Example 1

A hypothesis test is to be performed to determine whether the mean waiting time during peak hours for customers in a supermarket has increased from the previous mean waiting time of 8.2 minutes. Previous experience indicates that the waiting time follows a normal distribution with standard deviation equal 3.8 minutes. To test the hypothesis, a random sample of 25 customers will be selected yields mean $\bar{x}=9.75$.. Answer the questions 1 to 8.

Question 1:

The null and alternative hypotheses are...
(A) $H_{0}: \mu \geq 8.2 \& H_{1}: \mu<8.2$
(B) $H_{0}: \mu=8.2 \& H_{1}: \mu \neq 8.2$
(C) $H_{0}: \mu \leq 8.2 \& H_{1}: \mu>8.2$
(D) $H_{0}: \bar{X} \leq 8.2 \& H_{1}: \bar{X}>8.2$

Question 2:

This hypothesis test is classifies as...
(A) Right-tailed
(B) Two-tailed
(C) Multi-tailed
(D) left-tailed

Question 3:

The appropriate test statistic is...
(A) $Z=\frac{\bar{X}-\mu}{S / \sqrt{n}}$
(B) $Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}$
(C) $T=\frac{\bar{X}-\mu}{S / \sqrt{n}}$
(D) $F=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}$

Question 4:

The critical region is best described by figure....

Question 5:

With significance level equal 0.10 , the decision criterion for the hypothesis test in terms of the computed value of the test statistic is....
(A) Reject H_{0} if $z_{\text {stat }}<-1.645$
(B) Reject H_{0} if $z_{\text {stat }}>1.96$
(C) Reject H_{0} if $Z_{\text {stat }}>1.645$ or $Z_{\text {stat }}<-1.645$
(D) Reject H_{0} if $z_{\text {stat }}>1.645$

Question 6:

The computed value of our test statistic is....
(A) -2.04
(B) 3.98
(C) 2.04
(D) 0.54

Solution:

$z_{\text {stat }}=\frac{9.75-8.2}{3.8 / \sqrt{25}}=2.04$

Question 7:

The decision would be to....
(A) Cannot be determined
(B) Do not reject the null hypothesis.
(C) Reject the null hypothesis.
(D) Reject the alternative hypothesis.

Question 8:

Suppose that in fact the waiting time is $\left(\mu_{1}=9.9\right)$, then the decision has been made is...
(A) Committing Type I error
(B) Committing Type II error
(C) Correct decision $(1-\alpha)$
(D) Correct decision $(1-\beta)$

Example 2

It assumed from last experience that 75% of sports viewers are male. A famous sport newspaper reports that this proportion is greater than from 0.75 . A random sample of 400 season ticket holders reveals that 352 are male. We wish to test the above hypothesis. Answer the questions 1 to 9.

Question 1:

The null and alternative hypotheses are...
(A) $H_{0}: P \leq 0.75 \& H_{1}: P>0.75$
(B) $H_{0}: \pi<0.75 \& H_{1}: \pi \geq 0.75$
(C) $H_{0}: \pi \leq 0.75 \& H_{1}: \pi>0.75$
(D) $H_{0}: \pi=0.75 \& H_{1}: \pi \neq 0.75$

Question2:

This hypothesis test is classifies as...
(A) Two-tailed
(B) Right-tailed
(C) Opposite-tailed
(D) left-tailed

Question 3:

The appropriate test statistic is...
(A) $Z=\frac{P-\pi}{\sqrt{\pi(1-\pi) / n}}$
(B) $\quad T=\frac{\bar{X}-\mu}{S / \sqrt{n}}$
(C) $Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}$
(D) $\quad \chi^{2}=\frac{P-\pi}{\sqrt{\pi(1-\pi) / n}}$

Question 4:

With significance level equal 0.10 , the decision criterion for the hypothesis test in terms of the computed value of the test statistic $\left(Z_{\text {stat }}\right)$ is....
(A) Reject H_{0} if $z_{\text {stat }}<-1.645$
(C) Reject H_{0} if $Z_{\text {stat }}>1.645$ or $Z_{\text {stat }}<-1.645$
(B) Reject H_{0} if $z_{\text {stat }}>1.96$
(D) Reject H_{0} if $z_{\text {stat }}>1.645$

Question 5:

With level of significance 5%, the critical region is best described by figure....

Question 6:

The computed value of our test statistic is....
(A) 0.01
(B) 5.99
(C) 0.23
(D) -0.01

Solution:

$z_{c}=\frac{352 / 400-0.75}{\sqrt{(.75)(.25) / 400}}=\frac{0.88-0.75}{0.0217}=\frac{0.88-0.75}{0.0217}=5.99$

Question 7:

The decision would be to....
(A) Do not Reject the null hypothesis
(B) Cannot be determined.
(C) Reject the null hypothesis.
(D Reject the alternative hypothesis.

Question 8:

Suppose that in fact the true proportion is 0.85 , then the decision has been made is... α
(A) Rejecting the true hypothesis (α) type1 error
(C) Do not rejecting the true hypothesis($1-\alpha$)Correct decision
(B)Do not Rejecting the false hypothesis (β) type 11 error.
(D) Rejecting the false hypothesis($1-\beta$)Correct decision

Question 9:

Suppose that in fact the true proportion is 0.74 , then the decision has been made is...
(A) Rejecting the true hypothesis (α) type1 error
(C) Do not rejecting the true hypothesis($1-\alpha$)Correct decision
(B)Do not Rejecting the false hypothesis (${ }^{\beta}$) type11 error.
(D) Rejecting the false
hypothesis $(1-\beta)$ Correct decision

Example 3

Question 1:

A 95% confidence interva is $12<\mu<17$ null hypothesis is $H_{0}: \mu=10$ $H_{1}: \mu \neq 10$
What is the decision?
(A) Reject the null hypothesis.
(B) Do not Reject the null hypothesis.
(C) Can not be determined
(D) Reject the alternative hypothesis.

Question2: A 95% confidence interval is $0 \cdot 85 \leq \pi \leq 0.91$. The null hypothesis is $H_{0}: \pi=0.88$ $H_{1}: \pi \neq 0.88$

What is the decision?
(A) Reject the null hypothesis.
(B) Do not Reject the null hypothesis.
(C) Cannot be determined
(D) Do not Reject the alternative hypothesis.

