ri+rR, |0 0 0 =8
11 2 3 5 1 2 3 5
301 0 301 0
1 2 3 4
-Ri+R; |0 0 0 =8 .
000 1|7 0 (because Ry = —8R3)
3 01 O
1 2 3 4 1 2 3 4
3 5 6 7 8 —Ri+RkR, |4 4 4 4
4 3 2 1 4 3 2 1
8 7 6 5 8 7 6 5
1 2 3 4
—Rs+Rs |4 4 4 4| _
— 413 9 1= 0 (because Ry = Ry)
4 4 4 4
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3.1 Systems of Linear Equations

Consider the system of linear equations in n different variables

a111 + a12X2 + oo+ A1nLn = b1
asry + axry + ... + agpr, = bs

(*)
Ap1T1 4+ A2 + ... 4+ Appxy, = b

Using multiplication of matrices , the above system of linear equations can be
written as : A X =B

aill a2 N A1n X1 b1

as1 a22 oo Q2p X2 b2
where A = . . . , X = . and B =

p1  QAp2 ... Gpn LTn bn

A is called the coefficients matrix
X is called the column vector of variables (or column vector of the unknowns)
B is called the column vector of constants (or column vector of the resultants)

Theorem : The system of linear equations (*) has a solution if det(A) # 0 .

This chapter presents three metods of solving the system of linear equations
(*), the first method is Cramer’s rule , the second is Gauss elimination method
, and the third is Gauss-Jordan method .
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3.2 Cramer’s rule

Consider the system of linear equations in n different variables

a11x1 + appre + ... + aipnxn, = b1
a1 + axry + ... + am®, = b
. ()
aAp1T1 + apers + ... + apnTn = by
AX=8B
ail ai12 e A1n T bl
a21 a2 ... Q2n x2 by
where A = . . . , X=1] .| and B=
Anl Gp2 .. Qup T b,

If det(A) # 0 then the solution of the system (*) is given by
xvfwforever 1=1,2,---.,n

17 det(A) emhemn
Where A; is the matrix formed by replacing the i*" column of A by the column
vector of constants.

b1 a12 o Q1n ail b1 AT
bg a2 ... Qop a1 bg .o Q2p
Al = . . . ) A2 =
by, ap2 ... Qnn anl bn ... Gun
ail aiy ... bl
a1 a922 PN bg
A, =
ap1 Ap2 ... bn

Example 1: Use Cramer’s rule to solve the system of linear equations
2 + 3y = T
- 4+ y = 4

Solution : In this system of linear equations

A= (G D) x= () mar=(0)

det(A) = ’2 3

A= <7 3> — det(Al):7—12:—5
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The solution of the system of linear equations is (;) = <_31>

Example 2: Use Cramer’s rule to solve the system of linear equations

2r + y + z = 3
e + y — z = =2
2c — 2y + z = 6
Solution : In this system of linear equations
2 1 1 x 3
A=[4 1 —-1|,X=|y|landB=|-2
2 =2 1 z 6
To calculate det(A) :
2 1 1 2 1
4 1 -1 4 1
2 -2 1 2 =2
det(A)=(2-2-8)—(2+4+4)=-8-10=-18
3 1 1
Ai=1-2 1 -1
6 -2 1

To calculate det (Aq) :
3 1 1 3 1
-2 1 -1 -2 1
6 -2 1 6 -2

det (A1) =(3—6+4)—(6+6—2)=1—10=—9

2 3 1
Ay=14 -2 -1
2 6 1

To calculate det (As) :
2 3 1 2 3
4 -2 -1 4 =2
2 6 1 2 6

det (Ag) = (—4—6+24) — (—4—12+12) =14+4 =18

2 1 3
As=[4 1 -2
2 -2 6

To calculate det (As) :

det (Az) = (12 -4 —-24) — (6+8+24)=1-10= —16 — 38 = —54
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det(A —18 2
d

y = et(Ag)_ 18 -1
det(A —18
d _

o et (Ag) _ 54 -3
det(A -18

47
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3.3 Gauss elimination method

Consider the system of linear equations in n different variables

a;1ry + aires + ... + aipr, = b
as1x1 + asrs + ... + aopx, = b
(*)
Ap1T1 4+ A2 + ... A+ Appxn = bn
AX=B
ail ai12 .o Q1p X1 bl
asy a9 ... Qo2p X9 b2
where A = . . . , X=1] . | and B=
Apl Ap2 .. Gpp T bn

To solve the system of linear equations (*) by Gauss elimination method :

1. Construct the augmented matrix [A|B]

ailr a2 ain | b
az; a2 a2y | ba
an1 an2 Ann bn

2. Use elementary row operations on the augmented matrix to transform
the matrix A to an upper triangular matrix with leading coeficient of each
row equals 1.

(Note: the leading coefficient of a row is the leftmost non-zero element of

that row).
1 ci2 c13 cua Cin dy
0 1 o3 co4 azn do
0 0 0 ... 1 cip-in|dna
0 0 0o ... 0 1 d,

3. From the last augmented matrix , x, = d,, and the rest of the unknowns
can be calculated by backward substitution.

Example 1: Use Gauss elimination method to solve the system

r — 2y + z = 4
- + 2y + z = =2
4 — 3y — z = —4
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Solution : The augmented matrix is

1 -2 1 4
-1 2 1 | -2
4 -3 —-1|-4

1 -2 1|4 1 -2 1|4
-1 2 1 |-2 ke 0 0 2|2
4 -3 —1|-4 4 -3 —1|-4
1 -2 1] 4 1 -2 1] 4
Mol oy 3 1| -4 | B [ g 5 5| —20
0 0 2|2 0 0 2 2
) 1 -2 1] 4 ) 1 -2 1] 4
5 Ro 31t
== o1 —1f-a | 2= o 1 -1]|-4
0 0 2 2) 0 0 11

Therefore, z = 1.
y—z=—-4 =>y—-1=-4 = y=-44+1=-3
r—2y+z2=4 = z-2(-3)+1=4 = z+4+6+1=4 = z=4-7T=-3

x -3
The solutionis [y | = | —3
z 1

Example 2: Use Gauss elimination method to solve the system

2r — y + z + 3w = 8
r + 3y + 22 — w -2
3. + y — 2z — 2w = 3
r + v 4+ z - w = 0

Solution : The augmented matrix is

2 -1 1 3 8
1 3 2 —-1|-2
31 -1 -2/ 3
1 1 1 —-1]0
2 -1 1 3 8 1 1 1 —-1]0
1 3 2 —-1|-2 Ri< R4 1 3 2 —1|-2
3 1 -1 -2 3 3 1 -1 -2 3
1 1 1 1] 0 2 -1 1 3 8
1 1 1 —-1]0 1 1 1 -1
—Ri1+R, 0 2 1 0| -2 —3R1+R3 0 2 1 0
3 1 -1 -2 3 0 -2 —4 1
2 -1 1 3 8 2 -1 1 3
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1 1 1 -1]0 11 1 -1
—2R1+Ry 0 2 1 0| -2 Ro+R3 0 2 1 0
0 -2 —4 1|3 0 0 -3 1
0 -3 -1 5|38 0 -3 -1 5
1 1 1 =1]0 11 1 -1]0
2R, 0 2 1 0|-2 3R+ Ra 02 1 0 -2
00 -3 1]1 00 -3 1|1
0 —6 —2 10|16 00 1 10|10
11 1 -1]0 11 1 -1]0
3Ry 0 2 1 0| -2 Rs+R4 0 2 1 0| -2
00 -3 1]1 00 -3 1|1
00 3 3030 00 0 31|31
11 1 -1]0 111 —-1]0
3R 01 5 0|-1 ~3Rs 01 5 0]-1
00 =3 1|1 00 1 —%|—3
00 0 31|31 0 0 0 31]31
111 -1]0
R 01 3 0]-1
00 1 —%|—%
000 1]1
Therefor, w =1
1 L 1 L 0
2 swW=—7 Z—5=—7 z=
3 3 3 3

1
y+§z:—1 = y+§(0):—1 = y=-1
z+y+z—w=0=2-140-1=0 = =2

The solution is

SRS
|
—
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3.4 Gauss-Jordan method

Consider the system of linear equations in n different variables

a1y 4+ a2 + ...+ 0T, = b
ag1X1 + ag2x9 + e + aAonTn = bg
(%)
Gn1T1 + Qp2%2 + ...+ App®n = bn
AX=B
ail ai12 . A1n T bl
a1 a2 ... Qop T2 b2
where A = . . . , X = . and B =
Gpl  Ap2 cee Gpn T bn

To solve the system of linear equations (*) by Gauss-Jordan method :

1. Construct the augmented matrix [A|B]

ain a2 ain | b1
a21 Aa22 azy | ba
an1 An2 Ann bn

2. Use elementary row operations on the augmented matrix to transform the
matrix A to the identity matrix .

10 ... 0 0| d
0 1 0 0| do
0 0 1 0| dy_
0 0 1| dy
3. From the last augmented matrix , z; = d; for every i =1,2,--- ,n

Example 1: Use Gauss-Jordan method to solve the system

r + y + z = 2
r — y + 2z = 0
2z + z = 2

Solution : The augmented matrix is

1 1 12
1 -1 210
2 0 12
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1 1 1] 2
0 -2 1|-2
2 0 1| 2
—R2+R3
1
—R3+R> 0
0
1
—%Rz 0
0

Therefore , x =1,y =1 and z = 0.

The solution is

2
0 —Ri1+R3
2
1 1 1
0o -2 1
0 -2 -1
1 1 1] 2
0 -2 1|-2
0O 0 1,0
1 1 0
0 -2 0
0 0 1
1 0 011
01 01
0 0 1]0
T 1
vyl =11
z 0

Example 2: Use Gauss-Jordan method to solve the system

Solution :

2x
T

x

T

w

+ o+ 4

The augmented matrix is

-1

_ W =N

3
1
1

—Ri1+R>

—2R1+Ry

1
2
-1
1

N WO =

OO O

-1

[ NS

— W~ N

)

Y
Y

)
Y

+
+

+

2z
z
z

+

Jw =
w =
2w =
w =

O W

—3R1+R3

R2+R3

—_ 0 =

8

-2

3
0

N OO -

oS oo

(Note : This is example 2 in Gauss elimination method)
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3R2+R4

-2

-3

0 0

10

10

-6 -2 10| 16

0

31

-3

0
0 0

31

-3

0
0 0

R3+R4

—R4+R3

-2

2
0 0 -3

0

30 | 30

3

0

-3

2
0 0

2R4
e

—
—
o~ 1n/_~01
_01
o OO A
S O
S O —H O
— — O
— NN O O
N O O
— O O O
o O O
/l\
(\
o =
~
e L_owu
| &
|
—
—
nﬂOl ~
1_01
o O~
S OO
[xp]
1 ° 4o -0
N O O — AN O O
o O O — O O O
= <
il +
5 <
& i

0 0 O

=-1,z=0and w=1.

SR

The solution is (

Therefore, x = 2
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Chapter 4

INTEGRATION

4.1 Indefinite integral
4.2 Integration by substitution
4.3 Integration by parts

4.4 Integration of rational functions

(Method of partial fractions)

%)
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4.1 Indefinite integral

Definition (Antiderivative): A function G is called an antiderivative of the
function f on the interval [a,b] if G'(z) = f(z) for all z € [a,]].
Examples : What is the antiderivative of the following functions

1. f(z) =2z .

2. f(z) =coszx .

3. f(x) =sec’w

4 f) =1
5. f(z) =¢€"
Solution :

1. Gx) =22 +c

G’(x)—iG(x):i(mz—f—c):2x+0:2x

Cdx dz
2. G(z) =sinz +c
d d
’ _ v — (g —
G'(z) = de(at) T (sinx + ¢) = cosz

3. G(z) =tanx +c¢
d d
/ = —_— = —_— = S 2
G'(z) = de(z) . (tanx + ¢) = sec” x
4. G(z) =In|z| +¢
d d 1
' _ v _ v _
&)= Lo =L s 0=
5. G(z) =€e"+c¢
d d

G'(z) = %G(x) =—("+c¢)=¢"

Note: If Gi(x) and Ga(z) are both antiderivatives of the function f(z) then

G1(z) — Go(x) = constant.

Definition (indefinite integral): If G(z) is the antiderivative of f(z) then
f(z) de = G(z)+c, /f(a:) dz is called the indefinite integral of the function

f(@).



4.1. INDEFINITE INTEGRAL
Basic Rules of integration :

1. /1dm:x+c

xn-&-l
2. /x"dx:n+1+c,wheren7é—1

3. /cosx dr =sinz +c¢
4. /sinm dr = —cosx + ¢
5. /sechd:U:tanx—&—c

6. /CSC2J; dr =—cotz +c

7. /secm tanx dx = secx + ¢
8./cscw cotx = —cscxr+c
1
9. [ —dz=Inlz|+¢
x
10. /e””dx—e +c
11. r=sin" 'z +c, where |z| <1
/\/1—:102 ]
12/ =tan" 'z + ¢
13/ L d o+ here |z| > 1
. ———— dr =sec” "=+ c, where |z
zvar? —1

Properties of indefinite integral :

1. /kf(x)dzzk /f(x)dx,wherekeR

2. (1) £ 9(a)) do= [ 1) o [ o) do

o7
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Examples : Evaluate the following integrals

() w
T
. 9 D 9 5
Solution : 4x* — — de = [ 4x° dx — - dx
T x

3 -2 4 5
=4/x2da:—5/x73dx=4%—5 %—Fc:gxg—kﬁ—kc

2. /<3x§+\}5> dx

1 1
Solution : /(3:6é +\/§> dx:?)/x% dx—}—/x_f dx
4 1
XT3 X2 9 4 1
=3 <4> + <1> +c= 1533 +2x2 +¢
3. /(200sx—3sec2x) dz

Solution : /(2 cosx — 3sec’ x) dr = Q/Cosx dx — 3/se(32m dx

=2sinx —3tanz + ¢

[N

4. /(7secgc tanz + 5csc’ x) dx
Solution : /(7 secx tanx + 5esc’ x) dr = 7/secxtana: dac+5/csc2 x dz

=T7secx 4+ 5(—cotxz)+c=Tsecx —5cotx + ¢

T €T

Solution : /(232> d:c:2/1dz73/x72 dx
T

-1 3
:2lnx|—3(ml)+c:2ln|x++c
— x
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. 3
6. /(96“ - 1+x2) dx
Solution : / 9e” — 5
’ 1+ 22

=9e® —3tan 'z +¢

4.1.

1
dx:9/ezdx—3/7dx
1+ 22

1

4
7. —+—= ] d
/(\/l—xQ \3/5> ’
Solution /(4 + 1 ) dx 4/71 dﬂchr/:E*l dx
ion : -— = 3
Vi—22 Yz V1— 22

: 3
=d4sin tx+ <.732> +c=4sin" 'z + 51‘% +c
3

w(vo

The definite integral :
If f is a continuous function on the interval [a,b] and G is the antiderivative of

f on [a,b] then the definite integral of f on [a,b] is

/ f(z) dz = [G(x)]’, = G(b) — G(a)

Examples : Evaluate the following integrals :

3
1. / (32% 4 5)dx
1

3
Solution : / (32° + 5)dx = [2° + 5x]f
1

=(3%+5x3) - (13+5x1)=(274+15) — (1+5) = 36

1
2. / (2z 4 €%) dx
0
! 1
Solution : / (2z +€*) dox = [2* + ew]o
0

=(124+e) - (0*+e)=1+e—1=¢
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4.2 Integration by substitution

The main idea of integration by substitution is to use a suitable substitution to
transform the given integral to an easier integral that can be solved by one of
the basic rules of integration.

Example : Evaluate the integral /J;(Jj2 +3)% dx

Solution : Use the su’?stitution u=2a>+3
Then du =2x de = = du=z dx

/a:(:c2—|—3)6 da?:/u(s% du = %/u6 du

1T (24 3)7

Syttt Tt

By the chain rule % [F@)]"™ = (m+1) [f(2)]" f(z), where n # —1
n+1

Hence / [f(x)]" f(x) dz = % + ¢, where n # —1

So, the above integral can be solved as follows
1 1 2 7
/x(x2+3)6 dx = 5/($2+3)6 (2z) dx = B erc

Basic rules of integrations and their general forms :

anrl
1. /x"d:c: + ¢, where n # —1

n+1
n+1
Ju@r @ ae= T o oo £ -1
2. /% de =ln|z|+¢
P g = (o) + e

3. /e‘”dﬂc:e“‘—&—c

/f(x dx—e(:”)—l—c
/ cosx dr =sinz + ¢

(x) de =sin(f(x))+c
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5. /sinx dr = —cosx + ¢

/ sin (f(2)) f'(z) de = — cos (f(x)) + ¢

6.

sec’z dx = tanz + ¢
sec? dx =tan (f(z)) + ¢

7. esc?z dr = —cotz+ ¢

csc? ) dx = —cot (f(z)) + ¢
secxtanx dr =secx + ¢

sec (f(z)) tan (f(z)) f'(z) dx = sec (f(z)) + ¢

csc (f(x)) cot (f(x)) f'(z) de = —csc(f(z)) + ¢

10. + ¢, where a >0 and |z| < a

T dr =sin™! (g)
f) dx = sin™! (f(ax)> +c, where a > 0 and |f(z)| < a

ﬁ

11.
a2+x2
x

ftaun*1 (E) + ¢, where a > 0
a
1
) —tan! (f(z:)) + ¢, where a > 0
a a

12. = sec_1 (£> +c, where a > 0 and |z| > a
a

x2—a2

dx = lsec_1 (f(f)) + ¢, where |f(z)] > a

2 a

/
B
/
Je
|
Jrects
/
|
| i
J
| Fier
|
I

.’13 —a
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Examples : Evaluate the following integrals
1. /@2 + 22)(2® + 32% + 5)1 dx
Solution :
/(gg2 + 2x) (23 + 32% +5)10 do = é / (2 + 32 + 5)1° [3(2® + 22)] dx

(23 + 322 + 5)1

L +
3 3 11 ¢

z+1
2. = d
/(x2—|—2x—|—6)5 *

Solution :

z+1

1
= 7/(333 + 322 +5)10(322 + 62) dx =

2 +2x4+6)"1
@ +20+6)

1 1
:f/(m2+2x+6)_5(2a:+2)dx:§ = c

2
P B
vV Vzt+222+5 + 222 +
Solution :
23
\/% (z* + 222 +5)"2 (2% + 2) da
x x

1 1 (2% 4222 +5)2

/ 2 +1
4. dx
3+ 3x+8
Solution :
/ 2 +1 1/ 3(x? 4+ 1) i
+3x+8 3) 23 +3x+8

1 34+ 3 1 3
S L N TS| 3z 48
3/x3+3x+8 z=3lnfe” 43z 48| +c

5. /Sli dzx
1+ cosx

Solution :

/ﬂ dx:_/ﬂ de = ~In|1 +cosa| +c

1+ cosx 1+ cosx

2



4.2. INTEGRATION BY SUBSTITUTION

e5m

Solution :

651’ J 1 5651
— drx == [
e’r —2 5) eb®

1
— da::gln|65172|+c

63

/(31‘2 +1)sin(z® + 2 + 1) da

Solution :

/(312 +1)sin(2® + 2+ 1) do = /sin(x3 +a+41) (322 +1) do
=—cos(@®+z+1)+c

2
8. sec \/x I
NG

Solution :
2
1
/sec\/ix dx:/seCQ\/E—xdx

7
1
=2/se02\/§ﬁdx:2tan\/5+c

/x esc(x? + 2) cot(z? + 2) dx

Solution :

/x csc(x? + 2) cot(z? + 2) dx = /csc(a:2 +2) cot(z? +2) x dx
1

- /csc(a:2 +2)cot(z? +2) (2z) do = — = csc(x? +2) + ¢

10. /e“inmcosm dx

Solution :

/675“” cosz dxr = /675”””(7003 x)

1 .
dr = = 7sinx
x 76 +c
e§

Solution :

=

3
ex 3 1

x2

dx
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x
12. —d
/\/9—:54 .

Solution :

13. dx
/ - Gw +10

1

dx d

/x “6a+ 10 /(:c2—6x+9)+(10—9) “
/ dx:tan_l(x—?))—i—c

14./
+2x+5

Solution

3
/ +2x+5 /(x2+2x+1)+(5—1) de

1 1 z+1
= 7d = —_ -1
3/(334_1)24-22 T 32tan ( 5 >+C

1
15. / dx
z1n|z|

Solution

1 1
/7dx:/Ld:c:1n|ln|x||+c
x1In |z In |z|

20 —1
16. —d
/xQ—l—l o

Solution :

2¢ —1 2x 1
——do=| ——dr— | ——d
/x2+1 v /a:2+1 o /x2+1 o

=In(z®+1) —tan 'z +c
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4.3 Integration by parts

It is used to solve an integral of a product of two functions using the formula

/udv:uv—/vdu

Examples : Evaluate the following integrals

1. /xem dx

Solution : Using integration by parts
u=zx dv =¢€* dx

du = dx v=¢e"

/xem dx:mew—/em doe = ze® —e® +¢

2. /a:2 sinx dx

Solution : Using integration by parts

u=z? dv =sinx dx

du = 2xdx V= —CoSx

/x2 sinz do = —a? cosx — /Zx(— cosz) dx

= —x2cosx+2/xcosx dx

Using integration by parts again

u=x dv = cosz dx
du = dx v =sinx

/xZSinx dz = —2%cosz + 2 (msinx—/sinx da:)

= —2%cosz + 2 (zsinz — (—cosz)) + ¢

= —z%cosx + 2zsinz + 2cosz + ¢

3. /xlnm dx

Solution : Using integration by parts
u=In|z| dv =z dx
2

du:ld:r v="1
x 2
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x? 1 2?2
1 :—1 — _ —
/x n x| dx 5 n |z| /3: 5 dx

_:E21|| 1/ d_x21|| 1x2+ _:c21|| :102+
—2nx2xx—2nx220—2nx4c

4. /ln\x| dx

Solution : Using integration by parts
u=lIn|z| dv = dx

du = — dx v==1
T

1
/ln\x| da::xln|x|—/x—dx:ggln|z|_/1dx
T

=zlh|z|—x+c¢

5. /tan_lx dxr

Solution : Using integration by parts

u=tan 'z dv = dx

1
d = -
v 14 22

1
/tan_lx dmzmtan_lx—/m —— dx
1422

1 2 1
:xtan_lx—f/ x dmzwtan_lx—§ln(l+x2)+c

dx v=2

2] 1+ 22

6. /sinflm dx

Solution : Using integration by parts

u=sin"'z dv = dx

1
du = —— dx v==z

V1—22

.1 1 X
sin~"rxdr=xsin” " x— | ——— dx
/ /\/1 — 2

1 1 (1—2a2)2
:$Sin_1$+§/(l—x2)_%(—2x) dm:xsin_lx_i_i (73:)2

=

=zsinlz4+V1—a22+¢
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7. /e"” sinx dx

Solution : Using integration by parts

u =sinzx dv =¢€* dx
du = cosx dx v=e"

/e””sinx dx:ewsinx—/ewcosx dx

Using integration by parts again

U = COS X dv = e® dx
du = —sinz dx v=2¢e"

/ersinx dx = e”sinx — (emcosx—/ea”(—sina:) da:)
/ersinx dr = e"sinx — <emcosx+/e$sinx dx)

/e“sin:v dx:e“'sinx—e”cosx—/e”:sinx dx
2/e$sinx dr =e*sinx — e*cosx + ¢

1
/ewsinx dzx = 5 (e®sinx — e” cosx + ¢)
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4.4 Integral of rational functions

(The metod of partial fractions)

P(x)
Q)

Method of partial fractions is used to solve integrals of the form /

where P(z) , Q(x) are polynomials and degree P(z) < degree Q(x).
If degree P(x) > degree Q(x) use long division of polynomials .

Definition (linear factor) :
A linear factor is a polynomial of degree 1.
It has the form az + b where a,b € R and a # 0 .

Examples :
x, 3z, 2x¢ — 7 are examples of linear factors .

Definition (irreducible quadratic) :
An irreducible quadratic is a polynomial of degree 2.
It has the form az? 4 bx + ¢ where a,b,c € R , a # 0 and b?> — 4ac < 0 .

Examples :
1. 22 +9 and 22 + = + 1 are examples of irreducible quadratics.

2. 22 =x z and 22 — 1 = (x — 1)(x + 1) are reducible quadratics .

P(x)
Q(z)

Write Q(x) as a product of linear factors and irreducible quadratics (if possible).

How to write as partial fractions decomposition ?

If Q(z) = (a17 + az)™ (b12? + bax + b3)™ where m,n € N then
P(I) A1 A2 Am
= + — + . o4 o m
Q(x) a1z + asy (a1 + as) (a1 + ag)™
Bix 4+ C4 Box + Cy n n B,z + C,
b1$2 =+ bQIC —+ b3 (bll'Q —+ ng + bg)2 (bll'Q + bg.’ﬂ + bg)n

Where A17A2a”' 7ATTL7B17B27"' 7Bnaclvc27"' )OIL eR.

Examples : Write the partial fractions decomposition of the follwoing

2x 4+ 6

1. —
22 —2x —3
Solution :

2 -2 -3 (x—3)(x+1) 7—3 711
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T+ 5

T2 4dxr+4

Solution :
z+5 T+5 Ay Ay

2 +dv+4 (x4 2)? 7m+2+ (x +2)?

2 +1

Tzt 4+ 422

Solution :

2 +1 x? +1 Ay Ao Bix + C4

rh4+ 422 22(224+4) =z +ﬁ+ x?+4

20+ 7

" (z+ 1) (22 4 9)2

Solution :
2z + 7 A1 BllL' + Cl BQ.T —+ CQ

(r+1)(22+9)2 z+1 2249 (22 +9)2

. r
(- 1)(22-1)
Solution :

T o €T o Al + A2 n A3
(z—1)(22-1) (z+1)(z-12 z+1 z-1 (z—1)2
4+
2 -1

Solution : Using long division of polynomials

P+ (P-a)+20  x(@?-1)+22 2x
r2—1 x? -1 N x? -1 B x? -1
3+ N 2 N Ay n Ay

= =X
x?—1 (x—=1)(z+1) x—1 x+1

Examples : Evaluate the following integrals

r+3
1'/<x—3><x72> e

Solution : Using the method of partial fractions

r+3 A n Ao
(x—3)(z—-2) x-3 x-2
z+3 _ A(r—2) As(xz —3)

(z=3)(z—-2) (z-3)(z—-2) (x—2)(xz—23)

69
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x+3 Ai(x —2) + As(z — 3)

@—3)@—2) @—3)(@—2)
x+3=A1(x —2)+ As(x — 3) = Ajx — 241 + Ayx — 34,
x+3= (A1 + Az)xz + (—24; — 34,)

By comparing the coefficients of the polynomials

A1 + Ag =1 — (1)
72A1 — 3A2 = 3 — (2)

Muliplying equation (1) by 2 and adding it to equation (2) :
—Ay =5 — Ay =-5
From Equation (1) : 41 —5=1 = A;=14+5=6

©43 6 5
(r—3)(x—2) -3 x-2

Jena =] (G5 ) @

1 1
:6/ dx—5/ der=6ln|zr—3|-5ln|lzr—2|+c¢
x—3 T —2

r+1
'/xQ—ldm

Solution :
r+1 z+1
/x2—1 dx_/(x—l)(:v+1) de

1
:/ de=Inlz—1|+c¢
z—1

r—1
' /(x+1)($+2)2 du

Solution : Using the method of partial fractions

r—1 A1 Ag A3

@i D@ +2? o+l z+2 (2122
x—1 Ay (z +2)? Ag(z +1)(z +2) Asz(z+1)

(z+1D)(z+2)?2 (z4+1)(x+2)2 (z+1)(z+2)2  (z+1)(x+2)2
r—1=A1(x+2)2+As(x+1)(z +2) + Az(x + 1)

r—1=A1(2? + 42 +4) + Ax(2? + 32+ 2) + Az(z + 1)
Xr — 1= A1$2 +4A1J}+4A1 +A2$2+3A21‘—|—2A2+A3$+A3
[L'—l:(Al+A2)ZL'2+(4A1+3A2+A3).’E+(4A1 +2A2+A3)
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By comparing the coefficients of the polynomials

A1 + AQ = 0 — (1)
4A1 + 3A2 + A3 = 1 — (2)
4A; + 24y + A3 = -1 — (3)

Subtracting equation (3) from equation (2) : Ay =2

From equation (1) : A; +2=0 = A; = -2

From equation (2) :

(Adx-2)4+3%x2)+A43=1 = —8+4+6+A3=1 = A3=3
z—1 —2 2 3

@t )@+2? 741 742 (zr2p?

/M@Zw:/(xfmif@fzv) &

1 1
=—2/7dx+2/7dx+3/(x+2)_2 dz
z+1 x+2

(r+2)71
-1

==2Injz+1|+2Injz+2/+3 +c

3
=2lnjz+1|+2njz+2|—-——+c¢
T+ 2

2
n /Qx +3x+2da?

23+ x
Solution : Using the method of partial functions

2x2+3x+2_2x2+3x+2_é+3x—|—0
+z  z@2+1l) oz 2241

202 +3x+2  A(x*+41)  z(Bx+C)
B4+ x4+l z(x2+1)

202+ 3r+2=A(x?+1)+2(Bx+C) = Az?> + A+ B2? + Cx
202 +3r+2=(A+B)2?+Cx+ A

By comparing the coefficients of the polynomials

A+B = 2 — (1)
C = 3 — (2
A = 2 — (3)

From equation (1) : 2+ B=2 = B=0
2x2+3x+2_2 3

3+ r x22+1
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/2x2+3x+2dx_/ z+ 3
3+ o x  x2+1

1 1
=2 —d 3| ——d
/:1: T + /z2+1$

=2In|z| +3tan"tz + ¢

CHAPTER 4. INTEGRATION
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Chapter 5

APPLICATIONS OF
INTEGRATION

5.1 Area

5.2 Volume of a solid of revolution
(using disk or washer method)

5.3 Volume of a solid of revolution
(using cylindrical shells method)

5.4 Polar Coordinates and Applications

73
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5.1 Area

[ N P ———

In the above figure the area under the graph of f(x) on the interval [a,b] is
b
given by the definite integral / f(x) dx

f(x)

g(x)

o

In the above figure the graphs of f(z) and g(z) intersect at the points x = a
andz =5 .
The area bounded by the graphs of the curves of f(z) and g(x) equals

[ e [y ae= [ 1) gt ae
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Examples :

1. Find the area of the region bounded by the graphsof z =0,y =0,z =2
and y = 22 + 1

y = 22 + 1 is a parabola with vertex (0,1) and opens upwards.
x = 0 is the y-axis and y = 0 is the x-axis.

x = 2 is a straight line parallel to the y-axis and passing through (2, 0)

2 23 2
Area:/ (332—1—1) de = [—i—x]
0 3 0

23 03 8 14
rea (3+> (3—1-0) 3—|- 3

2. Find the area of the region bounded by the graphs of y = z and y = x>
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y = 2% is a parabola with vertex (0,0) and opens upwards.

y = x is a straight line passing through the origin with slope equals 1.
Points of intersection of y = 22 and y = z :

=z = 22-2=0 = 2(z-1)=0 = 2=0,z=1

1 2 371
Area:/ (z — 2?) dx = {xm}
0 2 3 1o

Ao (BT (02 0%y _1 1 _1
“\2 3 2 3) 2 3 6

. Find the area of the region bounded by the graphs of y = z2 and y =

—x2 42

y = —x? + 2 is a parabola with vertex (0,2) and opens downwards

y = 2% is a parabola with vertex (0,0) and opens upwards.

Points of intersection of y = 22 and y = —22 + 2 :

2=—2?42 = 22=2 = 22=1 = =41
1

Area:/l [(—2® +2) — 2] d:c:/ (2 —227) dz

—1 —1

2] [2)- (54

2 2 4 12-4
Area=2— 242~ =4_ ==
rea 37473 3 3

8
3
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4. Find the area of the region bounded by the graphs of y = 22 and y = \/z

\ y:xz

y = 22 is a parabola with vertex (0,0) and opens upwards.

y =+ = x =12 is the upper half of the parabola with vertex (0,0)
and opens to the right.

Points of intersection of y = 22 and y = /7 :
=z = a2t=2=2t-2=0 = 2(23-1)=0

= z=0,2=1= 2=0, =1

5. Find the area of the region bounded by the graphs of t +y =2,y = 2
and y =2z — 4

y+x =2

‘ ‘
| /\3
Ll

y=2,y=2x—4and y = —x + 2 are three straight lines.
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Point of intersection of y =2 and y = —x + 2 :
—r+2=2 = =0

y =2 and y = —x + 2 intersect at the point (0, 2).
Point of intersection of y =2 and y =22 — 4 :

21 —4=2 = =3

y =2 and y = 2z — 4 intersect at the point (3,2)
Point of intersection of y = —z + 2 and y = 2z — 4 :
2t —4=—2+2 = 3z=6 = =2

y=—x + 2 and y = 2z — 4 intersect at the point (2,0).

2 3
Area:/o [2—(—2+2)] d:z:+/2 [2— (2 —4)] dx

2 3 22 2 3
Area:/ xd:L'Jr/ (6 —2z) dx = [] + [6:1:fx2}2
0 2 2 ]y

Area = {222—022]+[(6><3—32)—(6><2—22)]

Area= (2—0)+[(18—9) — (12—4)] =2+ (9—8) =2+1=3

Another solution :

1
y+r=2 = r=—y+2andy=2r—4 = 2z=y+4 = m:§y+2
Syt
Area:/ [(2y+2>—(—y+2)} dy
0
2 /g 24
Area = JY+y dy = gydy
0 0

212 2 2
Area— S| Z3(E_00 3 5 g
212, 2|2 2 2

. Find the area of the region bounded by the graphs of y =0, y=—x+6

and y = /T

y=-x+6

N
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y = —x + 6 is a straight line passing through (0,6) with slope equals —1.

y =+/* = x =12 is the upper half of the parabola with vertex (0,0)
and opens to the right.

Points of intersection of z = y? and x = —y + 6 :
Y=—y+6 = y’+y—-6=0 = (y—2)(y+3)=0 = y=2,y=-3

(Note that y = —3 is not in the desired region).

2 2 yP 2
Area:/ [(—y+6)—y®] dy= {Gy]
0 0

2 3
4 8 8 8§ 30—-8 22
Area= (12— = - 2)—(0-0-0)=12-2-°=10—- =22 _ =2
rea ( 5 3> (0—-0-0) 3 0 3 3 3
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5.2 Volume of a solid of revolution

(using disk or washer method)

5.2.1 Disk Method
Recall that the volume of a right circular cylinder equals 7r2h where r is the
radius of the base (which is a circle) and h is the height of the cylinder .

f (x)

Ry

In the above figure R; is the region bounded by the graphs of the curves of f(x)
,x=a,x=>and the z-axis.
Using disk method , the volume of the solid of revolution generated by revolving

b
the region R; around the z-axisis V = 7r/ [f(2))? dz

-

dt

Ry

a(y)

In the above figure Ry is the region bounded by the graphs of the curves of g(y)
, ¥y = d and the y-axis.
Using disk method , the volume of the solid of revolution generated by revolving

d
the region Ry around the y-axis is V = 7r/ [9())? dy
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5.2.2 Washer Method
Volume of a washer = [(outer radius)® — (inner radius)?| (thickness)

f (x),

g(x)

Q
o
-

In the above figure Rj is the region bounded by the graphs of the curves of f(x)
,g(z) ,x=aand x =0.
Using washer method , the volume of the solid of revolution generated by re-

b
volving the region R3 around the z-axis is V = 77/ {(f(a:))2 - (g(ﬂ(;))ﬂ dx

-
db

fy)

aly) R,

In the above figure Ry is the region bounded by the graphs of the curves of f(y)
and ¢(y) , where f(y) and g(y) intersect at the points y = ¢ and y = d.
Using washer method , the volume of the solid of revolution generated by re-

d
volving the region R4 around the y-axisis V = 77/ {(f(y))2 — (g(y))ﬂ dy
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Examples : Use Disk or washer method to calculate the volume of the solid of
revolution generated by revolving the region bounded by the graphs of :

l.y=2242,y=0,2=0, 2 =1, around the z-axis

y =x2+2

y = 2% + 2 is a parabola with vertex (0,2) and opens upwards.
x = 1 is a straight line parallel to the y-axis and pasing through (1,0)

Using Disk method :
1 1
Volume = 7r/ (2 +2)% doe = 7r/ (z* + 42® + 4) dx
0 0

z®  4x3 ! 1 4 837
Tl 4 — 444 = _ 227
w{5 + 3 + xL w[(5+3+ > (0+0+0)] 1

2. y=+/x,y=2and z =0, around the y-axis

x| 7

y = /7 is the upper half of the parabola x = y? with vertex (0,0) and
opens to the right

y = 2 is a straight line parallel to the z-axis and passing through (0, 2)
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Using Disk method :
2 2
Volume:ﬂ/ (y*)? dy 7r/ y* dy
0 0
S i) R A (O
51, 5 5
3. y=2?+1and y = —x + 3, around the z-axis

y = x? + 1 is a parabola with vertex (0, 1) and opens upwards.
y = —x + 3 is a straight line with slope —1 and passing through (0, 3).

Points of intersection of y =22 +1and y = —x + 3 :

83

?+1=—2+43 = 2°+2-2=0 = (24+2)(z—1)=0 => z=-2,2=1

Using Washer method :

volume = 71'/12 [(—z+3)* = (2 +1)*] da

1
Volume = 77/ [(z* —62+9) — (z* +22° +1)] da
-2

1
Volume:ﬁ/ (—2* — 2 — 6z +8) d:c:w[

-2

1 1 32 8
T S T
71'( 3 3+5 3 3+ 8>

———x——3x2—|—8x

1.1 5.4 2.8 19 16
TIN5 3 5 73

-2
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33 33 150 — 33 1177w
—7T(33—3—5>—7T<30—5)— 5 ™= 3

4. y=+/rv ,y=0and x =1, around the y-axis

~_| 7
I |

y = /7 is the upper half of the parabola x = y? with vertex (0,0) and
opens to the right

x =1 is a straight line parallel to the y-axis and passing through (1, 0)
Note that y = \/z intersects = 1 at the point (1,1).

Using Washer method :

Volume = 7T/0 [(1)* = (¥*)?] dy = 7T/O (1—y*) dy
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5.3 Volume of a solid of revolution

(using cylindrical shells method)

Volume of a shell = 27 (average radius) (altitude) (thickness)

-

f(x)

Ry

In the above figure Ry is the region bounded by the graphs of the curves of f(x)
, T =a,x=>band the z-axis.
Using cylindrical shells method , the volume of the solid of revolution generated

b
by revolving the region R; around the y-axis is V = 27 / z f(z) dzx
a

Rz

a(y)

In the above figure Ry is the region bounded by the graphs of the curves of g(y)
, ¥y = d and the y-axis.

Using cylindrical shells method , the volume of the solid of revolution generated

by revolving the region Ry around the z-axis is V = 27 / y g(y) dy

c
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Examples : Use cylindrical shells method to calculate the volume of the solid
of revolution generated by revolving the region bounded by the graphs of :

1. y=+vx ,y=0and z =4, around the y-axis.

- | —

2F /

y = 0 is the z-axis

y = /7 is the upper half of the parabola z = y? with vertex (0,0) and
opens to the right.

x =4 is a straight line parallel to the y-axis and passing through (4,0).

Using Cylindrical shells method

4 4
Volume = 27r/ /T dx = 277/ 23 da

0 0

2 51* 2 s 2 1287
Volume = 27 |:51‘2:|0 =27 E (4)2 =27 E (32) = —

2. z+y=1,x=1and y=2x+ 1, around the y-axis .

~

y =2x+]

y=—-x+1
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y = —x + 1 is a straight line with slope —1 and passing through (0, 1).
y =2z + 1 is a straight line with slope 2 and passing through (0, 1).

2 = 1 is a straight line parallel to the y-axis and passing through (1, 0).
Point of intersection of z =1 and y = —z + 1 is (1,0).

Point of intersection of x =1 and y = 22 + 1 is (1, 3).

Point of intersection of y = —x 4+ 1and y =2z + 1 :

2z4+1=—-2+1 = 3z=0 = z=0.

Using Cylindrical shells method
1 1 1
Volume = 27r/ z[(2e4+1)— (—z+1)] do = 27r/ x(3z) dx = 27T/ 32% dx
0 0 0

Volume = 27 [173](1) =27[1-0] =27

3. y=2?and y =1, around the z-axis.

y = 22 is a parabola with vertex (0,0) and opens upwards.

y = 1 is a straight line parallel to the z-axis and passing through (0, 1).

Since the bounded region is symmetric with respect to the y-axis, consider
the right half of the parabola y = z? which is z = /7.

Using Cylindrical shells method

1 1
Volume = 2 (277/ Y'Y dy) = 471'/ y% dy
0 0

1
5 2 8w
| =dr(Z-0)=—
yz}o 7T<5 > 5

4. y =22 and y = x , around the z-axis.

Volume = 47 {

(S V)

y = x? is a parabola with vertex (0,0) and opens upwards.

y = x is a straigh line passing through the origin with solpe 1.
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y=x
y=x? /
1 \

Consider o = ,/y which is the right half of the parabola y = 2.

Points of intersection of x = \/y and x =y :
y=vy = y¥=y = y-y=0=yy-1)=0=y=0,y=1

Using Cylindrical shells method

1 1,
Volume = 27r/ y(Vy—vy) dy= 277/ (y% — y2) dy
0 0

2 5 8" 2 1
Volume = 27 fyi—y— =2 |l=—=)—-(0-0)
577 75,

2 1 6—5 2w
Volume 7r(5 3) 77( R ) 5
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5.4 Polar Coordinates and Applications

5.4.1 Polar coordinates system :
In the recatangular coordinates system the ordered pair (a, b) represents a point,
where ”a” is the x-coordinat and ”b” is the y-coordinate.

The polar coordinates system can be used also to represents points in the plane.
The pole in the polar coordinates system is the origin in the rectangular coor-
dinates system , and the polar axis is the directed half-line (the non-negative
part of the x-axis).

If P is any point in the plane different from the origin, then its polar coor-
dinates consists of two components r and 6 , where r is the distance between P
and the pole O , and 6 is the measure of the angle determined by the polar axis
and OP.

P(r.6)

.. 0 polar axis

The meaning of polar coordinates (r, ) can be extended to the case in which
r is negative by considering the points (r, ) and (—r,6) lying on the same line
through O and at a same distance |r| from O but in opposite directions.

Remark : In this case the representation of a point using polar coordinates is
not unique, for instance if P(r,#) then other possible represenations are
(=r,m+0), (—r,0 —m) (r,0 —2m) and (7,0 £ 2n7) where n € N.
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R4

< P(=rg+m)

polar axis

Example 1: Plot the points whose polar coordinates are given :

P
P (1,7) , Py(2,37) , Py (2,—;) and P (—3,3?).

Solution :

Example 2: Write other polar reprsentations of the point (1, %)

Solution :

(—1, g +7r) - (-1, 52)
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5.4.2 Relationship with Cartesian coordinates :

polar axis

From the above figure , the relationship between the polar and cartesian coor-
dinates is given by the formulas :

T
cos) = — = x =rcosh

Sl

sinf = = y =rsinf

=2+ = r=z2+12
tanf = 2 — 0 = tan~? (E) where x # 0.
T x
Examples :
1. Convert the point (2, g) from polar to Cartesian coordinates.
2. Convert the point (1,1) from Cartesian to polar coordinates.

Solution :

1. The point (2, g) is written in polar coordinates where r = 2 and 0 = g

x:rcos9:2cos<z):2x1:1.
3 2
yZTSin9=281n<g):2X§=\/§.

The Cartesian coordinates of the point (2, g) is (17 \/§)

2. The point (1, 1) is written in Cartesian coordinates where z = 1 and y = 1

r=V2 = JIE T ()P =VITI=V2

_y_1_ — tan-1(1) = ©
tanQ—x—1—1:>9—tan (1)—4

The polar coordinates of the point (1,1) is (\/57 g)



92 CHAPTER 5. APPLICATIONS OF INTEGRATION

5.4.3 Polar curves:
A polar curve is an equation of r and 6 of the form r = r(0) or r = f(#) where
61 <6 <0,

This section focuses on the circles centered at the origin and of radius a > 0.
The polar curve r = a where a > 0 represents a circle with center (0,0) and its
radius equals a.

Examples : Sketch the following polar curves :
1. »r =2 where 0 < 6 < 27.
2. r:3whereO§9§g

Solution :

1. 7 =2 where 0 < 6 < 27 represents a whole circle centered at (0,0) and its
radius is 2.

r=2

2. 7 =3 where 0 < 0 < g represents the first quarter of a circle centered at
(0,0) and its radius is 3.
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5.4.4 Area with polar coordinates :

The area of the region bounded by the graph of r = r(f) , and the two lines
0 =01 ,0 =0, is given by the formula

Area = ;/62 [r(6)]% db

01

The area of the region bounded by the graphs of r1 = r1(0) , r2 = r2(f) and
the two lines 6 = 0, , 8 = 05 is given by the formula

Area = ;/62 ([rl(g)]Q _ [rQ(Q)]2> de

01

Example 1 : Find the area of the region inside the polar curve r = 1.
Solution : r =1 is a whole circle centered at (0,0) and its radius is 1.
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A —1/%qu—1/%1w
rea—20 —20

1 .0 1

Example 2 : Find the area of the region inside the polar curve r = 2 and
outside the polar curve r = 1.

Solution : r =1 is a whole circle centered at (0,0) and its radius is 1.

r = 2 is a whole circle centered at (0,0) and its radius is 2.

Area =

27
/ 3 db
0

N | =

Tt =) [Ta-na-

N —
o

7r_

SN

1 1
25[3(9] [3><27r—0]:§><67rz37r

1
2
Example 3 : Find the area of the region inside the polar curve » = 2 and at
the first quadrant.

Solution : r =2 is a circle centered at (0,0) and its radius is 2.

The region in the first quadrant means that it is bounded by the two lines § = 0

and 0 = =
2

(]
1 (7 I
Area = — (2)° df = = 4 df
1 ; 01 ? 01
x ™
P 2 — - = — =
—2[49]0 2[4:><2 0] 2><27T T
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6.1 Functions of several variables

6.1.1 Functions of two variables :
Definition: A function of two variables is a rule that assigns an ordered pair
(x,y) (in the domain of the function) to a real number w.

f:R2— R
(z,y) — w
Example :
T,y) = is a function of two variables x and
faw) = i wo v y
1 1

= o = —
I8 =53 =15

1
Note that f(z,y) takes (3,1) € R? to 10 € R

6.1.2 Functions of three variables :
Definition: A function of three variables is a rule that assigns an ordered triple
(x,y,2) (in the domain of the function) to a real number w .

f:RP— R
('Tv Y, Z) — w
Example :
flz,y,2) = ﬁ is a function of three variables z , y and z
4 4 1
[T )

1+(-2)2+3 8 2

1
Note that f(z,y,2) takes (1,—2,4) € R3 to 3 eRrR
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6.2 Partial derivatives

6.2.1 Partial derivatives of a function of two variables :
If w= f(z,y) is a function of two variables, then :
. o . . of ow
1. The partial derivative of f with respect to x is denoted by e [z
z x

or w, , and it is calculated by applying the rules of differentiation to x
and regarding y as a constant .
. .. . . of Ow
2. The partial derivative of f with respect to y is denoted by 50 D0 fy
Y Y
or wy , and it is calculated by applying the rules of differentiation to y
and regarding x as a constant .

Example 1: Calculate f, and f, of the functivon f(z,y) = 2?y® +zyln(z +y)
Solution:
1. fo= 9 (w2y3 + zyln(z + y))
Oz

Yy
r+vy

fo = (2aj)y3 + {(1)yln(x +y)+ay ] =2z + yln(x +y) +

Tty

0
2. f, = B (x2y3 + zyIn(z +y))

fy = 22(39%) + {x(l)ln(x +y)+ YT y} = 32%y? + xln(z +y) + xaj’:_gy
: x4+ y?
Example 2: Calculate f, and f, of the functiuon f(z,y) = n
rry
Solution:
1 f= g (1 +0)(z+y) — (r+9y*)(1+0) _xty-— (x +9?)
T Ow (z +y)? (z+9?)
f _rty—z-y  y—y°
’ (z +y)? (z +y)?
0 5. =0 _ O+2y)(z+y) —(z+y*)(O0+1) 2yl +y) - (z+y°)
oy ( +y)? (¢ +y)?
P 20y +2y2 —x —y? 2wy —ax+y?
=

(z +y)? o (z4y)?
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6.2.2 Partial derivatives of a function of three variables :
If w= f(z,y,2) is a function of three variables, then :

af  ow

1. The partial derivative of f with respect to z is denoted by 92 m [z

or w, , and it is calculated by applying the rules of differentiation to z
and regarding y and z as constants .

of w4
oy Oy 7Y
or wy , and it is calculated by applying the rules of differentiation to y
and regarding x and z as constants .

2. The partial derivative of f with respect to y is denoted by

or ow
o . o 0z 0z 7"
or w, , and it is calculated by applying the rules of differentiation to z
and regarding x and y as constants .

3. The partial derivative of f with respect to z is denoted by

Example : If f(z,y,2) = 2232 — 4(2® + y?)z , then calculate f, , f, and f, at
(0,1,2).
Solution :

1. fo = 82 (2237 — 4(2® + y?)2) = 22° — 4(22)2 = 22° — 8az
z

f(0,1,2) =2 (2°) — 8(0)(2) = 16

2. fy = % (222 — 4(2® + y*)z) = 0—4(0+ 2y)z = —8yz

£4(0,1,2) = —8(1)(2) = ~16

3. f. = 82 (2232 — 4(2® + y?)2) = 62z — 4(2® + )
z

£2(0,1,2) = 6(2)(0) — 4(0* +1?) = —4

6.2.3 Second partial derivatives :
If w= f(z,y) is a function of two variables , then :

82f_8 af _3 _
1 a332_833(835)_ax(m—fm.

Pf 0 (of\ 9 ..
2. W_ay(ay)_ay(fy)_fyﬂ

O’f 0 [(of\ 9@ B
3. 920y~ O <8y> =9 (fy) = fya -

02 o [0 0

4. =— | = —
dydr Oy \ Oz oy
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Note : Second partial derivatives of a function of three variables are defined in
a same manner.

Theorem : Let f(z,y) be a function of two variables. If f , f, , f, , fzy and
fyz are continuous, then f,, = fy..

Note : If f(z,y, z) is a function of three variables and f has continuous second
partial derivatives, then fiy = fyo , foz = f2e and fy. = f2y .

1 and 1
0zdy 0yox

Example 1: Let f(z,y) = 23y + zy?sin(z + ) , calculate

Solution :
fo = 32%y +y?sin(z + y) + 29 cos(z + y)
fy = 2% + 2zysin(z + y) + zy? cos(x + y)
Jzy = 322 + 2y sin(z +y) + y? cos(z + y) + 2xy cos(z + y) — zy? sin(z + y)
fye = 322 + 2y sin(z + y) + 22y cos(z + y) + y* cos(x +y) — 2y sin(z + y)

Note : f., = fy» according to the theorem .

o0 f J 0% f

E le 2: Let = z%y? i lculat
xample et f(z,y,2) a:yz+xysm(y+z),cacuaeayam and -

Solution :
fr = 32%y%2 + ysin(y + 2)

[z =2*y* + zycos(y + 2)

2
8?;6]; = foy = 62%yz + sin(y + 2) 4+ y cos(y + 2)
0°f = for = 32%y% + ycos(y + 2)
0xdz 7"
2 2 2
Example 3: Let f(z,y,2) = 223—3(2?+y?)z , Show that %Jrg—szrgz‘g =0
Solution :

fo=0—32(22) = —6zz
fy =0—32(2y) = —6y=

f. =622 —3(2% +9?)

82 f

81'2 - fza: - _6Z
2

of _ = —62

=



100 CHAPTER 6. PARTIAL DERIVATIVES

2f

022

O*f O f  Of
@JrainJr@f—ﬁszZJrlszO
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6.3 Chain Rules

Theorem (Chain Rules):

1. If w = f(z,y) and x = g(t) , y = h(t) , such that f , g and h are
differentiable then

df dw Ow dr Ow dy

dt — dt  Ox dt Oy dt

2. f w = f(z,y) and = = ¢(t,s) , y = h(t,s) , such that f , g and h are
differentiable then

o5 _ouw_ow 0 du 0y
o ot ox ot 0Oy Ot
of 0w _owor 0wy
ds 0s Or s Oy Os
3. fw= f(x,y,2) and x = g(¢,s) , y = h(t,s) , z = k(t,s) such that f , g,
h and k are differentiable then

ow Ow Ox aﬂ@ Biw(?z

T T T T T T
ow Ow Oz 87w8y aﬂaz

9s 0z 0s "oy 05 9z 0s

0
Example 1 : Let f(z,y) = zy +y*, 2 = s* , and y = s + ¢ , calculate 67]30
of
d —.
and —
Solution :

of Of ox _9f dy

" 0s  Ox 0s Oy Os

af ox
%—y,a—QSt
of oy
8—yf:z+2y, 8371
of

a5 =Y (2st) + (z +2y)(1) = (s + t)2st + [s°t +2(s + 1)]
= 252t + 2s5t% + 5%t + 25 + 2t = 352t + 2st? + 25 + 2t
0f _0f 0z 0f By

2, — =
at  Ox Ot Jy Ot
of _ . 0r _ o
ar U ot
of oy
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of _
ot~ 7°

=% 4+ $2t + 52t + 25 + 2t = s% + 252t + 25 + 2t

2z 429)(1) = (s +1)s* + 5%t +2(s + 1)

Example 2 : Let f(z,y,2) = « + sin(zy) + cos(zz) , x =ts , y = s+ ¢ and

s of
= - lculate —— and — .
z , calculate —= and —

Solution :

of _of or  of oy of o

" ds Ox Os Oy ds 0z Os
of ox

o 1+ ycos(zy) — zsin(zz) , 5 = t

of _ 9y _

- x cos(zy) , 55 1

OF __\intamy 221

9. O s T

of . 1 .

b5 = t [1+ycos(zy) — zsin(zz)] + x cos(zy) + n (—xsin(zz))
s

g =t + ty cos(zy) — tzsin(az) + x cos(zy) — w
s

of _0f 0z 0f Oy  0f 0:

9. L =2 =L oL
ot —ox ot oy ot oz ot
of . Oz
e 1+ ycos(zy) — zsin(zz) , Friak
of _ % _
- x cos(zy) , 5 = 1
o _ (22) 9z _ —s
5, = —esin(@z) , o = o
of . - :
Friak [1+4 ycos(zy) — zsin(xz)] + x cos(xy) + = (—xsin(zz))
% = s+ sy cos(xy) — szsin(zz) + x cos(zy) + %r;(xz)
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6.4 Implicit differentiation

1. Suppose that the equation F(x,y) = 0 defines y implicitly as a function
of z say y = f(z) , then
dy __F,

dx F,

2. Suppose that the equation F(z,y,z) = 0 implicitly defines a function
z = f(z,y) , where f is differentiable , then

%——&and%——Fy
dr  F, oy  F.

d
Example 1 : Let y?> — 2y + 322 = 0, find d—y
x
Solution 1: Let F(z,y) = 2% — 2y + 322 then F(x,y) =0

Fp=—-y+6zxand F, =2y —z .
dy  Fp  (-y+6r) y—6a

dr  F, 2y—x  2w—ax

Solution 2 : 32 — 2y + 322 =0
Differentiate both sides implicitly
29y — (y+ay) +62=0 = 2yy —y—ay +6x=0
= 2uy —zy =y—6z = (Qy—2a)y =y—6z

dy , y—6x
dm_y

:2y—z

0z

0
Example 2 : Let F(z,y,2) = 2%y + 22 + sin(zyz) = 0, find a—z and 50
x Y
Solution :

F, = 2zy + yz cos(zyz)
F, = 22 + zz cos(zyz)
F, = 2z 4 zycos(zyz)

0z F,  2zy+yzcos(ryz)

oz F,  2z+zycos(zyz)

0z F,  a?+zzcos(wyz)

dy  F.  2z+xycos(zyz)
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7.1 Definition of a differential equation

Definition : An equation that involves z , y , v/ , v" , --- ,y(™ for a function
y(z) with nt" derivative y(™ of y with respect to  is an ordinary differential
Equation of order n.

Examples :
1. y = 2% + 5 is a differential equation of order 1.

2.y +x (y’)4 —y = x is a differential equation of order 2

3. (y(4))3 + 22 ¢ = 2z is a differnetial equation of order 4

y = y(z) is called a solution of a differential equation if y = y(x) satisfies that
differential equation.

Consider the differential equation 3y’ = 6x + 4 , then y = 3z + 42 + ¢ is the
general solution of that differential equation.

If an initial condition was added to the differential equation to assign a certain
vallue for ¢ then y = y(x) is called the particular solution of the differential
equation .

Consider the differential equation ¢y’ = 6x+4 with the initial condition y(0) = 2,
y = 3x2 + 4x + c is the general solution of the differential equation ,

y(0)=2 = 3(0)2+4x0+c=2 = c=2, hence y = 32% + 4z + 2 is the
particular solution of the differential equation.
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7.2 Separable Differential equations

The separable differential equation has the form M(z) + N(y) v’ =0 .
where M (z) and N(y) are continuous functions.

To solve the separable differential equation :
1. Write it as M (z) de + N(y) dy =0 = N(y) dy = —M(x) dz .

2. Integrate the left-hand side with respect to y and the right-hand side with
respect to x

/N(y) dy:—/M(x) dx

Example 1 : Solve the differential equation 3’ 4+ y3e* =0 .

Solution :
d
y/+y3€m:0 N dz :_y3er’
1 x -3 x
= ——dy=e"dr = —y dy=¢€"dx

3
-2

= —/y_sdy:/e“'da: = —y—zzew—&—c

1 1

— @ZG‘T‘FC — y2:2(e‘”+0)
= y?= ! == y= L
4 - 2(e*+c) v= 2(e* +¢)

d
Example 2 : Solve the differential equation d—y =y2e” | y(0) = 1.
x
Solution :
d 1
—y:yQSI = —dy=¢e"dx
dz 2

= yldy=edr = /y*Qdy:/e‘de

— yil L — -1
—=e"+c =
-1 4 e* +c¢
-1
Using the initial condition y(0) =1 = 1= +—
e’ +c
-1
= l=—— = 1l4c=-1 = c=-2
1+c¢
-1

The particular solution is y =
er —2
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Example 3 : Solve the differential equation dy — sinz(1 + y?)dx =0 .
Solution :

1
= 1Ty —— dy=sinz dr = /1+y dy:/sin:rdx
= tanly=—cosz+c = y=tan(—cosx + )

Example 4 : Solve the differential equation e Y sinz — 4’ cos?z =0 .
Solution :

o dy

e Vsinz —y'coslr =0 = —cos’z—>=—e Ysinx
dzr
1 —sinz 1 sinz
= —dy:ﬁdx = eYdy=
e Y —Cos“ T COST COST

— eYdy=secxtanx dr — /ey dy:/secactanx dx

= e¥Y=secr+c = y=In|secx+¢|

Example 5 : Solve the differential equation 3’ =1 —y + 2% — ya?
Solution :

dy

y=1-y+a?—yr> = d—:l—y+x2(17y)
x
d 1
= H=0-90+s) = [ dy=(+2")dr
= /7dy*/(l+x)dx = /7dy*/(1+z2)d:v
x3 3
= —Ihijl-yl=2+—F+c = hil-y|l=—a—-——-c¢

3 3

= l-—y=e""7"7° = y=1—-e""3"7°
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7.3 First-order linear differential equations

The first-order linear differential equation has the form y’ + P(z) y = Q(x) ,
where P(z) and Q(z) are continuous functions of =

To solve the first-order linear differential equation :
1. Compute the integrating factor u(z) = e/ F(®) 4=

2. The general solution of the first-order linear differential equation is

d
Example 1 : Solve the differential equation xd—y +y=a>+1.
i

Solution :
d 1 241
x—y+y:x2+1 == y/+<) T
dz x x
/1 1
= y | )y=2+—
x x
P(z)=—and Q(z) =z + —
The integrating factor is u(z) = e/ v — e — g

1 1
The general solution is y = — / x (33 + ) dz
x x

1 1 3 2
y:f/(J:Q—i—l)dx:f T vrve)=2 414°¢
T T\ 3 3 T

2
Example 2 : Solve the differential equation y’ — Ey = 22" | y(l)=e.

Solution :
2
P(z) = - and Q(r) = x2%e”

The integrating factor is

u(ac) — ef—%dm — e—2f%dw — e—21nw — elnw72 — {17_2

1
The general solution is y = — /x”xQemdm
x
y= xQ/emdx =2%(e” 4 ¢) = 22" + ca?

Using the initial condition y(1) =e
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yH=e = e=1)%'4+c(1)? = e=e+c = c=0

The particular solution is y = z2e®

Example 3 : Solve the differential equation y’' + y = cos(e®)
Solution :

P(z) =1 and Q(z) = cos(e®)

The integrating factor is u(z) = efldz — o

1
The general solution is y = — / e” cos(e”) dx
eI

y=e* / cos(e®)e” dx =e " (sin(e”) + ¢) = e “sin(e”) + ce™”

Example 4 : Solve the differential equation zy’ — 3y = x>
Solution :

3
vy —3y=2> = Yy --y=z
T
3
P(x) =- and Q(z) =z

The integrating factor is

3 1 -3
U(I) — efflfd:r — 673f;dz — 6731nz — 6lnfc — I73

1
The general solution is y = — / 73 da
x

-1
y:x?’/xﬂdm:xg (xl—|—c>

1
y=a3 <—+c) = -2 + ca?
T



