
THE Lap SPACES* 

BY 

J. LINDENSTRAUSS AND H. P. ROSENTHAL 

ABSTRACT 

The Lap spaces which were introduced by A. Pelczyfiski and the first named 
author are studied. It is proved, e.g., that (i) X is an Lap space if and only if 
X* is a n ~  space (p-1 + q-1 = 1). (ii) A complemented subspace of anLap 
space is either an Lap or an Laz space. (iii) The Lap spaces have sufficiently 
many Boolean algebras of projections. These results are applied to show 
that X is an Laoo (resp. Lal) space if and only if X admits extensions (resp. 
liftings) of compact operators having X as a domain or range space. We also 
prove a theorem on the "local reflexivity" of an arbitrary Banach space. 

Section 1. Introduction. The purpose of this paper  is to investigate the 

properties of  the Lap spaces - -  i.e. those Banach spaces whose finite-dimensional 

subspaces are close to the finite-dimensional subspaces of  Lp(p) spaces. The Lap 

spaces seem to form the suitable framework in which the study of the isomorphic 

properties of  the classical Banach spaces can be carried out. In the present paper 

we solve some questions concerning those spaces which were left open in earlier 

treatments, mainly [13, chaps. II ,  I I I ]  and 1-16, sec. 7]. Though many natural 

questions concerning these spaces remain open (see Section 5 below) the results 

presented here together with those of  [13] and [16] give a rather clear picture 

on the basic properties of  Lav spaces and their relation to Lv(#) spaces. It  turns 

out that these spaces behave in a nicer way than could be suspected a - p r i o r i  

and we feel that the presently known results already fully justify the introduction 

and detailed study of Lap spaces. 

Before we can be more specific on the results proved here as well as the earlier 

results, we have to introduce some definitions and notations. First we recall some 

standard notations (cf. [3] and [4]). By Lp(g) = Lp(f~,YJ, p) ,  1 < p < oo, we 

denote the Banach space of equivalence classes of  measurable functions on (f~,8,  #) 
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whose p ' th power is integrable (resp. are essentially bounded if p = oe). If 

( f~,~,#)  is the usual Lebesque measure space on [0, 1] we denote Lp(/0 by Lp. 

If  (F, 8, /z)  is the discrete measure space on a set F with p({?}) = 1 for every 

? ~ F  we denote Lp(lO by lp(F). If  F = {1,2, . . - ,n},  n < oo we also denote 

lp(F) by l~ , while lp will denote lp(F) with F = {positive integers}. The sub- 

space of I~(F) of those functions which vanish at oe is denoted by c0(F) (resp. 

Co if F = {positive integers}). For a compact Hausdorff space K we denote by 

C(K) the Banach space of continuous functions on K with the supremum norm. 

By operator (resp. projection) we mean a bounded linear operator (resp. pro- 

ection). Two Banach spaces X and Y are called isomorphic (denoted by X g Y) 

if  there is an invertible operator from X onto Y. The distance coefficient d(X, Y) 

of two isomorphic Banach spaces is defined by inf(ll T [I It T - l  I{ ) where the inf  

is taken over all invertible operators T f rom X onto Y. The Banach spaces X and 

Yare called isometric if there is an operator T f rom X onto Ywith [I TIt = It T-I[] 

= 1. A closed linear subspace Yof a Banach space X is said to be a complemented 

subspace if there is a projection from X onto Y, or what is the same, if there exists 

a closed linear subspace Z of X such that X = Y O Z.  A Banach space is said 

to be injective if it is complemented in any Banach space containing it. If we con- 

sider a Banach space X as a subspace of X** we assume (unless stated other- 

wise) that X is embedded in X** in the canonical manner. 

We come now to the definition of the basic notion in this paper, i.e. of  an 

L, ep space (cf. [16]). 

DEFINITION. Let 1 <= p < oo and 1 <= ~ < or. A Banach space X is said to 

be an ~p,~ space if for every finite-dimensional subspace B of X there is a finite- 

dimensional subspace C of X such that C ~ B and d(C, l;) <= 2 where n = dim C. 

A Banach space is said to be an Lap space, 1 <= p <= oo, if  it is an ~p,x space 

for some 2 < or. 

It is easily seen and well-known, that the Lap spaces generalize the Lp(.u) and 

C(K) spaces. Indeed, let X be an Lp(p) space for some 1 < p < oe (resp. a C(K) 

space), B a finite-dimensional subspace of X ,  and e > 0 be given. Then there 

exists a projection from X ,  of norm <= 1 + a, onto a subspace C of X with C ~ B 

d(C, Ioo) 1 + n = and d(C, l~) < 1 + e (resp. " < e), where dim C. This may be 

seen by using the span of  the characteristic functions of  finitely many disjoint 

measurable sets of finite measure (resp. by using partitions of unity) together 

with the argument of lemma 3.1 of [13]. 
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The main results concerning the structure of .Lzp spaces which were proved in 

[16, Sec. 7] are summarized in 

THEOREM I. (i) Every £#v space, 1 < p <_ ~ ,  is isomorphic to a subspace 

of an Lv(#) for  some measure # .  

(ii) An .Sep space X ,  1 < p < ~ ,  is isomorphic to a complemented subspace 

of an Lv(#) space i f  and only i f  X is complemented in X** (this always holds 

i f  1 < p < o~ since then X is reflexive by (i)). 

(iii) I f  X is an ~ :  space then X* is injective. 

(iv) Every infinite-dimensional ~ v  space, 1 < p < ~ ,  has a complemented 

subspace isomorphic to Ip. 

We will be concerned here with the isomorphic theory of Banach spaces. The 

isometric analogues of most of the results we prove below are already known. 

Though we shall not need these isometric results we shall state them now since 

it is of interest to compare the isometric situation with the isomorphic one. 

For the proof of Theorem II see [16, sec. 7] and its references (cf. also [-28].) 

THEOREM I1. (a) A Banach space is isometric to an Lp(#) space for  some 

measure # (1 < p < oo) i f  and only i f  it is an ~v,l+~ space for  every e > O. 

(b) The dual X* o f  a Banach space X is isometric to an Lv(#) space for  

some measure # (1 < p < oo) i f  and only i f  X is an £Pq,l+~ space for  every 

8 > 0  where q - l + p - :  = l ( q  = 1,resp. o o i f p  = ooresp. 1). 

(c) Let Y ~ X be such that Y is an ~q~p,i +~ space for  every e > 0 (1 < p < co) 

and there is a projection of norm l f rom Yonto  X .  Then X is an ~,ep,l+ ~ space 

for every e > O. 

(d) A separable infinite-dimensional space X is an L, ep, l+ ~ space for  every 

e > 0  (1 < p < ~ )  if  and only i f  X can be represented as [.J~=lBn where 

B 1 = B 2 ~ ... and Bn is isometric to l~ n, n = 1,2,-. . .  

(e) For 1 < p < ~ , p ~ 2 there are no infinite-dimensional ~q'p,1 spaces. 

The spaces which are ~q~2,1+~ spaces for  every ~ > 0 are also ~.cP2,1 spaces. A 

space which is an ~o , :+~  space for  every e > 0 is an ~q?oo,1 space i f  and only i f  

the unit cell of every finite-dimensional subspace of it is a polytope (Co is such 

a space). 

The main results concerning the structure of .L#p spaces we prove here are 

summarized in 

THEOREM III. (a) A Banach space X is an L#p space (1 < p < ~ )  i f  and 

only i f  X*  is an ~ a  space ( p - l +  q - i  = 1). 
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(b) A complemented subspace X of an £#p space (1 <= p <= oo) which is not 

isomorphic to a Hilbert space is an .oq'p space. ( I f  p = 1 or oo X cannot be iso- 

morphic to an infinite-dimensional Hilbert space.) 

(c) Let X be an _Wp space, 1 < p < oo. Then there is a constant p such 

that for every finite-dimensional subspace B of X there is a finite-dimensional 

subspace C of X such that C ~ B ,  d(C,l~) < p (n -- d imC) ,  and such that there 

is a projection of norm < p from X onto C. 

The proof of Theorem III is quite indirect. We do not see a simple and direct 

way to prove e.g. that if  X is an LPp space then X* is an L#~ space. The difficulty 

lies in the fact that from the definition of an .Wp space we have some information 

on the finite-dimensional quotient spaces of X* but no obvious information on 

the finite-dimensional subspaces of X*. Thus, we can view Theorem III(a) as a 

statement of the fact that if  we define a class of spaces analogous to .Wp spaces 

by considering finite-dimensional quotient spaces instead of subspaces we end up 

with exactly the same spaces. Similarly part (c) of Theorem III shows that the def- 

inition of .L, Cp spaces is equivalent to the formally stronger statement in which 

the spaces C are not only required to be "close" to I k spaces but also to 

admit a projection from X with a uniformly bounded norm. (This is an obvious 

fact only for p = oo and p = 2.) That these a-priori different definitions actually 

define the same class of spaces is the main reason for the fact that the theory 

of .L~°p spaces turns out to be so satisfactory. 

Sections 2 and 3 are devoted to the proof of Theorem III and some of its cor- 

ollaries. In Section 2 the reflexive case (i.e. 1 < p < oo) is proved while the cases 

p = 1 and oo are treated in Section 3. The additional arguments needed in these 

cases are caused by the difficulty of deducing properties of a Banach space X 

from its dual X* in the non-reflexive situation (in general the isomorphic type 

of X is not uniquely determined by the isomorphic type of X*). Our main tool 

for handling the cases p = I and ~ is a theorem on general Banach spaces (Theo- 

rem 3.1). This theorem which we call the "local reflexivity principle" shows 

that in a strong sense the finite-dimensional subspaces of a general Banach space 

X are close to the finite-dimensional subspaces of X**. The proof of this local 

reflexivity principle is based on a separation theorem of Klee [10]. 

Section 4 contains applications of the results of Sections 2 and 3. By completing 

the reasoning in [13, chaps. II, III] it is shown that the ~oo (resp. -W1) spaces 

are exactly those Banach spaces X which admit extensions (resp. liftings) of 

compact operators having X as a domain or range space. 
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Another application we give in Section 4 is the observation that a weakened 

version of the definition of an .~ap space gives for 1 < p < ~ a joint characteri- 

zation of .~ep and ~e 2 spaces and for p = 1 and ~ characterizations of .~e 1 and 

Laoo spaces respectively. We conclude Section 4 by a characterization of all .Lap 

spaces and a joint charactefrization of La D ~ 2  and ~oo spaces in terms of Boolean 

algebras of projections. These characterizations are restatements of results of 

119] which were made possible by Theorem Ill(c). 

Section 5 is devoted to some remarks and many open problems. The main part 

of the section is concerned with the question of functional representation and 

isomorphic classification of L~'p spaces. 

Section 2. The case 1 < p < ~ .  This section is devoted to the proof of 
Theorem III for 1 < p < oo. We begin with 

THEOREM 2.1. A complemented subspace of an Lp(#) space, 1 < p < oo, 

which is not isomorphic to a Hilbert space, is an .~p space. 

Proof. Let X be a complemented subspace (which is not isomorphic to a 

Hilbert space) of the space Y = Lp(#), 1 < p < oo. We assume, as we clearly 

may, that dim X = oo and that p # 2 (recall that by Theorem I (a) the ~ 2  spaces 

are exactly those spaces which are isomorphic to Hilbert spaces). The space X 

has a complemented subspace U isomorphic to Ip. Indeed, by [12, lemma 3] 

X has a separable subspace Xo which is not isomorphic to a Hilbert space and 

by [8, cor. 3, p. 168] Xo has a subspace U which is isomorphic to lp and comple- 

mented in Y. We denote by Q a projection from Y onto X.  

Let B be a finite-dimensional subspace of X .  Since Y is an Lp(/~) space there 

is a finite-dimensional subspace W of Y and a projection P of Y onto W such that 

W D B, d(W, l~) = 2 (n = dim W), and ]l P I] = 2. Since QW is a finite-dimen- 

sional subspace of X and U is isomorphic to lp it follows easily that there is a 

constant K (depending only on d(U, lp) but not on Wand for that matter not on B) 

and a subspace C of U such that d(C,l;) <= K and max(I [ x ]], t[ Y ]]) <= K II x + y If 

for every x e QWand y ~ C.  Let z: W --* C be an isomorphism such that II I1 --< 1 

and 11  -111 --- 2K.  Let T: W ~ X be the operator defined by T= Qiw+ z ( I -  PQIw)" 

The restriction of T to B is the identity since on B both P and Q are the identity 

maps. We have that II TI1--- 1 + 3 II Q II and for every x ~ W 
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II Tx II ->-- K "  max(l[ Q x I[, II v ( / -  PQ)x II) 

> K-a max(I] ax  II, (11 x - POx [I)I[~-' II - ')  

__ g - 1  max(l] Qx II, (ll x I1 - 2 II Qx II7 II~-' II -I) 

--- g- '( l l  ~-'11 * 2) -x II x I[ >= II x Ill(K2 ÷ 2 K )  

It follows that d(W, T W )  < (1 + 3 [I Q [[)( K2 + 2K), and thus 

z 2o ÷ 3 II e II)(2K ÷ g 2 )  Since B c T W  this concludes the proof. 

COROLLARY 1. A Banach space is isomorphic to a complemented subspace 

of  an Lp(g) space for  some measure It, 1 < p < ~ , i f  and only i f  it is either 

an ~ p  or an Sf  2 space. 

Proof. This follows from Theorem I, Theorem 2.1 and the well-known fact 

that for every Hilbert space H and every p,  1 < p < oo there is a measure # and 

a complemented subspace of Lp(p) which is isomorphic to H .  

COROLLARY 2. Let 1 < p < co. Then X is an ~q~p space i f  and only i f  X* 

is an Sfq space ( p - ~ +  q-1 = 1). 

Proof. This follows immediately from Corollary 1 and the fact that 

L*(#) = L~(#) for every measure p.  

We have thus proved parts (a) and (b) of Theorem III for 1 < p < oo and we 

turn now to the proof  of  part (c) of this theorem. 

THEOREM 2.2. Let X be an S f  p space, 1 < p < ~ .  Then there is a constant p 

such that for  every finite-dimensional subspace B of X there is a f inite-dimen- 

sional subspace C ~ B  of X and a projection rc f r o m  X onto C such that 

d(C,l~) < p (n = d imC) and II~ll --< p 

Proof. By Theorem I(b) we may assume without loss of generality that X is 

a complemented subspace of an Lp(/~) space Y. We assume also that dim X = oo 

(otherwise there is nothing to prove). 

We proceed now as in the proof of  Theorem 2.1 (we shall also follow the no- 

tations in that proof) and show that the subspace T W  constructed there can be 

chosen so that there is a projection from X onto TWwith a norm which is bounded 

by some constant depending only on X (but not on W and thus not on B). Con- 

stants depending only on X will be denoted below by Ki,i = 1.2..... 

The subspace C of U (appearing in the proof of Theorem 2.1) is chosen now 

a little bit more carefully. Let Ro be a projection from X onto U. (For future 

reference we note that only here we use the fact that U is complemented on X.) 

Israel J. Math., 

d(TW, l~) 
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Since U is i somorphic  to lp and d i m R o Q W  < ~ there is a project ion R 1 of  n o r m  

< K 1 f rom U onto  a subspace C o f  U such that  d(C, l~) _< K2 and R I R o Q W  = {0}.* 

Hav ing  chosen C as above we define T as in the p roo f  of  Theo rem 2.1 by 

T = Q I w + Z ( I - P Q I w ) .  We define next an opera to r  S : X ~  W such that  

I[ S l[ < K3 and S T w  = w for  every w ~ W. This  will conclude the p r o o f  for  the 

case 1 < p < oo since T S  will then be a project ion f rom X onto  T W  with 

IL II <= K ,  
We c la im tha t  

S = P ( I  - R1Ro) + "c-lR1Ro 

has the desired propert ies.  Since R1R o is a project ion f rom X onto C ,  S is a well 

defined opera to r  f rom X into W and clearly there exists a K 3 with [I S I1 --- K 3  
Let  w ~ W. Since R 1 R o Q W  = {0} we get that  

z-'l R 1 R o T w  = 0 + ~-1 . .c . ( [ -  PQ)w = w -  P Q w .  
Also,  

P(I  - R1Ro)Tw = P ( T w  - R1RoTw ) = P Q w .  

By adding these two equat ions  we get that  S T w  = w as desired. 

RZMARK. The fact  tha t  in an Lap space X every f ini te-dimensional  subspace 
n is conta ined  in another  subspace which is not  far  f rom Ip for  a suitable n and on 

which there is also a " g o o d "  project ion,  is far f rom obvious  and is actually quite 

surprising. Indeed,  i f  the Lap space X is given as U ,  B,  with B, a net o f  finite- 

d imens ional  subspaces of  X ,  directed by inclusion,  such that  d(B~,, Ip")< K 

(d im B, = n , ) ,  it is not  true in general tha t  there are " g o o d "  project ions f rom X 

onto  those B , .  For  example  it follows f rom the results of  [25], [23], and [21] 

and  a compactness  a rgument  (cf. also [17, Section 3]) that  for 1 < p < 4/3 it 

is possible to write l~, as [_JT= 1 Bj with B~ = Bz = B3"-"  and d(Bj ,  Ip ~) < K for  

some K so tha t  i f  

2j = inf{ l lP[[ ;  P a project ion f rom l e onto  Bj} 

then  limj_.o02j = ~ .  

* To see this, let A be a finite-dimensional subspace of lp. Choose a projection P from lp 
onto a subspace E of lp with E ~ A, d(E, l~) < 2 (n = dim E), and II P II < 2. Then (I-  P)(lp) 
is an infinite-dimensional subspace of lp. Hence by a result of Pelczynski [21], given any positive 
integer m, there is a projection Q from lp onto a subspace C of lp with C = (I -- P)(Ip) such 
that II Q It ~ 2 and d(C, l~') < 2. Then putting R = Q ( I  - P )  ; R is a projection from lp onto C, 
with [I R ]] < 6. This argument holds also for p = 1, and with suitable notation changes for co 
in place of lp. 
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Section 3. The nonreflexive ease. Our basic tool for extending the results of  

Section 2 to -~1 and .Lz® spaces is the following theorem which shows that all 

Banach speces are "locally reflexive". 

THEOREM 3.1. Let X be a Banach space (regarded as a subspace of X**) ,  

let U be a finite-dimensional subspace of X** ,  and let e > O. Then there exists 

a one-to-one operator T: U -~ X with T ( x ) = x  for  all x e U r 3 X  and 

II T[[ [[ T - i l l  < 1 + e .  

Proof. We first need the following preliminary observation: Let Ybe a Banach 

space, K an open convex subset of  Y, B a finite-dimensional Banach space, and 

S: Y ~ B  a surjective operator. Let K denote the norm-interior of the weak* 

closure of  K in Y**. Then 

(1) S**(K)  = S(K) 

To see this, observe that since B is reflexive and S** is weak* continuous, 

S(K)  ~ S**(K). Since S is surjective S is an open map, and thus S(K)  and 

S**(K) are convex open subsets of B, with S(K)  c S** (K), which implies (1). 

Now choose 6 > 0 (with 6 < 1) such that 

1 + 6  
< l + e ,  

(1 - 6 ) ( 1  - 2 6 ) -  6 ( 1  + 6 )  

By the compactness of  the unit ball of U,  we may choose a finite number y~, ..-, Yr, 

of  points of  U satisfying 11 y, [I = 1 for all i, so that if y e U with I1Y ]1 = 1, then 

for some i, II Y - Y, II < 6. We now claim that to complete the proof, it suffices 

to construct an operator T: U ~ X with Tiw, x = identity, and satisfying 

(2) 1 - 2 6 < H T y ,  I I < l + 6  for all i, 1 <_i<_m.  

Indeed, suppose T satisfies (2), and let y e U with II Y II = 1. Then by the Hahn- 

Banach Theorem (geometric version), there exist complex numbers ~1, '" ,  am with 

 :11 1 ~ < - -  and y = ~iYl. (Note that if f e  U* then 
i = l  ---- 1 - -  6 i = l  

Ilfll--< ( 1 - 6 )  sup ]f(y,) l . )  
l~i<-_m 

Thus I[ Tll < (1 + 6)/(1 - 6). Choosing y~ such that [ IY-  Yill < 6, we have that 

[[ T y [[ >= ][ T yi l] - I1 T(y  - Yi) l] 

1 + 6  6 
_>__ 1 -  26 - T : - ? _  . 
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Thus 
1 - 5  

[[ T-1ll ( 1 - 5 ) ( 1 - 2 5 ) - 5 ( 1  + 5 )  

so HTH IIT-1]I < l + e  by the definition of 5. 

Now let k = dim U / U n X ,  and choose independent vectors u 1 ..... Uk in U 

such that U equals the linear span of  U c~ X and ul ..... u k. Then for each i,  

we may choose scalars a~i and a vector b~ e U n X such that 

k 

(3) y~= Z aijuj+bi. 
j = l  

We may also choose f l eX*  such that lY,(f,)I => 1 - 5  with IIf, II = 1. Finally, 

let Ki and Ci be the subsets of  the k-fold direct sum of X with itself defined by 

k 

Ki = {(Xl,"',Xk): ~, aOx j + bi < 1 + 5} 
j = l  

and 

C, = {(Xl,'",Xk): I fi {j=~laijxj} - {j~=laijuj} ( f i ) <  5}. 

We shall now prove that nm=l (K~nC~)  is non-empty. Once this is accom- 

plished, we simply choose (Xl,'",Xk) belonging to all the K~'s and C~'s, and 

define T : U ~ X  by T(b+ ~k  2 iu i )=b+ •k = 1 ~ = 1 2~X~ for all b e U c~ X and 

scalars 21, " ' ,  2k. Then T I v,~x is the identity and T satisfies (2). (We have, fixing i, 

that I f~(Ty,) - Y,(f,)I < 5 by (3), whence II Z<y,) II > 1 - 25) .  
Now suppose that n i~ 1 (Kin  Ci) is empty. Then since K i and Ci are open 

convex subsets of  X k (the k-fold direct sum of X with itself) for all i, we have 

by a theorem of Klee [10] that there exists a finite-dimensional space B with 

dim B < 2m - 1 and a surjective linear map S: X k ~ B with AT= 1 (S(Ki) n S(Ci)) 
= ¢.  Now for each i, let K** and C** be the subsets of (X**) k, the k-fold 
direct sum of X** with itself, defined by 

k 

K** = ((x**, . . - ,x**):  ~ aijx** + bi < 1 + 5} 
j = l  

and 
k k 

C** = {(xl , '",Xk )" ~' aijxj (fi)-- ~-, aiiuj(fi) < 
1=1 j = l  

Then evidently (ul , . . . ,Uk)eK**n C** for all i .  But fixing i ,  K** (resp. C**) 

is contained in the weak* closure of  K~ (resp. C~) in (X**) k (regarded as the dual 

of (xk)*). Indeed, this is immediate in the case of C** now fix (x**, _ **, _ v * *  ; " " , X k  ) ~ ' ~ i  , 
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and assume that for a certain j ,  a o ~ 0. (If a~i = 0 all j ,  then this assertion is 

trivial). We may then choose nets (all indexed by the same directed set) {u~} and 

{x'~} in X for all 1 < r < k,  k ~ j ,  such that I1 II < 1 + ~ for all ~ with 

--- k ** " ** weak* for all r, 1 < r < k,  r ~ j  U a ---4" L j = l a i j x j  At- b~ weak* and x~ --* x, _ _ . 
Now for each ct, define x~ by 

1 (  ) 
Xla ~ a i j  rg.j 

- -  u, - Z, al,x; + bi • 

Thus (x~, . . . , x ~ ) ~  (x**,.. . ,x**) weak* and (x~, . . . ,x~)~Ki for all a .  

Thus, in the notation we used at the beginning of this proof, K i D K** and 

Ci ~ C**, whence by (1), S(K i) = S**(K~**) andiS(Ci) = S**(C**) for all i. 

But then since (ul , . . . ,Uk)eK**n C**for all i, S**(ul,...,Uk) ef"I~'=~(S(K,)C~S(C,)) 

" K contradicting the assumption that 0 1 = 1 ( S ( i )  n S(C~)) = ~. Q.E.D. 

REMARK. Theorem 3.1 has as a consequence the following 

PROPOSITION. Let C ~ B be finite-dimensional Banach spaces. Let T be an 

operator from B into the infinite-dimensional Banach space X and let 2 > ![ TII. 
Then statements (1) and (2) are equivalent: 

(1) For every e > O, there exists an extension T of T from C into X with 

(2) For every finite-dimensional space W and every operator S: X ~ W 

there is an operator Ts: C --* W which extends S T  and satisfies ll II ~ rl s It. 
Proof. (2) and a compactness argument imply that there is an operator 

1i~1: C -o X** with II II ~ and T1 I B = T. Then (2) :~ (1) follows immediately 

upon applying 3.1; (1)=~ (2) is a simple compactness argument. In the special 

case dimC/B = 1, this result is contained in [13, p. 60]. 

We return now to the the study of the ~ p  spaces. The following is an immediate 

consequence of  Theorem 3.1: 

COROLLARY. Let p = 1 or 0% let 2 > 1, and let X be a Banach space such 

that X** is an ~q~p,a space. Then X is an -ff'p.x+,. space for all e > O. 

This result together with known results and an inspection of the proofs of  

Theorems 2.1 and 2.2, may be used to easily complete the proof of Theorem III. 

We first observe that the proofs of 2.1 and 2.2 yield 

THEOREM 3.2. Every complemented subspace of a C(K) space is an ~oo 

space. Every complemented subspace of an L~(I~) space is an 0 ~  space, which 

moreover satisfies the conclusion of III(c). 
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Proof. Let X be an infinite-dimensional Banach space. If  X is a complemented 

subspace of a C(K) space, then X has a subspace U isomorphic to c o (cf. [-21]). 

The proof  that X is an ~oo space now follows as in the proof  of  Theorem 2.1 (as 

we noted in Theorem 2.2, the proof of 2.1 does not require that U be complemented 

in X). Similarly, if X is a complemented subspace of an LI(#) space, then X is 

non-reflexive, and so X contains a complemented subspace isomorphic to 11 

(cf. [1], [8]). The proof  that X is an 0~1 space satisfying the conclusion of Ill(c) 

now proceeds exactly as in the proofs of 2.1 and 2.2. Q.E.D. 

It follows from Theorem I(ii) that if X is an ~ o  space, then X** is injective. 

We thus obtain immediately, using the above corollary and Theorem 3.2, the 

COROLLARY. Every injective space is an S~oo space. A Banach space X is an 

~ o  space if and only if  X** is injective. 

COMPLETION OF THE PROOF OF THEOREM III. We consider first the p = ~ case. 

Suppose that X is an ~eoo space. Then X** is injective, and hence a complemented 

subspace of some C(K) space. Then X*** is isomorphic to a complemented 

subspace of  the dual of a C(K) space, i.e. of  some LI(/~) space; and hence X* 

being complemented in X***, is also isomorphic to a complemented subspace 

of some L~(#) space. Hence X* is an ~ 1  space by Theorem 3.2. If we assume 

either that X* is an ~ 1  space or that X is a complemented subspace of an L¢oo 

space, then it follows from Theorem I that X** is injective, and hence X is an 

L~'oo space by the above corollary. This completes the proof of 11I for the case 

p = ~ (IlI(c) is trivial). Again by Theorem I, if X is an .L¢ 1 space, then X* is 

injective, hence X* is an ~oo space by the above corollary. If we assume either 

that X* is an ~('oo space or that X is a complemented subspace of an Lel space, 

then it follows from what we have proved that X** is an L~a~ space, and conse- 

quently X is an ~e~ space by the corollary to Theorem 3.1; the only thing re- 

maining to be proved is 

THEOREM 3.3. Let X be an .L¢ I space. Then X satisfies the conclusion oj 

Theorem III(c).  

Proof. We assume that X is of infinite-dimension. Now by Theorem I, X* 

is injective, whence X** is isomorphic to a complemented subspace of an L~(#) 

space. Hence X is isomorphic to a non-reflexive subspace of an LI(#) space, 

and thus (cf. [1], [8]) there is a projection R o from X onto a subspace U of X 

isomorphic to l~. Moreover, by Theorem 3.2, X** is an ~ space satisfying the 

conclusion of III(c). Thus there is a constant p > 0 such that if B is a finite- 
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dimensional subspace of X**, then there exists a projection P1 from X** onto 

a subspace W with W ~ B,  d(W, l~) < p (where n = dim W), and I[ Px l[ < P. 

Now let B be a finite-dimensional subspace of X.  Then B c X**, so we may 

choose W and P1 as above with n = dim W; then we define P by P = Pi lx .  

Finally by Theorem 3.1, there is a map Q: W ~ X with 11 Q II-<- 2 and Qiw,~x 

the identity on W n X ~ B. The remainder of the proof now proceeds exactly 

as in the proof of 2.2. Q.E.D. 

Section 4. Other characterizations of the .Zp spaces. The first result in this 

section is a characterization of LPoo spaces by extension properties for compact 

operators. 

THEOREM 4.1. The following.five assertions concerning a Banach space X 

are equivalent: 

1. X is an . ~  space. 

2. For all Banach spaces Z ~ Y every compact operator T:  Y--* X has an 

extension to a compact operator T:  Z --* X .  

3. Same as 2 but without the requirement that 7" be compact. 

4. For all Banach spaces Y and Z with Z ~ X every compact operator 

T: X - ,  Yhas  an extension to a compact operator T:  Z - ,  Y. 

5. The same as 4 but without the requirement that T be compact. 

Proof. The proof of Theorem 4.1 is actually contained already in [13] if we 

take into account the results concerning .LPoo spaces which were proved on Section 

3, in particular, the fact that X is an ~ space if and only if X** is injective. 

We make here only some comments concerning the proof. 

It is obvious that (2) =~ (3) and (4) ~ (5). In [13, theorems 2.1 and 3.3] it is 

proved that (1) =~ (2) and (1) =~ (4). Hence it remains to prove only that (3) =~ (1) 

and (5) =~ (1). The first step in such a proof is to observe that if  (3) (resp. (5)) 

hold there is a 2 < oo such that for every Y,Z and compact Tthere is a suitable 

with [[ TI[ < 21l Til (cf. the proof of [13, theorem 2.2]). The fact that (3) =- (1) 

is a consequence of (4) =~ (1) in [13, theorem 2.1], and that X** injective =~ X 

is an ~o~ space. The proof that (5) =~ (1) is also contained in [13] but since this 

fact is explicitly stated there only under the hypothesis that X has the approxima- 

tion property we give here an outline of  the argument. 

We assume now that X satisfies (5) and let 2 < oo be such that ~ can always 

be chosen so that II II --- II T II. Let Z be any C(K) space containing X.  Since 
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for every finite-dimensional space B every operator from B into X* is the adjoint 

of an operator from X into B* it follows from our assumption that for every 

finite-dimensional subspace B of X* there is an operator TB:B--,, Z* such that 

II T.II = 2 and dpTB(b ) = b for every b~B,  where ~b: Z* ~ X* is the natural 

restriction map (i.e. the adjoint of the embedding of X into Z). We consider Tn 
as a (non-linear) map from X* into Z* by putting Tnx* = 0 if x*~ X* ~ B. 

We consider the collection {TB) as a net by ordering the finite-dimensional sub- 

spaces of X* by inclusion. Since the unit ball of Z* is w* compact it follows by 

Tychonoff's theorem that there is a subnet {Tw} of (TB} such that the limit of 

Twx* exists in the w* topology for every x*~X*.  Put Tx* = w* limTB,x*. 

It is easy to verify that T:  X* ~ Z* is a bounded linear operator such that q52r 

is the identity of X*. Hence T is an isomorphism and 2~X* is a complemented 

subspace of Z*. Since Z* is an LI(#) space we get from the results of Section 3 

that X* is an .o~el space and thus X is an L,¢o o space. This concludes the proof. 

REMARKS. 

(1) It also follows from our results that a Banach space X is an LJe~ space if 

and only if there is a constant 2 > 0 such that for all finite-dimensional Banach 

spaces Z = Y, every operator T: Y ~  X has an extension T : Z  ~ X  with 

II ~ II < 2 II z ll- (The assumption that X has this property implies that X** is 

injective.) Also the proof of (1) :~ (4) shows that X is an £'¢~o space if and only 

if there is a constant 2 > 0 such that for all Banach spaces Y and Z with Z = X 

and Y finite-dimensional, every operator T: X ~ Y has an extension ~: Z ~ Y 

with 11 ll --< 21[ z i1 A similar remark applies to Theorem 4.2 below. 

(2) The question of which spaces X have property (3) or (5) for every T (i.e. 

also non-compact bounded operators) is clearly (cf. [3, p. 94]) equivalent to the 

question of characterizing the injective spaces. Our results together with those 

of [13] imply that a Banach space X is an injective space if and only if X is an 

La~ space and X is isomorphic to a complemented subspace of some conjugate 

space. (An example is given in [24] of an injective space which is not isomorphic 

to a conjugate space,)Although much is known concerning the injective spaces 

(cf. [24]) the question of their characterization is still far from having a satis- 

factory solution (see the next Remark). 

(3) A Banach space X is called a ~ space if for every Banach space Ywith 

X c Y there is a projection from Y onto X or norm < 2. It is easily seen that 

an injective Banaeh space is a ~x space for some 2 > 1. Using a result of James, 
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Theorem 3.1 and more care in the proof of Theorem 3.2 it follows that if X 

is an infinite-dimensional Banach space with X** a ~a space then X is an ~q°oo,~o a 

space. (Indeed James proved in [7] that if B is a Banach space isomorphic to Co 

and if e > 0 is given then there exists B 1 c B with d(B 1 Co) < 1 + e. Using this, 

it follows by our proof of 2.1 that if X is a subspace of a C(K) space such that 

there is a projection of norm < 2 from C(K) onto X ,  then X is an ~o,9x+~ space 

for all e > 0.) We do not know, however, if there exists a function f from the 

positive real numbers into themselves, such that if X is a finite-dimensional ~ 

space, then X is an ~q°~o,st~ , space. The best presently-known information on this 

question seems to be corollary 7, p. 298 of [16], where a function f is given de- 

pending not only on 2 but also on the "coordinate asymmetry" of X.  

(4) In [13], a Banach space was defined to be an ~4rx space if there exists a 

set (Be} of finite-dimensional subspaces of X directed by inclusion such that 

X = U ~ B~, and every B~ is a ~z space. Evidently every ~oo,~ space is an .A/'x 

space. It is shown in [13] that if X is an .#'z space, then X** is a ~z space; we 

thus obtain that if X is an infimite-dimensional .#'~ space, then X is an -L~°~o,~0x 

space. (Thus a space is an Jff space in the terminology of [13-] if and only if it 

is an ~¢oo space.) 

(5) The isometric analogues of Theorem 4.1, i.e. the case where the extension 

is required to satisfy II ~ I/ = /I T II or II ~ I/ -<- II T II + e  for every given e > 0, 

are discussed in detail in [13], chaps. V and VI). 

(6) Besides extension properties for compact operators, there are also other 

extension properties with characterize .L~a~o spaces, for example, the possibility 

of extending weakly-compact operators defined on X (cf. [13, theorem 2.23). 

A similar remark applies to Theorem 4.2 below. 

The LP I spaces are characterized, naturally, by properties which are the duals 

of Properties (2)-(5) of Theorem 4.1. We recall first the definition of the main 

notion involved in these dual properties. 

Let X, Y and Z be Banach spaces and let ~b: Z ~ Y be a surjective operator. 

An operator T: X --. Yis said to admit a lifting to Z (with respect to ~) if there 

is an operator T:  X ~ Z such that qSiV = T. Such a iPis called a lifting of Tto  Z.  

THEOREM 4.2. Let X be a Banach space. Then the following five statements 

are equivalent: 

1. X is an ~¢1 space. 
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2. For all Banach spaces Z and Y and any surjective operator ~9: Z ~ Y, 

every compact operator T: X --+ Y has a compact lifting 27 to Z .  

3. Same as 2, but without the requirement that the lifting T be compact. 

4. For all Banach spaces Z and Y and any surjective operator (o: Z--* X ,  

every compact operator T: Y ~ X has a compact lifting 27 to Z .  

5. Same as 4, but without the requirement that the lifting T be compact. 

Proof. Clearly (2) =~ (3) and (4) =~ (5). Again it is easy to prove that if (3) 

(resp. (5)) hold for a space X then there is a 2 such that for every quotient map q~ 

a suitable 2?in (3) (resp. (5)) can be chosen so that 11 2? II < 2 IIT II In view of this 

remark the proof  of (3) =~ (1) of Theorem 4.1 (i.e. of  [13, theorem 2.1]) shows 

that if X satisfies (3) of the present theorem X* is an £~°~0 space and hence by 

Theorem III X is an £,e 1 space. An argument very similar to the proof of (5) => (1) 

of Theorem 4.1 proves also that (5) =~ (1) in the present theorem. We shall indicate 

now the proofs of (1) =~ (2) and (1) ~ (4). 

Proof of (1) =~ (2). Assume that X is an £~°1. ~ space and thus X = [,_J~B~ 

where the {B~} form a net of finite-dimensional subspaces of X directed by in- 

clusion such that d(B,, l] ") < 2 for all ~. Each B, thus contains vectors {e~,~}7~1 
such that II ei,~l[ = 1 and b eBb, Ilb/I ___< 1 =,- b = ~ iTiei,e with ~ ]y , [  < 2. 

Let qS: Z --* Y be a surjective homomorphism and let T:  X ~ Y be a compact 

operator of norm 1. We denote the unit ball of the Banach space X by Sx (and 

similarly the unit balls of other Banach spaces). Since TSx  is a compact subset 

of Yit follows from the open mapping theorem that there is a compact sym- 

metric subset U of Z such that c/)U ~ TSx .  Since e~,~ ~ Sx for every i and 0¢ 

there is a u~,~e U such that qSu~,~ = Te~,~. For each 0~ define now T~: B~--* Z 

by T~(ZiTie~,~) = Z~y~u~,~. Clearly ~bT~ = TIB ~ and T~S~ c 2U.  By a compact- 

ness argument like the one in the proof of (5) ~ (1) in Theorem 4.1 it follows 

that there is a 2?: X ~ Z such that q527 = T and 2?Sx ~ ;tU. This proves that 

(2) holds. 

Proof  of (1) => (4). Assume that X is an ~ , ~  space. It follows from Theorem 

III(c) that every compact operator into X is the limit in the norm topology of 

operators with a finite-dimensional range. Hence (4) will be proved once we show 

that for every q~: Z --, X with ~ surjective there is a 2 such that for every Y and 

every T:  Y ~ X with dim T Y < oo there is a compact lifting 27 of T into Z with 

II 2? II <-- I1 z II 
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Assume now that dim T Y  < oo. Let the subspace B of X be such that T Y  ~- B 

and d(B, l~) < 2. By a simple and well known property of l~ spaces it follows 

that there is a T : Y ~ d # - I ( B ) = Z  such that d i m i v Y < o o ,  ~biv=T and 

II II --< g II Z I1 where K depends only on 2 and ~b but not on T. This concludes 

the proof. 

REMARKS. 1. If  in statements 2 or 4 the requirements that T be compact (and 

of course also that iv be compact) are dropped one gets properties which char- 

acterize ll(F ) spaces. This result is due to Petczyfiski [21] and K6the [11]. 

2. The isometric analogues of Theorem 4.2 (i.e. the discussion of the lifting 

properties when ~b is a quotient map and i v is required to be so that I1 iv II -- 11T II 

or 11211 < I1Ttl + e ) a r e  treated in [6] and [15]. 

We pass now to characterizations of the ~ p  spaces for all p .  The results of 

Sections 2 and 3 together with a compactness argument, show that a considerably 

weaker form of the requirements of the Definition in Sec. 1 yields a characteriza- 

tion of the ~ p  spaces for p = 1 or oo, and a joint characterization of the ~ p  and 

£~° 2 spaces for 1 < p < oo. 

THEOREM 4.3. Let 1 < p < oo, and let X be a Banach space satisfying the 

following property: There is a 2 > O, so that for  every f inite-dimensional sub- 
I1 space E of X ,  there exists an n,  and operators TE: E ~ lp and SE: I~ --* X 

satisfying II rE I1 :< 1, [I sell :< with s e r  E equal to the identity operator on 

E .  Then X is an ~ep space or an L~' 2 space i f  1 < p < oo, and X is an ~q~p space 

i f  p =  l or oo. 

(If p = 1 or p = oo, and X is of infinite-dimension X cannot be an -~2 space. 

However for all p with 1 < p < oo, 12 is isomorphic to a complemented subspace 

of L~; hence every .oq' 2 space X satisfies these hypotheses.) 

Proof. The proof is very similar to the proof of theorem 7.1 of [16], for the 

case of 1 =< p < m.  (One has to correct a slight error in this proof: the func- 

tionals T*(~i) must be replaced by suitable Hahn-Banach extensions y~, to all 

of X.)  Following the argument given there and using the weak* topology in 

X**, one obtains an Lp(/z) space ~, a subspace J? of ~ isomorphic to X ,  and a 

bounded linear operator /~:~ --. ~** with P(x) = x for all x e  J~. If  1 < p < oo, 

and hence X is reflexive, thus/~ is a projection from 2 onto JT. Hence X is 

isomorphic to a complemented subspace of an Lp(,u) space, so X is an A°~, space 

or an Aa2 space by Theorem 2.1. If  p = 1, it follows that J?** is complemented 

in 2** (cf. [13]) and hence X is an Aal space by Theorem 3.3. 
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Finally, suppose p = oo. It then follows that if Y and Z are finite-dimensional 

Banach spaces with Z D Y, then every operator T: Z ~ X has an extension 

~P: Z -* X with [I ~ [I --< 2 f[ T [1" Thus by Theorem 4.1 (cf. the first remark fol- 

lowing its proof) X is an ~oo space. Q.E.D 

We now apply Theorem III to questions treated in [19]. We recall first the 

definition of the basic notion introduced in [19]. A Banach space X is said to 

have sufficiently many Boolean algebras of projections if  there is a number 2 

such that for every finite-dimensional subspace B of X there is a Boolean algebra 

of projections on X satisfying 

(*) 1181[ = sup{liP[I, P E ~ }  =<2 and 

B c s p a n { P Y ; P e ~ }  for some y e X .  

Let us say that all Boolean algebras of projections on a Banach space X are 

of the same type. if there exists a monotone positive real-valued function g(t) 

defined for t _>_ 1 and a positive real-valued function f ( u l , u 2 , " ' )  defined for 
U oo all sequences { ,}i=1 of non-negative numbers with only finitely many ui ~ 0 

such that for every Boolean algebra ~ of projections on X,  every x e X and every 

disjoint {P~}~=I in X 

(**) g([ l~ l l ) - l f ( l lP lx l l ,  ][P2xll,. . . ,l[P,(x)[[,o,o,o,.. .) 

n 

<= 11 y-" f,xll < g(ll~ll)f(Llflxll, IlP2xll, ,llf°xll,0,0, ) 
i = 1  

Finally let us say that a Banach space X has sufficiently many Boolean al- 

gebras of projections of the same type if  there is a number 2 < Go and functions 

g( t ) , f ( u l , u2 , . . . )  as above so that for every finite-dimensional subspace B of X 

there is a Boolean algebra of projections ~ on X so that (*) and (**) hold (of 

course here g may be chosen to be constant). 

The proof of the main result of [19] together with Theorem IIIc show that 

THEOREM 4.4. A Banach space X is an ~L#p space for  some p,  1 < p <__ oo, 

i f  and only i f  X has sufficiently many Boolean algebras of the same type. 

In view of Theorem IIIc (for p = 1) we may now restate the main result of 

[19] as a joint characterization of .oq~a, .5f2, and ~ o  spaces. 

THEOREM 4.5. A Banach space X is an £#p space for  p = 1, 2 or oo if and 

only i f  
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(i) X has sufficiently many Boolean algebras of projections. 

(ii) all Boolean algebras of projections on X are of the same type. 

REMARK. L. Tzafriri has obtained [28] a characterization of spaces isomorphic 

to Lp(#) spaces 1 < p < oo or c0(F ) . This characterization is in terms of Boolean 

algebras of projections and is closely related to Theorem 4.4. 

Section 5. Remarks and open problems. The main open question concerning 

.~p spaces is certainly the problem of finding a functional representation of these 

spaces. We shall sum up here the known results in this direction. The only case 

where the functional representation presents no problem is the case p = 2. By 

Theorem I a Banach space is an ~ 2  space if and only if it is isomorphic to a Hilbert 

space. 

For 1 < p < ~ ,  p ~ 2, the problem of functional representation of the A°p 

spaces is by Corollary 1 to Theorem 2.1, equivalent to the problem of isomorphic 

classification of complemented subspaces of Lp(/0 spaces. By duality it is clearly 

enough to consider the range 2 < p < ~ .  This fact may be helpful since for 

p > 2 some information on the structure of an arbitrary subspace of Lp(/x) is 

known (of. [8]). In the separable (infinite-dimensional) case four different iso- 

morphics type of A°p spaces (1 < p < ~ ,  p ~ 2) are known [16] : lp, Lp, Ip @ 12 

and (I 2 • I z ®..-)p.  It is remarked in [16] that other "natural candidates" are 

either not .L~qp spaces or are isomorphic to one of those four spaces. Thus, e.g. 

(lp • Ip G'" )2  is not an .~op space (p ~ 2) and Lp(12) (=  the space of measurable 

f :  [0,1] ~ Iz whose pth power is Bochner integrable) is isomorphic to Lp. Let 

us repeat now two questions posed in [16]. 

PROBLEM la. Are there only four different isomorphism types of separable 

infinite-dimensional £Pp spaces (1 < p < oo, p ~ 2)? 

PROBLEM lb. Let X be an infinite-dimensional £~op space which is isomorphic 

to a subspace of Ip. Is X ~ Ip (1 < p < oo, p # 2)? 

Clearly Problem lb is a special case of Problem la. The next Problem, on the 

other hand, generalizes Problem la. 

PROBLEM le. Is every ~op space X isomorphic to a direct sum of an Lp~) 

space and a sum (with an arbitrary number, finite or infinite, of summands) of 

Hilbert spaces with the Ip norm, i.e. X ,~ Lp(#) • ( ~2 ~ @ L2(/t~))p(1 < p  < oo,p~2)? 

(Every space of the above form is isomorphic to a complemented subspace of some 
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Lp(v) space, and hence is an ~ p  space by Theorem III; for a direct proof, see 

[16].) 
We pass now to the case p = 1. We know of five different isomorphism types 

of separable infinite-dimensional "~1 spaces. These are 11, L 1 D, L 1 @ D and 

L I ® D ,  where D is the subspace of l 1 spanned by {Uk}k~l where 

= - e oo denotes the usual basis vec- U k ek (e2k-I-e2k+l)/2, k = 1,2 , . . . ,  and { k}k=l 

tors of 11 . (In the discussion below of ~ spaces, D will always denote this par- 

ticular Banach space). By A @ B we denote here the completion of the algebraic 

tensor product of A and B normed by the greatest cross norm. It is known (cf. 

[5]) that L 1 ® X can be identified with LI (X) ,  the space of  X-valued Bochner 

integrable functions on [0, 1]. The space D was introduced in 1-14] ; it is the kernel 

of a certain quotient map T: l~ -~ L 1 . By Theorem 2 of [-17] an infinite-dimensional 

subspace U of  I 1 is determined up to isomorphism by ll/U. Hence the fact that 

D is the kernel of  an operator from l~ onto L1 already determines the isomorphism 

type of D. It is proved in [-14] that D is not isomorphic to a complemented sub- 

space of an LI(#) space. That D is an ~ i  space (actually an ~1,4 space for every 

), > 2) is easily checked directly and follows also from Proposition 5.2 below. 

It is easy to verify that if A and B are ~ a  spaces then A G B and A ® B are also 

~e~ spaces. In view of these facts the only part of the statement made above con- 

cerning l l , L1 ,DLI@D and L1QD which still requires a proof  is that 

L~ @ D z~ L~ ® D .  This fact is an immediate consequence of the following 

proposition. 

PROPOSITION 5.1. Let P be a projection of L 1 ® D onto a subspace isomorphic 

to D. Then the kernel of P is isomorphic to L 1 @ D. 

Proof. Let Y = L~ @ D and let P be a projection of  Y onto a subspace iso- 

morphic to D. Let (u,}~= 1 be a sequence of elements in L 1 such that II.nll-- 1 

all n and u, ~ 0 weakly. Let Z, = un ® D, n = 1 ,2 , . . . .  Every Z, is a subspace 

of  Yisometric to D and there is a projection Q, from Yonto Zn with [I Q, ]1 -- 1. 

We claim that for large enough n, II P(u, ® x)[I < ½ li u, ® x II for every x e D. 

Indeed, for every bounded sequence {x,,)~= 1 in O we have by the choice of u, 

that u~ ® x, --. 0 weakly in Y. Hence P(u, ® x,) ~ 0 weakly and thus, since PY 

is isomorphic to the subspace D of  l l ,  11P(u~ @ x,)II ~ 0 and this proves our 

assertion. Let I denote the identity operator of Y and I ,  the identity operator 

of Z. ,  n = 1 ,2 ,3 , . . . .  Since for large n I[Piz, 11 __< ½, I n - Q,PIz, is an invertible 

operator in Z~. It follows easily that ( I -  P ) ( I . -  Q.Pizo)-~Qn is a projection 
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from Y onto its subspace ( I -  P)Z n which is isomorphic to Z, and thus to D. 

We have thus shown that ( I  - P ) Y  ,~ D ~ U for a suitable U. Since D @ D ~ D 

(see below) we get that 

Y ~ ( I - P ) Y ~ 3 P Y  "~ ( I - P ) Y ~ B D  ,~ D ~ D @ U  ~-, D @ U  ,m ( I -  P)Y 

as desired. 

It follows from theorem 2 of [17] cited above that D m D @ D m D ~ l~. 

Indeed, let T : I ~ - ~ L  1 be the quotient map whose kernel is D. Then 

T ~ T: 11 @ 11 -~ Lt @ L 1 and T ® I: 11 ® 11 -~ L t ® 11 are quotient maps whose 

kernels are D@D and D ® l  1 respectively. Since 11~ l l @ l  l ~ l  1®11 and 

L1 ~ L~ ~ L~ ® l~ ,.~ L 1 we can apply Theorem 2 of [17] to get the desired 

result. We do not know, however, whether D ® D m D. Another candidate for 

a new isomorphism type of a separable Sat space is obtained in the following 

way. Let T1: 11 -~ D be a quotient map and let D 1 be the kernel of T1. By Theorem 

2 of [17] the isomorphism type of D~ does not depend on the particular choice 

of T 1 . By Proposition 5.2 below D 1 is an £¢1 space and by the reasoning of [14] 

D~ is not isomorphic to a complemented subspace of an L~(/z) space. 

PROBLEM 2a. Are any two of the spaces D, D ® D and D~ isomorphic? 

Let us remark that it is not hard to give concrete representations of D ® D 
• e oo and D1 Let { n , k } n , k = l  be an enumeration of the unit vectors of la as a double 

sequence. Put 

2 ' t -  t 

Un, k -~- en+  l ,  k - -  en,  k - -  2 - n  ~_~ en,2nk + i 
l = 0  

and 
V.,k = e.,k - ½(e2n,k + e2.+~,k + e.,2k + en,2k+l) 

+ ¼(e2n,2k  + e 2 n + l , 2 k  + e2.,2k+t + e2,,+l,2k+l) 

for n , k  = 1,2,... .  Then D~ is isomorphic to the closed linear span of the {U~,k} 

while D ® D is isomorphic to the closed linear span of the {V~,k}. If it turns out 

that either D ® D or D I give a new isomorphism type of . ~  spaces it would seem 

very likely that there are infinitely many isomorphism types of separable infinite- 

dimensional Sal spaces. Let us mention in this connection that by Theorems I 

and III and the results of [21] and [24] a Banach space Z is a separable infinite- 

dimensional LP~ space if and only if Z* is isomorphic to l~o. 

Another problem concerning Sa.~ spaces is 
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PROBLEM 2b. Is every complemented subspace of an L~(p) space isomorphic 

to Ll(v) for some v? In particular is every infinite-dimensional complemented 

subspace of L~ isomorphic to either 11 or LI? (It follows from Theorem III that 

a space X is isomorphic to a complemented subspace of an L,(/~) space if and 

only if X is complemented in X** and X is an ~e 1 space.) 

We turn to the case p = oo. In this case even the problem of functional rep- 

resentation and isomorphic classification of the separable spaces which are 

Laoo.L+ ~ for every ~ > 0 is not completely solved. For information concerning 

the functional representation of spaces which are Se~o 1+ ~ for every e > 0 we 

refer to [18]. The C(K) spaces are the most important class of spaces which are 

~ e ~ + ~  spaces for every e > 0 and therefore it is natural to ask 

PROBLEM 3a. Is every Banach space Y whose dual is isometric to an L,(#) 

space (i.e. Yis an Aa ,,+~ space for every e > 0) isomorphic to a C(K) space? 

In particular what is the case if Y is separable? 

The question of isomorphic classification of separable C(K) spaces has been 

completely solved by Bessaga and Petczyfiski [2] and Milutin [20] (cf. also 

[22]). There are uncountably many different isomorphic types of such spaces 

and thus in particular of separable infinite-dimensional .~eoo spaces. The present 

knowledge concerning the isomorphic classification of non-separable C(K) spaces, 

though quite large, is still very fragmentary. The main sources for information 

concerning this question are [22] and [24]. 

It follows from theorems 2.3 and 5.1 of [24] and the continuum hypothesis 

that if X is a separable Za~o space, then X** is isomorphic either to l~ or to/o~(F) 

where F is a set of cardinality the continuum. Let us restate a question raised 

in [24]: 

PROBLE~ 3b. Let X be an £aoo space. Is X** isomorphic to /oo(F) for some 

set F? 

It is conjectured in [24] that 3b has an affirmative answer. 

A third natural question concerning £'¢oo spaces is 

PROBLEM 3C. IS every £eoo space isomorphic to a space which is an ~¢~o,,+, 

space for every e > 0? 

The case p < m seems to suggest that the answer to Problem 3¢ might be neg- 

ative.~ However we do not know at present even of a possible candidate for a 

counterexample. The case p < m also suggests (cf. Theorem I) that the follow- 

ing problem should have a positive answer. 
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PROBLEM 3d. Does every infinite-dimensional -Woo space have a subspace 

isomorphic to Co? 

Zippin [29] has shown that a space which is an ~Poo,1 + ~ space for every e > 0 

contains a subspace isometric to Co. Thus a positive answer to Problem 3c would 

imply that also Problem 3d has a positive answer. 

PROBLEM 3e. Is every ~ o  space isomorphic to a complemented subspace of 

a C(K) space? 

It is even unknown whether every space which is an ~oo,1+, space for every 

e > 0 is isomorphic to a complemented subspace of a C(K) space. The spaces Y 

which are isometric to a subspace of a C(K) space on which there is a projection 

of norm 1 were characterized in [18]. By [21] a positive solution to Problem 3e 

would imply a positive solution to Problem 3d. We state finally the analogue of 

Problem lb. 

PROBLEM 3f. IS every infinite-dimensional ~ o  subspace of c o isomorphic 

to Co? 

Another class of problems concerning ~ p  spaces stems from considering the 

following question. Let X ~ Y be Banach spaces. Assume that two out of the 

three spaces X,  Y , X / Y a r e  .Lep spaces for a given 1 _<_ p __< ~ .  Is the third space 

also an ~¢p space? As far as positive results concerning this question are con- 

cerned we have 

PROPOSITION 5.2. (a) I f  X / Y  and either one of Y or X are an .Lz' 1 space then 

also the third space is an ~ space. 

(b) I f  X and either Y or X / Y  are ~ 2  spaces then also the third space is an 

~ 2  space. 

(c) I f  Y and either X or X / Y  are Lz~oo spaces then also the third space is an 

S~oo space. 

Proof. (a) Since X / Y  is an ~¢1 space it follows by Theorem I that (X /Y)*  

is injective. Hence X* ~ (X/Y)*  @ Y*. Consequently X* is injective if and only 

if Y* is injective and by Theorem III this concludes the proof. 

Part (b) of the Proposition is of course trivial and well known. It is clearly 

enough to assume only that X is an ~ 2  space. We chose to write (b) in the present 

form just for reasons of symmetry. Part (c) follows from Part (a) by passing to 

the dual. 
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PROBLEM 4a. Is it true that in every case which is not covered by Proposition 

4.2 the assumption that two of the spaces X, Y, X /Y  are an Lar space for some 

1 < p < c~ does not imply in general that the third space is also an .L,e space? 

We cannot settle this problem in any of the cases not covered by Proposition 

5.2. The most interesting special cases of Problem 4a are for p = 1, 2 and oo. 

For p = 2 this problem has been around for some time (it is attributed to R. 

Palais). Let us state it explicitly. 

PROBLEM 4b. Let X be a Banach space and let Y be a subspace of X such 

that Yand X/Yare  both isomorphic to Hilbert space. Is X isomorphic to a Hilbert 

space? 

For p = 1 Problem 4a is equivalent to the same problem for p = oo (by duality). 

It can be shown that Problem 4 for p = 1 is also equivalent to the more concrete 

PROBLEM 4C. Let Ybe a subspace of 11 such that Y ~ 11. Is Ycomplemented 

in 11? 

We conclude the paper with the following well-known open problem. 

PROBLEM 5. Let X be a Banach space such that every closed subspace of X 

is complemented. Is X an Laz space? 

We mention this problem here since it is, in a sense, the "missing l ink"  in the 

circle of questions treated in Section 4. It is well known that the isometric version 

of Problem 5 is true (Kakutani  [9]). 

It is also well known that the common Banach spaces which are not Laz spaces 

have an uncomplemented subspace. For general classes of spaces, however, 

little is known concerning Problem 5. Results of general type exist under some 

symmetry conditions on X .  For example, by using the results of 1-26] the first 

named author proved (unpublished) that every Banach space with a symmetric 

basis in which every closed subspace is complemented is isomorphic to Hilbert 

space. 

Added in proof. (1) Since the completion of the present paper the second 

named author found two new isomorphic types of separable infinite-dimensional 

~,ep spaces, 1 < p < oo, p ~ 2. Thus, for every such value of  p there are now 

known six different isomorphic types of  separable infinite-dimensional Lap spaces. 

The answer to problems la and lc above is therefore negative. It is very likely 

that there are more isomorphic types (perhaps even infinitely many) of such spaces. 

For p > 2 the new types of Lap spaces are obtained as follows. Let {Wn}n~ 1 be 
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a sequence of positive numbers such that w, -~ 0 as n -~ oo and Y~ nwEv/CP-2)= 00. 

Let  {en),°°-i and {f,}~=l denote the unit vector bases of  lz and lp respectively. 

Let Xp be the closed linear span of {wn" e, + fn}~ 1 in 12 (~ lp. Then Xp and 

Y~ = (Xp @ Xp O. . . )p  are new isomorphic types of  ~ p  spaces. The isomorphic 

type of  Xp (and thus also of  Yp) does not depend on the particular choice of  the 
W oo • sequence { ~},,=1 For 1 < p < 2 the new isomorphic types are obtained by 

duality. An examination of the new examples gives also a partial solution to 

problem 4a. Details will appear elsewhere. 

(2) The separation theorem of Klee can be deduced from the usual separation 

C n theorem. Let { i}i=o be convex open sets in a locally convex space X such that 

c3"i=o Ci = Z; .  Consider the set 

C = { ( X o - X i ,  X o - X 2 , . . . , X o - X n ) ;  x ~ C i ,  0 < i < n} 

in X @ X @ ... @ X (n times). The set C is convex, open, and does not contain 

the origin. Hence by the usual separation theorem there are {f~}i~ 1 ~ X* such that 

~ =  1 f i ( x o - x i )  > 0 whenever xl ~ C,, 0 < i < n. Let T: X ~ R" be defined by 

T x  = ( f l ( x ) ,  . . . , f , , (x)) .  Then n~=0 TCi = ~ .  Q.E.D. 
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