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We study the behavior at infinity in time of any global solution θ ∈ C(R+, Ḣ2−2α(R2)) of the
surface quasigeostrophic equation with subcritical exponent 2/3 ≤ α ≤ 1. We prove that
limt→∞‖θ(t)‖Ḣ2−2α = 0. Moreover, we prove also the nonhomogeneous version of the previous
result, and we prove that if θ ∈ C(R+, Ḣ2−2α(R2)) is a global solution, then limt→∞‖θ(t)‖H2−2α = 0.

1. Introduction

We consider the 2D dissipative quasi-geostrophic equation with subcritical exponent 1/2 <
α ≤ 1,

∂tθ + (−Δ)αθ + (u · ∇)θ = 0 in R
+ × R

2,

θ(0, x) = θ0(x) in R
2,

(Sα)

where x ∈ R
2, t > 0, θ = θ(x, t) is the unknown potential temperature, and u = (u1, u2)

is the divergence free velocity which is determined by the Riesz transformation of θ in the
following way:

u1 = −R2θ = −∂2(−Δ)−1/2θ,

u2 = R1θ = ∂1(−Δ)−1/2θ.
(1.1)
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This equation is a two-dimensional model of the 3D incompressible Euler equations, and if
α = 1, the equation (S1) is the 2DNavier-Stokes equation. We refer the reader to [1]where the
authors explain the physical origin and the signification of the parameters of this equation.

The critical homogeneous Sobolev space of the system (Sα) is Ḣ2−2α(R2), and we have

∥
∥
∥λ2α−1f(λ.)

∥
∥
∥
Ḣ2−2α

=
∥
∥f

∥
∥
Ḣ2−2α , ∀λ > 0. (1.2)

The local well-posedness of (Sα) with Ḣ2−2α(R2) data is established by [2] and [3]
separately if α ∈ (0, 1/2]. In [4], Dong and Du study the critical case α = 1/2 in the critical
space Ḣ1(R2). They prove the global existence if the initial condition is in the critical space
H1(R2).

The global existence when α ∈ (1/2, 1] is an open problem. We have only the local
existence. In this case [5], Niche and Schonbek prove that if the initial data θ0 is in L2(R2),
then the L2 norm of the solution tends to zero but with no uniform rate, that is, there are
solutions with arbitrary slow decay. If θ0 ∈ Lp(R2), with 1 ≤ p ≤ 2, they obtain a uniform
decay rate in L2. They consider also the solution in other Lq spaces. For the proof of their
results, they use the kernel Pα(t, x) associated to the operator ∂t + (−Δ)α, and they use the
Littlewood-Paley decomposition. Our main result is the following.

Theorem 1.1. Assume that 2/3 ≤ α ≤ 1.

(i) If θ ∈ C(R+, Ḣ2−2α(R2)) is a global solution of (Sα), then

lim
t→∞

‖θ(t)‖Ḣ2−2α = 0. (1.3)

(ii) If θ ∈ C(R+,H2−2α(R2)) is a global solution of (Sα), then

lim
t→∞

‖θ(t)‖H2−2α = 0. (1.4)

2. Notations and Preliminary Results

2.1. Notations and Technical Lemmas

In this short section, we collect some notations and definitions that will be used later, and we
give some technical lemmas.

(i) The Fourier transformation in R
2 is normalized as

F(f)(ξ) =
∧
f (ξ) =

∫

R2
exp(−ix · ξ)f(x)dx, ξ = (ξ1, ξ2) ∈ R

2. (2.1)

(ii) The inverse Fourier formula is

F−1(g
)

(x) = (2π)−2
∫

R2
exp(iξ · x)f(ξ)dξ, x = (x1, x2) ∈ R

2. (2.2)
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(iii) For s ∈ R, Hs(R2) denotes the usual nonhomogeneous Sobolev space on R
2 and

〈·, ·〉Hs(R2) its scalar product.

(iv) For s ∈ R, Ḣs(R2) denotes the usual homogeneous Sobolev space on R
2 and

〈·, ·〉Ḣs(R2) its scalar product.

(v) For s, s′ ∈ R and t ∈ [0, 1],

∥
∥f

∥
∥
Hts+(1−t)s′ ≤

∥
∥f

∥
∥
t

Hs

∥
∥f

∥
∥
1−t
Hs′ , (2.3)

∥
∥f

∥
∥
Ḣts+(1−t)s′ ≤

∥
∥f

∥
∥
t

Ḣs

∥
∥f

∥
∥
1−t
Ḣs′ . (2.4)

These two inequalities are called the interpolation inequalities, respectively, in the homoge-
neous and nonhomogeneous Sobolev spaces.

(i) For any Banach space (B, ‖ · ‖), any real number 1 ≤ p ≤ ∞, and any time T > 0, we
denote by L

p

T (B) the space of measurable functions t ∈ [0, T] 
→ f(t) ∈ B such that
(t 
→ ‖f(t)‖) ∈ Lp([0, T]).

(ii) If f = (f1, f2) and g = (g1, g2) are two vector fields, we set

f ⊗ g :=
(

g1f, g2f
)

,

div
(

f ⊗ g
)

:=
(

div
(

g1f
)

,div
(

g2f
))

.
(2.5)

We recall a fundamental lemma concerning some product laws in homogeneous Sobolev
spaces.

Lemma 2.1 (see [6]). Let s1, s2 be two real numbers such that

s1 < 1, s1 + s2 > 0. (2.6)

There exists a constant C := C(s1, s2), such that for all f, g ∈ Ḣs1(R2) ∩ Ḣs2R
2),

∥
∥fg

∥
∥
Ḣs1+s2−1(R2) ≤ C

(∥
∥f

∥
∥
Ḣs1 (R2)

∥
∥g

∥
∥
Ḣs2 +

∥
∥f

∥
∥
Ḣs2

∥
∥g

∥
∥
Ḣs1

)

. (2.7)

If s1, s2 < 1 and s1 + s2 > 0, there exists a constant c = c(s1, s2) such that for all f ∈ Ḣs1(R2) and
g ∈ Ḣs2R

2),

∥
∥fg

∥
∥
Ḣs1+s2−1(R2) ≤ c

∥
∥f

∥
∥
Ḣs1

∥
∥g

∥
∥
Ḣs2 . (2.8)

For the proof of the main result, we need the following lemma.

Lemma 2.2. With the same conditions of Theorem 1.1, for all σ ≥ 0,

∫

R2
|ξ|2σ |F((u · ∇)θ)F(w)|dξ ≤ C‖θ‖Ḣ2−2α‖θ‖Ḣσ+α‖w‖Ḣσ+α . (2.9)
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Remark 2.3. (i) In the case where σ = 0, the formula (2.9) gives

∫

R2
|F((u · ∇)θ)F(w)|dξ ≤ C‖θ‖Ḣ2−2α‖θ‖Ḣα‖w‖Ḣα . (2.10)

In the case where σ = 2 − 2α, the formula (2.9) gives

∫

R2
|ξ|2(2−2α)|F((u · ∇)θ)F(w)|dξ ≤ C‖θ‖Ḣ2−2α‖θ‖Ḣ2−α‖w‖Ḣ2−α . (2.11)

Proof of Lemma 2.2. From the Cauchy-Schwarz inequality, we have

∫

R2
|ξ|2σ |F((u · ∇)θ)F(w)|dξ ≤

∫

R2
|ξ|σ−α|F((u · ∇)θ)||ξ|σ+α|F(w)(ξ)|dξ

≤
(∫

R2
|ξ|2(σ−α)|F((u · ∇)θ)|2dξ

)1/2

‖w‖Ḣσ+α .

(2.12)

Using the weak derivatives properties, the product laws (Lemma 2.1), with s1+s2 = σ−α+2 >
0, s1 = 2 − 2α < 1, and s2 = σ + α, we can dominate the nonlinear part as follows:

∫

R2
|ξ|2(σ−α)|F((u · ∇)θ)|2dξ ≤

∫

R2
|ξ|2(σ−α+1)(|F(θ)|∗|F(θ)|)2dξ

≤ C‖θ‖2Ḣ2−2α‖θ‖2Ḣσ+α .

(2.13)

2.2. Existence Theorem

In [7], Wu proves an existence and uniqueness theorem of (Sα) in the well-known Besov
spaces Ḃr

p,q. We recall this theorem in the special case, where p = q = 2.

Theorem 2.4. Assume that α ∈ (0, 1] and θ0 ∈ Ḣ2−2α(R2), then there exists a constant cα > 0 such
that if

∥
∥
∥θ0

∥
∥
∥
Ḣ2−2α

< cα, (2.14)

then the initial value problem (Sα) has a unique solution in Cb(R+, Ḣ2−2α(R2))∩L2(R+, Ḣ2−α(R2)).
Moreover,

‖θ(t)‖2Ḣ2−2α +
∫ t

0
‖θ(τ)‖2Ḣ2−αdτ ≤ c′α, ∀t ≥ 0, (2.15)

where Cb(R+, Ḣ2−2α(R2)) is the space of continuous and bounded functions from R
+ to Ḣ2−2α(R2).

In use of the fact that Ḣ2−2α(R2) is a Hilbert space, one deduces the following.
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Corollary 2.5. Assume that α ∈ (1/2, 1] and θ0 ∈ Ḣ2−2α(R2), then there exists a constant cα > 0
such that if

∥
∥
∥θ0

∥
∥
∥
Ḣ2−2α

< cα, (2.16)

then the initial value problem (Sα) has a unique solution in Cb(R+, Ḣ2−2α(R2))∩L2(R+, Ḣ2−α(R2)).
Moreover,

‖θ(t)‖2Ḣ2−2α +
∫ t

0
‖θ(τ)‖2Ḣ2−αdτ ≤

∥
∥
∥θ0

∥
∥
∥

2

Ḣ2−2α
, ∀t ≥ 0. (2.17)

Proof . Taking the scalar product in Ḣ2−2α(R2), we get

1
2
∂t‖θ‖2Ḣ2−2α + ‖θ‖2Ḣ2−α ≤ |〈(u · ∇)θ, θ〉Ḣ2−2α |

≤ |〈div(θu), θ〉Ḣ2−2α |
≤ ‖div(θu)‖Ḣ2−3α‖θ‖Ḣ2−α

≤ ‖θu‖Ḣ3−3α‖θ‖Ḣ2−α .

(2.18)

Using Lemma 2.1 with s1 = 2 − 2α < 1 and s2 = 2 − α, we obtain

1
2
∂t‖θ‖2Ḣ2−2α + ‖θ‖2Ḣ2−α ≤ Cα‖θ‖Ḣ2−2α‖θ‖2Ḣ2−α ,

(

Cα =
1
2cα

)

. (2.19)

Then the quadratic term can be absorbed,

1
2
∂t‖θ‖2Ḣ2−2α + ‖θ‖2Ḣ2−α ≤ 0. (2.20)

Taking the integral on the interval [0, t], we obtain

‖θ(t)‖2Ḣ2−2α +
∫ t

0
‖θ(τ)‖2Ḣ2−αdτ ≤

∥
∥
∥θ0

∥
∥
∥

2

Ḣ2−2α
, ∀t ≥ 0. (2.21)

3. Proof of the Main Theorem

The proof of the first part will be in two steps.

First Step (Small Initial Data)

In this case, we suppose that

∥
∥
∥θ0

∥
∥
∥
Ḣ2−2α

< cα, (3.1)
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with cα a sufficient small number. Then from Corollary 2.5,

θ ∈ Cb

(

R
+, Ḣ2−2α

(

R
2
))

∩ L2
(

R
+, Ḣ2−α

(

R
2
))

, (3.2)

‖θ‖2Ḣ2−2α +
∫ t

0
‖θ‖2Ḣ2−α ≤

∥
∥
∥θ0

∥
∥
∥

2

Ḣ2−2α
, ∀t ≥ 0. (3.3)

For a strictly positive real number δ and a given distribution f , we define the operators
Aδ(D) and Bδ(D), respectively, by the following:

Aδ(D)f := χB(0,δ)(|D|)f = F−1(χB(0,δ)F
(

f
))

,

Bδ(D)f := (1 −Aδ(D))f = F−1((1 − χB(0,δ)
)F(f)).

(3.4)

We define wδ = Aδ(D)θ and vδ = Bδ(D)θ; F(θ) = F(wδ) + F(vδ). Then,

∂twδ + (−Δ)αwδ +Aδ(D)(u · ∇θ) = 0,

∂t‖wδ‖2Ḣ2−2α + 2‖wδ‖2Ḣ2−α ≤ C‖θ‖Ḣ2−2α · ‖θ‖Ḣ2−α · ‖wδ‖Ḣ2−α .
(3.5)

We deduce that

‖wδ‖2Ḣ2−2α ≤ ‖wδ(0)‖2Ḣ2−2α + C‖θ(0)‖Ḣ2−2α

∫∞

0
‖θ‖Ḣ2−α‖wδ‖Ḣ2−αdτ. (3.6)

Since ‖wδ‖Ḣ2−α ≤ ‖θ‖Ḣ2−α , then from the dominate convergence theorem and (3.3), we have

lim
δ→ 0

Sup
t≥0

‖wδ‖Ḣ2−2α = 0. (3.7)

The function vδ satisfies

∂tvδ + (−Δ)αvδ + Bδ(D)(u · ∇θ) = 0,

∂t|F(vδ)|2 + 2|ξ|2α|F(vδ)|2 ≤ |F(u · ∇θ)F(vδ)|.
(3.8)

Multiplying this equation by |ξ|2(2−2α)e2t|ξ|2α , we deduce that

‖vδ‖2Ḣ2−2α ≤
∫

|ξ|>δ
|ξ|2(2−2α)e−2t|ξ|2α

∣
∣
∣F

(

v0
δ

)∣
∣
∣

2

+
∫ t

0

∫

|ξ|>δ
|ξ|2(2−2α)e−2(t−τ)|ξ|2α |F(u · ∇θ)F(vδ)|dξ dτ

≤ e−2tδ
2α
∥
∥
∥v0

δ

∥
∥
∥

2

Ḣ2−2α
+ C

∫ t

0
e−2(t−τ)δ

2α
∫

ξ

|ξ|2(2−2α)|F(u · ∇θ)F(vδ)|dξ dτ.

(3.9)
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Using Remark 2.3 and (3.3), we get

‖vδ‖2Ḣ2−2α ≤ e−2tδ
2α
∥
∥
∥v0

δ

∥
∥
∥

2

Ḣ2−2α
+ C

∥
∥
∥θ0

∥
∥
∥
Ḣ2−2α

∫ t

0
e−2(t−τ)δ

2α‖θ‖2Ḣ2−αdτ. (3.10)

We set

Fδ(t) = e−2tδ
2α
∥
∥
∥v0

δ

∥
∥
∥

2

Ḣ2−2α
+ C

∥
∥
∥θ0

∥
∥
∥
Ḣ2−2α

∫ t

0
e−2(t−τ)δ

2α‖θ‖2Ḣ2−αdτ,

∫+∞

0
e−2tδ

2α
∥
∥
∥v0

δ

∥
∥
∥

2

Ḣ2−2α
dt =

∥
∥v0

δ

∥
∥
2
Ḣ2−2α

2δ2α
≤

∥
∥θ0

∥
∥
2
Ḣ2−2α

2δ2α
,

∫+∞

0

∫ t

0
e−2(t−τ)δ

2α‖θ‖2Ḣ2−αdτ dt =
∫+∞

0

(∫+∞

τ

e−2(t−τ)δ
2α
dt

)

‖θ‖2Ḣ2−αdτ

=
1

2δ2α

∫+∞

0
‖θ‖2Ḣ2−αdt ≤

∥
∥θ0

∥
∥
2
Ḣ2−2α

4δ2α
.

(3.11)

Then,

∫+∞

0
Fδ(t)dt ≤

∥
∥θ0

∥
∥
2
Ḣ2−2α

δ2α
. (3.12)

Let ε > 0, from (3.7), there exists δ0 > 0 such that

‖wδ0‖Ḣ2−2α ≤ ε

2
, ∀t ≥ 0. (3.13)

Let Eδ0 = {t ≥ 0; ‖vδ0‖Ḣ2−2α > ε/2}, then
∫+∞

0
‖vδ0‖2Ḣ2−2αdt ≥

∫

Eδ0

‖vδ0‖2Ḣ2−2αdt ≥
(ε

2

)2
λ1(Eδ0), (3.14)

where λ1(Eδ0) is the Lebesgue measure of Eδ0 . If

Tε =
(
2
ε

)2 ∫+∞

0
‖vδ0‖2Ḣ2−2αdt, (3.15)

then λ1(Eδ0) ≤ Tε. For η > 0, there exists t0 ∈ [0, Tε + η] such that t0 /∈ Eδ0 , and it results that

‖vδ0(t0)‖Ḣ2−2α ≤ ε

2
. (3.16)
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Equation (3.13) and (3.16) give that

‖θ(t0)‖Ḣ2−2α ≤ ε. (3.17)

Thus, limt→+∞‖θ(t)‖Ḣ2−2α = 0, and this finishes the proof in this case.

Second Step (Large Initial Data)

To prove the result for any initial data, it suffices to prove the existence of some t0 ≥ 0 such
that

‖θ(t0)‖Ḣ2−2α < cα. (3.18)

Let θ0 = a0 + r0, with

a0 := F−1
(

1{1/N<|ξ|<N}F
(

θ0
))

,

r0 := θ0 − a0,

∥
∥
∥r0

∥
∥
∥
Ḣ2−2α

< cα.

(3.19)

Now, consider the following system:

∂tr + (−Δ)αr + (R · ∇)r = 0 in R
+ × R

2,

r(0) = r0 in R
2,

R = ∇⊥Δ−1/2r.

(3.20)

By Corollary 2.5, there is a unique solution r ∈ Cb(R+, Ḣ2−2α(R2)) ∩ L2(R+, Ḣ2−α(R2)) such
that

‖r(t)‖2Ḣ2−2α +
∫ t

0
‖r(τ)‖2Ḣ2−αdτ ≤

∥
∥
∥r0

∥
∥
∥

2

Ḣ2−2α
. (3.21)

Let a := θ − r ∈ C(R+, Ḣ2−2α(R2)), then a is a solution of the following system:

∂ta + (−Δ)αa + (A · ∇)a + (A · ∇)r + (R · ∇)a = 0 in R
+ × R

2,

a(0) = a0 in R
2,

A = ∇⊥Δ−1/2a.

(S1)
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Taking a scalar product in L2(R2), we obtain

∂t‖a(t)‖2L2 + 2‖a(t)‖2Ḣα ≤ 2
∣
∣
∣
∣

∫

R2
(A · ∇)ra

∣
∣
∣
∣

≤ 2
∣
∣
∣
∣

∫

R2
div (rA)a

∣
∣
∣
∣

≤ 2‖rA‖Ḣ1−α‖a‖Ḣα .

(3.22)

Using the product law in Lemma 2.1, with s1 = 2 − 2α < 1 and s2 = α < 1,

∣
∣
∣〈(A · ∇)r, a〉L2(R2)

∣
∣
∣ ≤ C(α)‖r‖Ḣ2−2α‖A‖Ḣα‖a‖Ḣα

≤ C(α)‖r‖Ḣ2−2α‖a‖2Ḣα

≤ ‖a‖2Ḣα ,

(3.23)

then, for all t ≥ 0,

∂t‖a(t)‖2L2 + ‖a(t)‖2Ḣα ≤ 0,

‖a(t)‖2L2 +
∫ t

0
‖a(τ)‖2Ḣαdτ ≤

∥
∥
∥a0

∥
∥
∥

2

L2
,

(3.24)

then 2 − 2α = λ × 0 + (1 − λ)α, with λ := 3 − (2/α) ∈ [0, 1],

‖a(t)‖Ḣ2−2α ≤ ‖a(t)‖3−2/α
L2 ‖a(t)‖2/α−2

Ḣα

≤
∥
∥
∥a0

∥
∥
∥

3−2/α

L2
‖a(t)‖2/α−2

Ḣα .
(3.25)

Then,

∫∞

0
‖a(t)‖α/(1−α)

Ḣ2−2α dt ≤
∥
∥
∥a0

∥
∥
∥

1/(1−α)

L2
. (3.26)

Now define the set

Sε := {t ≥ 0; ‖a(t)‖Ḣ2−2α > ε} (3.27)

as a measurable with respect to the Lebesgue measure. We have

εα/(1−α)λ1(Sε) ≤
∫

Sε

‖a(t)‖α/(1−α)
Ḣ2−2α dt ≤

∥
∥
∥a0

∥
∥
∥

1/(1−α)

L2
. (3.28)
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So λ1(Sε) < ∞ and λ1(Sε) ≤ εα/(1−α)‖a0‖1/(1−α)
L2 , then there is

t0 ∈ [0, λ1(Sε) + 1] \ Sε. (3.29)

Then,

‖a(t0)‖Ḣ2−2α < ε, (3.30)

and then

‖θ(t0)‖Ḣ2−2α ≤ ‖r(t0)‖Ḣ2−2α + ‖a(t0)‖Ḣ2−2α

<
ε

2
+
ε

2
= ε.

(3.31)

Applying the conclusion of Theorem 1.1 for (Sα) system starting at θ(t0), we can
deduce the desired result.

In the nonhomogeneous case, we suppose that θ ∈ C(R+,H2−2α), then

lim
t→∞

‖θ(t)‖Ḣ2−2α = 0. (3.32)

We can suppose that ‖θ‖Ḣ2−2α < cα, and for all t ≥ 0,

‖θ(t)‖2Ḣ2−2α +
∫ t

0
‖θ(τ)‖2Ḣ2−αdτ ≤

∥
∥
∥θ0

∥
∥
∥

2

Ḣ2−2α
. (3.33)

Thus, it suffices to prove that

lim
t→∞

‖θ(t)‖L2 = 0. (3.34)

Let δ > 0, then we recall the operators

Aδ(D)θ = F−1(χB(0,δ)F(θ)
)

,

Bδ(D)θ = F−1((1 − χB(0,δ)
)F(θ)).

(3.35)

We define wδ = Aδ(D)(θ) and vδ = Bδ(D)(θ). Then,

∂twδ + (−Δ)αwδ +Aδ(D)(uθ · ∇θ) = 0, (3.36)

and from Lemma 2.2,

∂t‖wδ‖2L2 + 2‖wδ‖2Ḣα ≤ C‖θ‖Ḣ2−2α .‖θ‖Ḣα · ‖wδ‖Ḣα . (3.37)
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We deduce that

‖wδ‖2L2 ≤ ‖wδ(0)‖2L2 + C
∥
∥
∥θ0

∥
∥
∥
Ḣ2−2α

∫+∞

0
‖θ‖Ḣα‖wδ‖Ḣαdτ. (3.38)

Then from the dominate convergence theorem and the following L2 energy estimate

‖θ‖2L2 + 2
∫ t

0
‖θ‖2Ḣαdτ ≤

∥
∥
∥θ0

∥
∥
∥

2

L2
, (3.39)

we deduce that

lim
δ→ 0

Sup
t≥0

‖wδ‖L2 = 0,

∂tvδ + (−Δ)αvδ + Bδ(D)(uθ · ∇θ) = 0,
(3.40)

∂t|F(vδ)|2 + 2|ξ|2α|F(vδ)|2 ≤ |F(u · ∇θ)F(vδ)|. (3.41)

Multiplying this equation by e2t|ξ|
2α
, we have

‖vδ‖2L2 ≤ e−2tδ
2α
∥
∥
∥v0

δ

∥
∥
∥

2

L2
+ C

∫ t

0
e−2(t−τ)δ

2α
∣
∣
∣
∣

〈

u · ∇θ

vδ

〉∣
∣
∣
∣

2

L2(R2)
dτ

≤ e−2tδ
2α
∥
∥
∥v0

δ

∥
∥
∥

2

L2
+ C

∥
∥
∥θ0

∥
∥
∥
Ḣ2−2α

∫ t

0
e−2(t−τ)δ

2α‖θ‖2Ḣαdτ.

(3.42)

We set

Fδ(t) = e−2tδ
2α
∥
∥
∥v0

δ

∥
∥
∥

2

L2
+ C

∥
∥
∥θ0

∥
∥
∥
Ḣ2−2α

∫ t

0
e−2(t−τ)δ

2α‖θ‖2Ḣαdτ,

∫+∞

0
e−2tδ

2α
∥
∥
∥v0

δ

∥
∥
∥

2

L2
dt =

∥
∥θ0

∥
∥
2
L2

2δ2α
,

∫+∞

0

∫ t

0
e−2(t−τ)δ

2α‖θ‖2Ḣαdτ dt =
∫+∞

0

(∫+∞

τ

e−2(t−τ)δ
2α
dt

)

‖θ‖2Ḣαdτ

=
1

2δ2α

∫+∞

0
‖θ‖2Ḣαdt ≤

∥
∥θ0

∥
∥
2
L2

2δ2α
.

(3.43)

Then,

∫+∞

0
Fδ(t)dt ≤

∥
∥θ0

∥
∥
2
L2

δ2α
. (3.44)
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Let ε > 0, from (3.40), then there exists δ0 > 0 such that

‖wδ0‖L2 ≤ ε

2
, ∀t ≥ 0. (3.45)

Let Eδ0 = {t ≥ 0; ‖vδ0‖L2 > ε/2}, then
∫+∞

0
‖vδ0‖2L2dt ≥

∫

Eδ0

‖vδ0‖2L2dt ≥
(ε

2

)2
λ1(Eδ0), (3.46)

where λ1(Eδ0) is the Lebesgue measure of Eδ0 . If

Tε =
(
2
ε

)2 ∫+∞

0
‖vδ0‖2L2dt, (3.47)

then λ1(Eδ0) ≤ Tε. For η > 0, there exists t0 ∈ [0, Tε + η] such that t0 /∈ Eδ0 , then

‖vδ0(t0)‖L2 ≤ ε

2
. (3.48)

The equations (3.45) and (3.48) give that

‖θ(t0)‖L2 < ε. (3.49)

Thus, limt→+∞‖θ(t)‖L2 = 0, and this finishes the proof.
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