Example 1

A hypothesis test is to be performed to determine whether the mean waiting time during peak hours for customers in a <u>supermarket has increased from the previous mean waiting time of 8.2 minutes</u>. Previous experience indicates that the waiting time follows a normal distribution with standard deviation equal 3.8 minutes. To test the hypothesis, a random sample of 25 customers will be selected yields mean $\bar{x} = 9.75$.. **Answer the questions 1 to 8.**

Question 1:

The null and alternative hypotheses are...

1	Δ١	Н	: <i>μ</i> ≥	828	$\mathbf{k} H$. ,,	< R 2
١.	\sim $_{\prime}$	110	$\mu \leq \mu$	o.∠ (X II $_1$. μ	~ O.∠

(B)
$$H_0: \mu = 8.2 \& H_1: \mu \neq 8.2$$

(C)
$$H_0: \mu \le 8.2 \& H_1: \mu > 8.2$$

(D)
$$H_0: \bar{X} \le 8.2 \& H_1: \bar{X} > 8.2$$

Question 2:

This hypothesis test is classifies as...

(A) Right-tailed

(B) Two-tailed

(D) left-tailed

Question 3:

The appropriate test statistic is...

(A)
$$Z = \frac{\overline{X} - \mu}{S / \sqrt{n}}$$

(B)
$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

(C)
$$T = \frac{\overline{X} - \mu}{S / \sqrt{n}}$$

(D)
$$F = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

Question 4:

The critical region is best described by figure....

Question 5:

With significance level equal 0.10, the decision criterion for the hypothesis test in terms of the computed value of the test statistic is....

(A) Reject H_0 if $z_{stat} < -1.645$

(B) Reject H_0 if $z_{stat} > 1.96$

(C) Reject H_0 if $Z_{stat} > 1.645$ or $Z_{stat} < -1.645$ (D) Reject H_0 if $Z_{stat} > 1.645$

Question 6:

The computed value of our test statistic is....

(A) -2.04(B) 3.98

(C) 2.04 (D) 0.54

Solution:

$$z_{stat} = \frac{9.75 - 8.2}{3.8 / \sqrt{25}} = 2.04$$

Question 7:

The decision would be to....

(A) Cannot be determined

(B) Do not reject the null hypothesis.

(C) Reject the null hypothesis.

(D) Reject the alternative hypothesis.

Question 8:

Suppose that in fact the waiting time is (μ_1 =9.9), then the decision has been made is...

(A) Committing Type I error

(B) Committing Type II error

(C) Correct decision($1-\alpha$)

(D) Correct decision $(1-\beta)$

End of example 1

Example 2

It assumed from last experience that 75% of sports viewers are male. A famous sport newspaper reports that this proportion is greater than from 0.75. A random sample of 400 season ticket holders reveals that 352 are male. We wish to test the above hypothesis. Answer the questions 1 to 9.

Question 1:

The null and alternative hypotheses are...

(A) $H_0: P \le 0.75 \& H_1: P > 0.75$	
--	--

(B) $H_0: \pi < 0.75 \& H_1: \pi \ge 0.75$

(C)
$$H_0: \pi \le 0.75 \& H_1: \pi > 0.75$$

(D) $H_0: \pi = 0.75 \& H_1: \pi \neq 0.75$

Question2:

This hypothesis test is classifies as...

(A) Two-tailed		(B) Right-tailed		
	(C) Opposite-tailed	(D) left-tailed		

Question 3:

The appropriate test statistic is...

(A)
$$Z = \frac{P - \pi}{\sqrt{\pi (1 - \pi)/n}}$$
 (B) $T = \frac{\overline{X} - \mu}{S/\sqrt{n}}$

(C)
$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

(D)
$$\chi^2 = \frac{P - \pi}{\sqrt{\pi (1 - \pi)/n}}$$

Question 4:

With significance level equal 0.10, the decision criterion for the hypothesis test in terms of the computed value of the test statistic (Z_{stat}) is....

3

(A) Reject
$$H_0$$
 if $z_{stat} < -1.645$

(B) Reject
$$H_0$$
 if $z_{stat} > 1.96$

(C) Reject
$$H_0$$
 if $Z_{stat} > 1.645$ or $Z_{stat} < -1.645$ (D) Reject H_0 if $Z_{stat} > 1.645$

(D) Reject
$$H_0$$
 if $Z_{max} > 1.645$

Question 5:

With level of significance 5%, the critical region is best described by figure....

Question 6:

The computed value of our test statistic is....

(A) 0.01 (B) 5.99 (C) 0.23 (D) -0.01

Solution:

$$z_c = \frac{352/400 - 0.75}{\sqrt{(.75)(.25)/400}} = \frac{0.88 - 0.75}{0.0217} = \frac{0.88 - 0.75}{0.0217} = 5.99$$

Question 7:

The decision would be to....

- (A) Do not Reject the null hypothesis
- (B) Cannot be determined.
- (C) Reject the null hypothesis.
- (D Reject the alternative hypothesis.

Question 8:

Suppose that in fact the true proportion is 0.85, then the decision has been made is... $\boldsymbol{\alpha}$

(A) Rejecting the true hypothesis(α) type1 error	(B)Do not Rejecting the false hypothesis (β) type11 error.
(C) Do not rejecting the true hypothesis($1-\alpha$)Correct decision	(D) Rejecting the false hypothesis($1-\beta$)Correct decision

Question 9: Suppose that in fact the true proportion is 0.74, then the decision has been made

(A) Rejecting the true hypothesis($^{\alpha}$) type1 error	(B)Do not Rejecting the false hypothesis (eta) type11 error.
(C) Do not rejecting the true hypothesis($1-\alpha$)Correct decision	(D) Rejecting the false hypothesis($1-\beta$)Correct decision

End of example 2

Example 3

Question 1:

A 95% confidence interva is $12 < \mu < 17$ null hypothesis is $H_0: \mu = 10$ $H_1: \mu \neq 10$

What is the decision?

- (A) Reject the null hypothesis.
- (B) Do not Reject the null hypothesis.
- (C) Can not be determined
- (D) Reject the alternative hypothesis.

Question2: A 95% confidence interval is $0.85 \le \pi \le 0.91$. The null hypothesis is $H_0:\pi=0.88$ $H_1:\pi\neq0.88$

What is the decision?

- (A) Reject the null hypothesis.
- (B) Do not Reject the null hypothesis.
- (C) Cannot be determined
- (D) Do not Reject the alternative hypothesis.

End of example 3