Integral Calculus

Department of Mathematics

January 16, 2019

Chapter 2: The definite Integrals

Main Contents

- Summation notation.
- Riemann sum and area.
- 3 Definite integrals.
- Main properties of definite integrals.
- The fundamental theorem of calculus.
- Numerical integration:
 - Trapezoidal rule,
 - Simpson's rule.

Summation Notation

Definition

Let $\{a_1, a_2, ..., a_n\}$ be a set of numbers. The symbol $\sum_{k=1}^n a_k$ represents their sum:

$$\sum_{k=1}^{n} a_k = a_1 + a_2 + \dots + a_n.$$

Summation Notation

Definition

Let $\{a_1, a_2, ..., a_n\}$ be a set of numbers. The symbol $\sum_{k=1}^n a_k$ represents their sum:

$$\sum_{k=1}^{n} a_k = a_1 + a_2 + \dots + a_n.$$

Example

Evaluate the sum.

- $\sum_{i=1}^{3} i^3$
- $\sum_{j=1}^{4} (j^2 + 1)$
- $\int_{k=1}^{3} (k+1)k^2$

MATH 106 January 16, 2019 3 / 43

Solution:

MATH 106 January 16, 2019 4 / 43

Solution:

Theorem

Let $\{a_1, a_2, ..., a_n\}$ and $\{b_1, b_2, ..., b_n\}$ be sets of real numbers. If n is any positive integer, then

MATH 106 January 16, 2019 4 / 43

Evaluate the sum.

- 3 $\sum_{k=1}^{3} 3(k+1)$

5 / 43

Evaluate the sum.

- $\sum_{k=1}^{10} 15$
- 3 $\sum_{k=1}^{3} 3(k+1)$

Solution:

MATH 106 January 16, 2019 5 / 43

Theorem

②
$$\sum_{k=1}^{n} k^2 = 1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$$

Example

Evaluate the sum.

$$\sum_{k=1}^{100} k$$

$$\sum_{k=1}^{10} k^2$$

$$\int_{k=1}^{10} k^3$$

Theorem

②
$$\sum_{k=1}^{n} k^2 = 1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$$

Example

Evaluate the sum.

1
$$\sum_{k=1}^{100} k$$

$$\sum_{k=1}^{10} k^2$$

$$\sum_{k=1}^{10} k^3$$

Solution:

Express the sum in terms of n.

$$\sum_{k=1}^{n} (k+1)$$

MATH 106 January 16, 2019 7 / 43

Express the sum in terms of n.

- $\sum_{k=1}^{n} (k+1)$
- $\sum_{k=1}^{n} (k^2 k 1)$

Solution:

4□ > 4□ > 4 = > 4 = > = 90

MATH 106 January 16, 2019 7 / 43

Riemann Sum and Area

Definition

A set $P = \{x_0, x_1, x_2, ..., x_n\}$ is called a partition of a closed interval [a, b] if for any positive integer n,

$$a = x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n = b.$$

A partition of the interval [a, b].

Riemann Sum and Area

Definition

A set $P = \{x_0, x_1, x_2, ..., x_n\}$ is called a partition of a closed interval [a, b] if for any positive integer n.

$$a = x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n = b.$$

A partition of the interval [a, b].

Notes:

- The division of the interval [a, b] by the partition P generates n subintervals: $[x_0, x_1], [x_1, x_2], [x_2, x_3], ..., [x_{n-1}, x_n].$
- The length of each subinterval $[x_{k-1}, x_k]$ is $\Delta x_k = x_k x_{k-1}$.
- The union of subintervals gives the whole interval [a, b].

January 16, 2019

8 / 43

The norm of the partition of P is the largest length among $\Delta x_1, \Delta x_2, \Delta x_3, ..., \Delta x_n$ i.e.,

$$\mid\mid P\mid\mid = max\{\Delta x_1, \Delta x_2, \Delta x_3, ..., \Delta x_n\}.$$

Example

If $P = \{0, 1.2, 2.3, 3.6, 4\}$ is a partition of the interval [0, 4], find the norm of the partition P.

The norm of the partition of P is the largest length among $\Delta x_1, \Delta x_2, \Delta x_3, ..., \Delta x_n$ i.e.,

$$||P||=max\{\Delta x_1,\Delta x_2,\Delta x_3,...,\Delta x_n\}.$$

Example

If $P = \{0, 1.2, 2.3, 3.6, 4\}$ is a partition of the interval [0, 4], find the norm of the partition P.

Solution:

We need to find the subintervals and their lengths.

Subinterval	Length		
$[x_{k-1},x_k]$	Δx_k		
[0, 1.2]	1.2 - 0 = 1.2		
[1.2, 2.3]	2.3 - 1.2 = 1.1		
[2.3, 3.6]	3.6 - 2.3 = 1.3		
[3.6, 4]	4 - 3.6 = 0.4		

The norm of P is the largest length among

$$\{\Delta x_1, \Delta x_2, \Delta x_3, \Delta x_4\}.$$

Hence,
$$||P|| = \Delta x_3 = 1.3$$

◆ロト ◆問 ト ◆ 差 ト ◆ 差 ・ 釣 へ ②

9 / 43

Remark

- **1** The partition P of the interval [a, b] is regular if $\Delta x_0 = \Delta x_1 = \Delta x_2 = ... = \Delta x_n = \Delta x$.
- 2 For any positive integer n, if the partition P is regular then

$$\Delta x = \frac{b-a}{n}$$
 and $x_k = x_0 + k \Delta x$.

Let P be a regular partition of the interval [a, b]. Since $x_0 = a$ and $x_n = b$, then

10 / 43

Remark

- **1** The partition P of the interval [a, b] is regular if $\Delta x_0 = \Delta x_1 = \Delta x_2 = ... = \Delta x_n = \Delta x$.
- 2 For any positive integer n, if the partition P is regular then

$$\Delta x = \frac{b-a}{n}$$
 and $x_k = x_0 + k \Delta x$.

Let P be a regular partition of the interval [a, b]. Since $x_0 = a$ and $x_n = b$, then

$$x_1 = x_0 + \Delta x$$
,
 $x_2 = x_1 + \Delta x = (x_0 + \Delta x) + \Delta x = x_0 + 2\Delta x$,
 $x_3 = x_2 + \Delta x = (x_0 + 2\Delta x) + \Delta x = x_0 + 3\Delta x$.

By continuing doing so, we have $x_k = x_0 + k \Delta x$.

A regular partition of the interval [a, b].

10 / 43

Define a regular partition P that divides the interval [1,4] into 4 subintervals.

Define a regular partition P that divides the interval [1,4] into 4 subintervals.

Solution:

Since P is a regular partition of [1,4] where n=4, then

11 / 43

Define a regular partition P that divides the interval [1,4] into 4 subintervals.

Solution:

Since P is a regular partition of [1,4] where n=4, then

$$\Delta x = \frac{4-1}{4} = \frac{3}{4} \text{ and } x_k = 1+k \frac{3}{4}.$$

11 / 43

Define a regular partition P that divides the interval [1,4] into 4 subintervals.

Solution:

Since P is a regular partition of [1,4] where n=4, then

$$\Delta x = \frac{4-1}{4} = \frac{3}{4}$$
 and $x_k = 1 + k \frac{3}{4}$.

Therefore,

$$x_0 = 1$$

 $x_1 = 1 + \frac{3}{4} = \frac{7}{4}$
 $x_2 = 1 + 2(\frac{3}{4}) = \frac{5}{2}$

$$x_3 = 1 + 3(\frac{3}{4}) = \frac{13}{4}$$

 $x_4 = 1 + 4(\frac{3}{4}) = 4$

11 / 43

Define a regular partition P that divides the interval [1,4] into 4 subintervals.

Solution:

Since P is a regular partition of [1,4] where n=4, then

$$\Delta x = \frac{4-1}{4} = \frac{3}{4}$$
 and $x_k = 1 + k \frac{3}{4}$.

Therefore,

$$x_0 = 1$$

 $x_1 = 1 + \frac{3}{4} = \frac{7}{4}$
 $x_2 = 1 + 2(\frac{3}{4}) = \frac{5}{2}$

$$x_3 = 1 + 3(\frac{3}{4}) = \frac{13}{4}$$

 $x_4 = 1 + 4(\frac{3}{4}) = 4$

The regular partition is $P = \{1, \frac{7}{4}, \frac{5}{2}, \frac{13}{4}, 4\}.$

11 / 43

Define a regular partition P that divides the interval [1,4] into 4 subintervals.

Solution:

Since P is a regular partition of [1,4] where n=4, then

$$\Delta x = \frac{4-1}{4} = \frac{3}{4}$$
 and $x_k = 1 + k \frac{3}{4}$.

Therefore,

$$x_0 = 1$$

 $x_1 = 1 + \frac{3}{4} = \frac{7}{4}$
 $x_2 = 1 + 2(\frac{3}{4}) = \frac{5}{2}$

$$x_3 = 1 + 3(\frac{3}{4}) = \frac{13}{4}$$

 $x_4 = 1 + 4(\frac{3}{4}) = 4$

The regular partition is $P = \{1, \frac{7}{4}, \frac{5}{2}, \frac{13}{4}, 4\}$.

Definition

Let f be a function defined on a closed interval [a,b] and let $P=\{x_0,x_1,...,x_n\}$ be a partition of [a,b]. Let $\omega=(\omega_1,\omega_2,...,\omega_n)$ is a mark on the partition P where $\omega_k\in[x_{k-1},x_k],\ k=1,2,3,...,n$. Then, a Riemann sum of f for P is

$$R_p = \sum_{k=1}^n f(\omega_k) \Delta x_k.$$

MATH 106 January 16, 2019

11 / 43

If f is a defined and positive function on a closed interval [a,b] and P is a partition of that interval where $\omega=(\omega_1,\omega_2,...,\omega_n)$ is a mark on the partition P, then the Riemann sum estimates the area of the region under f from x=a to x=b.

$$A = \lim_{\|P\| o 0} R_p = \lim_{\|P\| o 0} \sum_{k=1}^n f(\omega_k) \Delta x_k$$

4 D > 4 D > 4 E > 4 E > E 990

MATH 106 January 16, 2019 12 / 43

Find a Riemann sum R_p of the function f(x) = 2x - 1 for the partition $P = \{-2, 0, 1, 4, 6\}$ of the interval [-2, 6] by choosing the mark,

- 1 the left-hand endpoint,
- 2 the right-hand endpoint,
- the midpoint.

13 / 43

Find a Riemann sum R_p of the function f(x) = 2x - 1 for the partition $P = \{-2, 0, 1, 4, 6\}$ of the interval [-2, 6] by choosing the mark,

- 1 the left-hand endpoint,
- 2 the right-hand endpoint,
- 3 the midpoint.

Solution:

1) Choose the left-hand endpoint of each subinterval.

Subintervals	Length Δx_k	ω_k	$f(\omega_k)$	$f(\omega_k) \Delta x_k$
[-2, 0]	0-(-2)=2	-2	-5	-10
[0, 1]	1 - 0 = 1	0	-1	-1
[1, 4]	4 - 1 = 3	1	1	3
[4, 6]	6 - 4 = 2	4	7	14
F	6			

13 / 43

2) Choose the right-hand endpoint of each subinterval.

Subintervals	Length Δx_k	ω_k	$f(\omega_k)$	$f(\omega_k) \Delta x_k$
[-2, 0]	0 - (-2) = 2	0	-1	-2
[0, 1]	1 - 0 = 1	1	1	1 1
[1, 4]	4 - 1 = 3	4	7	21
[4, 6]	6 - 4 = 2	6	11	22
R	42			

MATH 106 January 16, 2019 14 / 43

¹The midpoint of the subinterval $[x_{k-1}, x_k]$ is $\omega_k = \frac{x_{k-1} + x_k}{2}$.

2) Choose the right-hand endpoint of each subinterval.

Subintervals	Length Δx_k	ω_k	$f(\omega_k)$	$f(\omega_k) \Delta x_k$
[-2, 0]	0-(-2)=2	0	-1	-2
[0, 1]	1 - 0 = 1	1	1	1
[1, 4]	4 - 1 = 3	4	7	21
[4, 6]	6 - 4 = 2	6	11	22
R	42			

3) Choose the midpoint of each subinterval. 1

Subintervals	Length Δx_k	ω_k	$f(\omega_k)$	$f(\omega_k) \Delta x_k$
[-2, 0]	0-(-2)=2	-1	-3	-6
[0, 1]	1 - 0 = 1	0.5	0	0
[1, 4]	4 - 1 = 3	2.5	4	12
[4, 6]	6 - 4 = 2	5	9	18
F	24			

MATH 106 January 16, 2019 14 / 4

¹The midpoint of the subinterval $[x_{k-1}, x_k]$ is $\omega_k = \frac{x_{k-1} + x_k}{2^{-1}}$.

Let A be the area under the graph of f(x) = x + 1 from x = 1 to x = 3. Find the area A by taking the limit of the Riemann sum such that the partition P is regular and the mark ω is the right-hand endpoint of each subinterval.

15 / 43

Let A be the area under the graph of f(x)=x+1 from x=1 to x=3. Find the area A by taking the limit of the Riemann sum such that the partition P is regular and the mark ω is the right-hand endpoint of each subinterval.

Solution:

For a regular partition P, we have

- **1** $\Delta x = \frac{b-a}{n} = \frac{3-1}{n} = \frac{2}{n}$, and
- 2 $x_k = x_0 + k \Delta x$ where $x_0 = 1$.

15 / 43

Let A be the area under the graph of f(x)=x+1 from x=1 to x=3. Find the area A by taking the limit of the Riemann sum such that the partition P is regular and the mark ω is the right-hand endpoint of each subinterval.

Solution:

For a regular partition P, we have

- **1** $\Delta x = \frac{b-a}{n} = \frac{3-1}{n} = \frac{2}{n}$, and
- ② $x_k = x_0 + k \Delta x$ where $x_0 = 1$.

Since the mark ω is the right endpoint of each subinterval, then $\omega_k=x_k=1+\frac{2k}{n}.$ Therefore,

$$f(\omega_k) = (1 + \frac{2k}{n}) + 1 = \frac{2k}{n} + 2 = \frac{2}{n}(n+k).$$

MATH 106 January 16, 2019 15 / 43

Let A be the area under the graph of f(x)=x+1 from x=1 to x=3. Find the area A by taking the limit of the Riemann sum such that the partition P is regular and the mark ω is the right-hand endpoint of each subinterval.

Solution:

For a regular partition P, we have

1
$$\Delta x = \frac{b-a}{n} = \frac{3-1}{n} = \frac{2}{n}$$
, and

2
$$x_k = x_0 + k \Delta x$$
 where $x_0 = 1$.

Since the mark ω is the right endpoint of each subinterval, then $\omega_k=x_k=1+\frac{2k}{n}.$ Therefore,

$$f(\omega_k) = (1 + \frac{2k}{n}) + 1 = \frac{2k}{n} + 2 = \frac{2}{n}(n+k).$$

From the definition,

$$R_{p} = \sum_{k=1}^{n} f(\omega_{k}) \Delta x_{k} = \frac{4}{n^{2}} \sum_{k=1}^{n} (n+k)$$

$$= \frac{4}{n^{2}} \left[n^{2} + \frac{n(n+1)}{2} \right]$$

$$= 4 + \frac{2(n+1)}{n}.$$
Hence the P₀ = 4 + 2 = 6

(1)
$$\sum_{k=1}^{n} (n+k) = \sum_{k=1}^{n} n + \sum_{k=1}^{n} k$$

(2)
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Hence, $\lim_{n \to \infty} R_p = 4 + 2 = 6$.

MATH 106 January 16, 2019 15 / 43

Let f be a defined function on a closed interval [a,b] and let P be a partition of [a,b]. The definite integral of f on [a,b] is

$$\int_a^b f(x) \ dx = \lim_{\|P\| \to 0} \sum_k f(\omega_k) \Delta x_k$$

if the limit exists. The numbers a and b are called the limits of the integration.

16 / 43

Let f be a defined function on a closed interval [a,b] and let P be a partition of [a,b]. The definite integral of f on [a,b] is

$$\int_a^b f(x) \ dx = \lim_{\|P\| \to 0} \sum_k f(\omega_k) \Delta x_k$$

if the limit exists. The numbers a and b are called the limits of the integration.

Example

Evaluate the integral $\int_{2}^{4} (x+2) dx$.

16 / 43

Let f be a defined function on a closed interval [a,b] and let P be a partition of [a,b]. The definite integral of f on [a,b] is

$$\int_a^b f(x) \ dx = \lim_{\|P\| \to 0} \sum_k f(\omega_k) \Delta x_k$$

if the limit exists. The numbers a and b are called the limits of the integration.

Example

Evaluate the integral $\int_{2}^{4} (x+2) dx$.

Solution: Let $P=\{x_0,x_1,...,x_n\}$ be a regular partition of the interval [2,4], then $\Delta x=\frac{4-2}{n}=\frac{2}{n}$ and $x_k=x_0+\Delta x$.

16 / 43

Definition

Let f be a defined function on a closed interval [a,b] and let P be a partition of [a,b]. The definite integral of f on [a,b] is

$$\int_a^b f(x) \ dx = \lim_{\|P\| \to 0} \sum_k f(\omega_k) \Delta x_k$$

if the limit exists. The numbers a and b are called the limits of the integration.

Example

Evaluate the integral $\int_{2}^{4} (x+2) dx$.

Solution: Let $P = \{x_0, x_1, ..., x_n\}$ be a regular partition of the interval [2, 4], then $\Delta x = \frac{4-2}{n} = \frac{2}{n}$ and $x_k = x_0 + \Delta x$.

Let the mark ω be the right endpoint of each subinterval, so $\omega_k = x_k = 2 + \frac{2k}{n}$ and then $f(\omega_k) = \frac{2}{n}(2n + k)$.

16 / 43

Definition

Let f be a defined function on a closed interval [a,b] and let P be a partition of [a,b]. The definite integral of f on [a,b] is

$$\int_a^b f(x) \ dx = \lim_{\|P\| \to 0} \sum_k f(\omega_k) \Delta x_k$$

if the limit exists. The numbers a and b are called the limits of the integration.

Example

Evaluate the integral $\int_{2}^{4} (x+2) dx$.

Solution: Let $P = \{x_0, x_1, ..., x_n\}$ be a regular partition of the interval [2, 4], then $\Delta x = \frac{4-2}{2} = \frac{2}{3}$ and $x_k = x_0 + \Delta x$.

Let the mark ω be the right endpoint of each subinterval, so $\omega_k = x_k = 2 + \frac{2k}{n}$ and then $f(\omega_k) = \frac{2}{n}(2n+k)$.

The Riemann sum of f for P is

$$R_p = \sum_k f(\omega_k) \Delta x_k = \frac{4}{n^2} \sum_k (2n+k) = \frac{4}{n^2} \left(2n^2 + \frac{n(n+1)}{2} \right) = 8 + \frac{2(n+1)}{n}.$$

MATH 106 January 16, 2019 16 / 43

Definition

Let f be a defined function on a closed interval [a, b] and let P be a partition of [a, b]. The definite integral of f on [a, b] is

$$\int_{a}^{b} f(x) dx = \lim_{\|P\| \to 0} \sum_{k} f(\omega_{k}) \Delta x_{k}$$

if the limit exists. The numbers a and b are called the limits of the integration.

Example

Evaluate the integral $\int_{0}^{4} (x+2) dx$.

Solution: Let $P = \{x_0, x_1, ..., x_n\}$ be a regular partition of the interval [2, 4], then $\Delta x = \frac{4-2}{2} = \frac{2}{2}$ and $x_k = x_0 + \Delta x$.

Let the mark ω be the right endpoint of each subinterval, so $\omega_k = x_k = 2 + \frac{2k}{n}$ and then $f(\omega_k) = \frac{2}{n}(2n+k).$

The Riemann sum of f for P is

$$R_p = \sum_k f(\omega_k) \Delta x_k = \frac{4}{n^2} \sum_k (2n+k) = \frac{4}{n^2} \left(2n^2 + \frac{n(n+1)}{2} \right) = 8 + \frac{2(n+1)}{n}.$$

From the definition, $\int_{2}^{4} (x+2) dx = \lim_{n \to \infty} R_p = 8 + \lim_{n \to \infty} \frac{2n(n+1)}{n^2} = 8 + 2 = 10.$ January 16, 2019

16 / 43

Properties of Definite Integrals

Theorem

- $1) \int_a^b c \ dx = c(b-a),$
- 2) $\int_a^a f(x) dx = 0$ if f(a) exists.
- 3) Linearity of Definite Integrals:
 - If f and g are integrable on [a,b], then f+g and f-g are integrable on [a,b] and

$$\int_a^b \left(f(x) \pm g(x) \right) \ dx = \int_a^b f(x) \pm \int_a^b g(x) \ dx.$$

• If f is integrable on [a,b] and $k \in \mathbb{R}$, then k f is integrable on [a,b] and

$$\int_a^b k \ f(x) \ dx = k \ \int_a^b f(x) \ dx.$$

Theorem

- 4) Comparison of Definite Integrals:
 - If f and g are integrable on [a,b] and $f(x) \ge g(x)$ for all $x \in [a,b]$, then

$$\int_a^b f(x) \ dx \ge \int_a^b g(x) \ dx.$$

• If f is integrable on [a, b] and $f(x) \ge 0$ for all $x \in [a, b]$, then

$$\int_a^b f(x) \ dx \ge 0.$$

5) Additive Interval of Definite Integrals: If f is integrable on the intervals [a, c] and [c, b], then f is integrable on [a, b] and

$$\int_a^b f(x) \ dx = \int_a^c f(x) \ dx + \int_c^b f(x) \ dx.$$

6) Reversed Interval of Definite Integrals: If f is integrable on [a, b], then

$$\int_a^b f(x) \ dx = -\int_b^a f(x) \ dx.$$

MATH 106 January 16

Evaluate the integral.

1
$$\int_0^2 3 \ dx$$

19 / 43

Evaluate the integral.

1
$$\int_{0}^{2} 3 dx$$

Solution:

19 / 43

Evaluate the integral.

1
$$\int_0^2 3 \ dx$$

Solution:

Example

If
$$\int_a^b f(x) \ dx = 4$$
 and $\int_a^b g(x) \ dx = 2$, then find $\int_a^b \left(3f(x) - \frac{g(x)}{2}\right) \ dx$.

Evaluate the integral.

1
$$\int_{0}^{2} 3 \ dx$$

2
$$\int_{2}^{2} (x^2 + 4) dx$$

Solution:

Example

If
$$\int_a^b f(x) \ dx = 4$$
 and $\int_a^b g(x) \ dx = 2$, then find $\int_a^b \left(3f(x) - \frac{g(x)}{2}\right) \ dx$.

Solution:

$$\int_{a}^{b} \left(3f(x) - \frac{g(x)}{2} \right) dx = 3 \int_{a}^{b} f(x) dx - \frac{1}{2} \int_{a}^{b} g(x) dx = 3(4) - \frac{1}{2}(2) = 11.$$

MATH 106 January 16, 2019 19 / 43

Prove that $\int_0^2 (x^3 + x^2 + 2) dx \ge \int_0^2 (x^2 + 1) dx$ without evaluating the integrals.

20 / 43

Prove that $\int_0^2 (x^3 + x^2 + 2) dx \ge \int_0^2 (x^2 + 1) dx$ without evaluating the integrals.

Solution: Let $f(x) = x^3 + x^2 + 2$ and $g(x) = x^2 + 1$. We can find that $f(x) - g(x) = x^3 + 1 > 0$ for all $x \in [0, 2]$. This implies that f(x) > g(x).

20 / 43

Prove that $\int_0^2 (x^3 + x^2 + 2) dx \ge \int_0^2 (x^2 + 1) dx$ without evaluating the integrals.

Solution: Let $f(x) = x^3 + x^2 + 2$ and $g(x) = x^2 + 1$. We can find that $f(x) - g(x) = x^3 + 1 > 0$ for all $x \in [0, 2]$. This implies that f(x) > g(x). From the theorem, we have

$$\int_0^2 (x^3 + x^2 + 2) \ dx \ge \int_0^2 (x^2 + 1) \ dx.$$

20 / 43

The Fundamental Theorem of Calculus

Theorem

Suppose that f is continuous on the closed interval [a,b].

- ① If $F(x) = \int_a^x f(t) dt$ for every $x \in [a, b]$, then F(x) is an antiderivative of f on [a, b].
- ② If F(x) is any antiderivative of f on [a,b], then $\int_a^b f(x) dx = F(b) F(a)$.

The Fundamental Theorem of Calculus

Theorem

Suppose that f is continuous on the closed interval [a,b].

- ① If $F(x) = \int_a^x f(t) dt$ for every $x \in [a, b]$, then F(x) is an antiderivative of f on [a, b].
- 2 If F(x) is any antiderivative of f on [a,b], then $\int_a^b f(x) dx = F(b) F(a)$.

Corollary

If F is an antiderivative of f, then

$$\int_{a}^{b} f(x) \ dx = \left[F(x) \right]_{a}^{b} = F(b) - F(a).$$

Notes:

■ From the previous corollary, a definite integral $\int_{a}^{b} f(x) dx$ is evaluated by two steps:

Step 1: Find an antiderivative F of the integrand,

Step 2: Evaluate the antiderivative F at upper and lower limits by substituting x = b and x = a (evaluate at lower limit) into F, then subtracting the latter from the former i.e., calculate F(b) - F(a).

MATH 106 January 16, 2019 22 / 43

Notes:

■ From the previous corollary, a definite integral $\int_{a}^{b} f(x) dx$ is evaluated by two steps:

Step 1: Find an antiderivative F of the integrand,

Step 2: Evaluate the antiderivative F at upper and lower limits by substituting x = band x = a (evaluate at lower limit) into F, then subtracting the latter from the former i.e., calculate F(b) - F(a).

■ When using substitution to evaluate the definite integral $\int_{-b}^{b} f(x) dx$, we have two options:

Option 1: Change the limits of integration to the new variable. For example,

 $\int_0^1 2x\sqrt{x^2+1}\ dx$. Let $u=x^2+1$, this implies $du=2x\ dx$. Change the limits u(0)=1 and u(1)=2. By substitution, we have $\int_1^2 u^{1/2}\ du$. Then, evaluate the integral without returning to the original variable.

Option 2: Leave the limits in terms of the original variable. Evaluate the integral, then return to the original variable. After that, substitute x = b and x = a into the antiderivative as in step 2 above.

MATH 106 January 16, 2019 22 / 43

Evaluate the integral.

23 / 43

Evaluate the integral.

1
$$\int_{-1}^{2} (2x+1) dx$$

2
$$\int_0^3 (x^2 + 1) dx$$

$$\int_{\frac{\pi}{4}}^{\pi} (\sec^2 x - 4) \ dx$$

Solution:

1)
$$\int_{-1}^{2} (2x+1) dx = \left[x^2 + x\right]_{-1}^{2} = (4+2) - ((-1)^2 + (-1)) = 6 - 0 = 6.$$

2)
$$\int_{0}^{3} (x^{2} + 1) dx = \left[\frac{x^{3}}{3} + x\right]_{0}^{3} = \left(\frac{27}{3} + 3\right) - 0 = 12.$$

3)
$$\int_{1}^{2} \frac{1}{\sqrt{x^3}} dx = \left[\frac{-2}{\sqrt{x}} \right]_{1}^{2} = \frac{-2}{\sqrt{2}} - (-2) = \frac{-2 + 2\sqrt{2}}{\sqrt{2}} = -\sqrt{2} + 2.$$

4)
$$\int_0^{\frac{\pi}{2}} (\sin x + 1) \ dx = \left[-\cos x + x \right]_0^{\frac{\pi}{2}} = (-\cos \frac{\pi}{2} + \frac{\pi}{2}) - (-\cos 0 + 0) = \frac{\pi}{2} + 1.$$

MATH 106 January 16, 2019 23 / 43

5)
$$\int_{\frac{\pi}{4}}^{\pi} (\sec^2 x - 4) \ dx = \left[\tan x - 4x \right]_{\frac{\pi}{4}}^{\pi} = \left(\tan \pi - 4\pi \right) - \left(\tan \frac{\pi}{4} - 4\frac{\pi}{4} \right) = -4\pi - (1 - \pi) = -3\pi - 1.$$
6)
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} (\cos x \tan x + x) \ dx = \left[\cos x + \frac{x^2}{3} \right]_{\frac{\pi}{3}}^{\frac{\pi}{3}} = \left(\cos \frac{\pi}{4} + \frac{(\frac{\pi}{3})^2}{3} \right) = \left(\cos \frac{\pi}{4} + \frac{(\frac{\pi}{3})^2}{3} \right)$$

6)
$$\int_0^{\frac{\pi}{3}} (\sec x \tan x + x) dx = \left[\sec x + \frac{x^2}{2} \right]_0^{\frac{\pi}{3}} = \left(\sec \frac{\pi}{3} + \frac{(\frac{\pi}{3})^2}{2} \right) - \left(\sec 0 + \frac{0}{2} \right) = 2 + \frac{\pi^2}{12} - 1 = 1 + \frac{\pi^2}{12}.$$

MATH 106 January 16, 2019 24 / 43

5)
$$\int_{\frac{\pi}{4}}^{\pi} (\sec^2 x - 4) \ dx = \left[\tan x - 4x \right]_{\frac{\pi}{4}}^{\pi} = \left(\tan \pi - 4\pi \right) - \left(\tan \frac{\pi}{4} - 4\frac{\pi}{4} \right) = -4\pi - (1 - \pi) = -3\pi - 1.$$

6)
$$\int_0^{\frac{\pi}{3}} (\sec x \tan x + x) dx = \left[\sec x + \frac{x^2}{2} \right]_0^{\frac{\pi}{3}} = \left(\sec \frac{\pi}{3} + \frac{(\frac{\pi}{3})^2}{2} \right) - \left(\sec 0 + \frac{0}{2} \right) = 2 + \frac{\pi^2}{12} - 1 = 1 + \frac{\pi^2}{12}.$$

If
$$f(x) = \begin{cases} x^2 & : x < 0 \\ x^3 & : x \ge 0 \end{cases}$$
, find $\int_{-1}^2 f(x) \ dx$.

MATH 106 January 16, 2019 24

5)
$$\int_{\frac{\pi}{4}}^{\pi} (\sec^2 x - 4) \ dx = \left[\tan x - 4x \right]_{\frac{\pi}{4}}^{\pi} = (\tan \pi - 4\pi) - (\tan \frac{\pi}{4} - 4\frac{\pi}{4}) = -4\pi - (1 - \pi) = -3\pi - 1.$$

6)
$$\int_0^{\frac{\pi}{3}} (\sec x \tan x + x) dx = \left[\sec x + \frac{x^2}{2} \right]_0^{\frac{\pi}{3}} = \left(\sec \frac{\pi}{3} + \frac{(\frac{\pi}{3})^2}{2} \right) - \left(\sec 0 + \frac{0}{2} \right) = 2 + \frac{\pi^2}{12} - 1 = 1 + \frac{\pi^2}{12}.$$

If
$$f(x) = \begin{cases} x^2 & : x < 0 \\ x^3 & : x \ge 0 \end{cases}$$
, find $\int_{-1}^2 f(x) \ dx$.

Solution:

The definition of the function f changes at 0. Since $[-1,2]=[-1,0]\cup[0,2]$, then from the theorem,

$$\int_{-1}^{2} f(x) dx = \int_{-1}^{0} f(x) dx + \int_{0}^{2} f(x) dx$$

$$= \int_{-1}^{0} x^{2} dx + \int_{0}^{2} x^{3} dx$$

$$= \left[\frac{x^{3}}{3} \right]_{-1}^{0} + \left[\frac{x^{4}}{4} \right]_{0}^{2}$$

$$= \frac{1}{3} + \frac{16}{4} = \frac{13}{3}.$$

MATH 106 January 16, 2019 24 / 43

Evaluate the integral $\int_0^2 |x-1| dx$.

MATH 106

Evaluate the integral $\int_0^2 |x-1| dx$.

Solution:

$$|x-1| = \begin{cases} -(x-1) & : x < 1 \\ x-1 & : x \ge 1 \end{cases}$$

25 / 43

Evaluate the integral $\int_0^2 |x-1| dx$.

Solution:

$$|x-1| = \begin{cases} -(x-1) & : x < 1 \\ x-1 & : x \ge 1 \end{cases}$$

Since $[0,2] = [0,1] \cup [1,2]$, then from the theorem,

$$\int_{0}^{2} |x - 1| dx = \int_{0}^{1} (-x + 1) dx + \int_{1}^{2} (x - 1) dx$$
$$= \left[\frac{-x^{2}}{2} + x \right]_{0}^{1} + \left[\frac{x^{2}}{2} - x \right]_{1}^{2}$$
$$= \left(\frac{1}{2} - 0 \right) + \left(0 + \frac{1}{2} \right) = 1.$$

MATH 106 January 16, 2019 25 / 43

Evaluate the integral $\int_0^2 |x-1| dx$.

Solution:

$$|x-1| = \begin{cases} -(x-1) & : x < 1 \\ x-1 & : x \ge 1 \end{cases}$$

Since $[0,2] = [0,1] \cup [1,2]$, then from the theorem,

$$\int_{0}^{2} |x - 1| dx = \int_{0}^{1} (-x + 1) dx + \int_{1}^{2} (x - 1) dx$$
$$= \left[\frac{-x^{2}}{2} + x \right]_{0}^{1} + \left[\frac{x^{2}}{2} - x \right]_{1}^{2}$$
$$= \left(\frac{1}{2} - 0 \right) + \left(0 + \frac{1}{2} \right) = 1.$$

Mean Value Theorem for Integrals

Theorem

If f is continuous on a closed interval [a,b], then there is at least a number $z \in (a,b)$ such that

$$\int_{a}^{b} f(x) \ dx = f(z)(b-a).$$

MATH 106 January 16, 2019

25 / 43

Find a number z that satisfies the conclusion of the Mean Value Theorem for the function f on the given interval.

2
$$f(x) = \sqrt[3]{x}$$
, [0,1]

26 / 43

Find a number z that satisfies the conclusion of the Mean Value Theorem for the function f on the given interval.

- 2 $f(x) = \sqrt[3]{x}$, [0,1]

Solution:

(1) From the theorem,

$$\int_0^2 (1+x^2) dx = (2-0)f(z)$$
$$\left[x + \frac{x^3}{3}\right]_0^2 = 2(1+z^2)$$
$$\frac{14}{3} = 2(1+z^2)$$
$$\frac{7}{3} = 1+z^2$$

This implies $z^2 = \frac{4}{3}$, then $z = \pm \frac{2}{\sqrt{3}}$. However, $-\frac{2}{\sqrt{3}} \notin (0,2)$, so $z = \frac{2}{\sqrt{3}} \in (0,2)$.

(ロ) (部) (差) (差) 差 り(で)

MATH 106 January 16, 2019 26 / 43

(2) From the theorem,

$$\int_{0}^{1} \sqrt[3]{x} \, dx = (1 - 0)f(z)$$
$$\frac{3}{4} \left[x^{\frac{4}{3}} \right]_{0}^{1} = \sqrt[3]{z}$$

This implies $z = \frac{27}{64} \in (0, 1)$.

27 / 43

(2) From the theorem,

$$\int_{0}^{1} \sqrt[3]{x} \, dx = (1 - 0)f(z)$$
$$\frac{3}{4} \left[x^{\frac{4}{3}} \right]_{0}^{1} = \sqrt[3]{z}$$

This implies $z = \frac{27}{64} \in (0,1)$.

Definition

If f is continuous on the interval [a,b], then the average value f_{av} of f on [a,b] is

$$f_{av} = \frac{1}{b-a} \int_a^b f(x) \ dx.$$

MATH 106 January 16, 2019 27 / 43

(2) From the theorem,

$$\int_0^1 \sqrt[3]{x} \, dx = (1 - 0)f(z)$$
$$\frac{3}{4} \left[x^{\frac{4}{3}} \right]_0^1 = \sqrt[3]{z}$$

This implies $z = \frac{27}{64} \in (0, 1)$.

Definition

If f is continuous on the interval [a,b], then the average value f_{av} of f on [a,b] is

$$f_{av} = \frac{1}{b-a} \int_a^b f(x) \ dx.$$

Example

Find the average value of the function f on the given interval.

1
$$f(x) = x^3 + x - 1$$
, [0, 2]

2
$$f(x) = \sqrt{x}$$
, [1,3]

MATH 106 January 16, 2019 27 / 43

Solution:

MATH 106 January 16, 2019 28 / 43

Solution:

- $f_{av} = \frac{1}{3-1} \int_{1}^{3} \sqrt{x} \ dx = \frac{1}{2} \frac{2}{3} \left[x^{\frac{3}{2}} \right]_{1}^{3} = \frac{3\sqrt{3}-1}{3}.$

28 / 43

Solution:

2
$$f_{av} = \frac{1}{3-1} \int_{1}^{3} \sqrt{x} \ dx = \frac{1}{2} \frac{2}{3} \left[x^{\frac{3}{2}} \right]_{1}^{3} = \frac{3\sqrt{3}-1}{3}.$$

From the Fundamental Theorem, if f is continuous on [a,b] and $F(x)=\int_c^x f(t)\ dt$ where $c\in[a,b]$, then

$$\frac{d}{dx}\int_{a}^{x}f(t)\ dt=\frac{d}{dx}\Big[F(x)-F(a)\Big]=f(x)\ \forall x\in[a,b].$$

This result can be generalized as follows:

MATH 106 January 16, 2019 28 / 43

Theorem

Let f be continuous on [a,b]. If g and h are in the domain of f and differentiable, then

$$\frac{d}{dx}\int_{g(x)}^{h(x)}f(t)\ dt=f(h(x))h'(x)-f(g(x))g'(x)\ \forall x\in[a,b].$$

Theorem

Let f be continuous on [a,b]. If g and h are in the domain of f and differentiable, then

$$\frac{d}{dx}\int_{g(x)}^{h(x)}f(t)\ dt=f(h(x))h'(x)-f(g(x))g'(x)\ \ \forall x\in [a,b].$$

Corollary

Let f be continuous on [a,b]. If g and h are in the domain of f and differentiable, then

Find the derivative.

2
$$\frac{d}{dx} \int_{1}^{x^2} \frac{1}{t^3 + 1} dt$$

30 / 43

Find the derivative.

$$\frac{d}{dx} \int_{1}^{x^2} \frac{1}{t^3 + 1} dt$$

3
$$\frac{d}{dx} \int_{\cos x}^{\sin x} \sqrt{1+t^4} dt$$

Solution:

1)
$$\frac{d}{dx} \int_{1}^{x} \sqrt{\cos t} \ dt = \sqrt{\cos x} \ (1) = \sqrt{\cos x}.$$

2)
$$\frac{d}{dx} \int_{1}^{x^2} \frac{1}{t^3 + 1} dt = \frac{1}{(x^2)^3 + 1} (2x) = \frac{2x}{x^6 + 1}$$
.

3)
$$\frac{d}{dx}(x\int_{x}^{x^2}(t^3-1) dt) = \int_{x}^{x^2}(t^3-1) dt + x(2x(x^6-1)-(x^3-1))$$

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

30 / 43

4)
$$\frac{d}{dx} \int_{x+1}^{3} \sqrt{t+1} dt = 0 - \sqrt{(x+1)+1} = -\sqrt{x+2}$$
.

5)
$$\frac{d}{dx} \int_{1}^{\sin x} \frac{1}{1 - t^2} dt = \frac{1}{1 - \sin^2 x} \cos x = \frac{\cos x}{\cos^2 x} = \sec x.$$

6)
$$\frac{d}{dx} \int_{-x}^{x} \cos(t^2 + 1) dt = \cos(x^2 + 1) + \cos(x^2 + 1) = 2\cos(x^2 + 1).$$

7)
$$\frac{d}{dx} \int_{-x}^{x^2} \frac{1}{t^2 + 1} dt = \frac{2x}{x^4 + 1} + \frac{1}{x^2 + 1}$$
.

8)
$$\frac{d}{dx} \int_{\cos x}^{\sin x} \sqrt{1 + t^4} dt = \sqrt{1 + \sin^4 x} \cos x + \sqrt{1 + \cos^4 x} \sin x$$
.

If
$$F(x) = (x^2 - 2) \int_2^x (t + 3F'(t)) dt$$
, find $F'(2)$.

32 / 43

If
$$F(x) = (x^2 - 2) \int_2^x (t + 3F'(t)) dt$$
, find $F'(2)$.

Solution:

$$F'(x) = 2x \int_{2}^{x} (t + 3F'(t)) dt + (x^{2} - 2)(x + 3F'(x))$$

Letting x = 2 gives

$$F'(2) = 4 \int_{2}^{2} (t + 3F'(t)) dt + (4 - 2)(2 + 3F'(2))$$

$$\Rightarrow F'(2) = 2(2 + 3F'(2)).$$

Hence,
$$-5F'(2) = 4 \Rightarrow F'(2) = -\frac{4}{5}$$
.

MATH 106 January 16, 2019 32 / 43

Numerical Integration

Assume P is a regular partition of [a,b]. We divide the interval [a,b] by the partition P into n subintervals : $[x_0,x_1],[x_1,x_2],[x_2,x_3],...,[x_{n-1},x_n]$. Then, we find the length of the subintervals: $\Delta x_k = \frac{b-a}{n}$. Using Riemann sum, we have

$$\int_a^b f(x) \ dx \approx \sum_{k=1}^n f(\omega_k) \Delta x_k = \frac{b-a}{n} \sum_{k=1}^n f(\omega_k) \ ,$$

where $\omega = (\omega_1, \omega_2, ..., \omega_n)$ is a mark on the partition P.

Figure: Approximation of a definite integral by using the trapezoidal rule.

MATH 106 January 16, 2019 33 / 43

As shown in the figure, we take the mark as follows:

1 The left-hand endpoint. We choose $\omega_k = x_{k-1}$ in each subinterval. Then,

$$\int_a^b f(x) \ dx \approx \frac{b-a}{n} \sum_{k=1}^n f(x_{k-1}).$$

② The right-hand endpoint. We choose $\omega_k = x_k$ in each subinterval. Then,

$$\int_a^b f(x) \ dx \approx \frac{b-a}{n} \sum_{k=1}^n f(x_k).$$

The average of the previous two approximations is more accurate,

$$\frac{b-a}{2n} \Big[\sum_{k=1}^{n} f(x_{k-1}) + \sum_{k=1}^{n} f(x_k) \Big].$$

Trapezoidal Rule

Let f be continuous on [a, b]. If $P = \{x_0, x_1, ..., x_n\}$ is a regular partition of [a, b], then

$$\int_a^b f(x) \ dx \approx \frac{b-a}{2n} \Big[f(x_0) + 2f(x_1) + 2f(x_2) + ... + 2f(x_{n-1}) + f(x_n) \Big].$$

Error Estimation

Theorem

Suppose that f'' is continuous on [a,b] and M is the maximum value for f'' over [a,b]. If E_T is the error in calculating $\int_a^b f(x) dx$ under the trapezoidal rule, then

$$\mid E_{T} \mid \leq \frac{M(b-a)^{3}}{12 n^{2}}.$$

35 / 43

By using the trapezoidal rule with n=4, approximate the integral $\int_1^2 \frac{1}{x} dx$. Then, estimate the error.

Solution:

- 1) We approximate the integral $\int_{1}^{2} \frac{1}{x} dx$ by the trapezoidal rule.
- a) Find a regular partition $P = \{x_0, x_1, x_2, ..., x_n\}$ where $\Delta x = \frac{(b-a)}{n}$ and $x_k = x_0 + k\Delta x$. We divide the interval [1, 2] into four subintervals where the length of each subinterval is $\Delta x = \frac{2-1}{4} = \frac{1}{4}$ as follows:

$$x_0 = 1$$

 $x_1 = 1 + \frac{1}{4} = 1\frac{1}{4}$
 $x_2 = 1 + 2(\frac{1}{4}) = 1\frac{1}{2}$

$$x_3 = 1 + 3(\frac{1}{4}) = 1\frac{3}{4}$$

 $x_4 = 1 + 4(\frac{1}{4}) = 2$

The partition is $P = \{1, 1.25, 1.5, 1.75, 2\}.$

36 / 43

b) Approximate the integral by using the following table:

k	X _k	$f(x_k)$	m_k	$m_k f(x_k)$
0	1	1	1	1
1	1.25	0.8	2	1.6
2	1.5	0.6667	2	1.3334
3	1.75	0.5714	2	1.1428
4	2	0.5	1	0.5
$Sum = \sum_{k=1}^4 m_k f(x_k)$				5.5762

Hence,

$$\int_{1}^{2} \frac{1}{x} dx \approx \frac{1}{8} [5.5762] = 0.697.$$

b) Approximate the integral by using the following table:

k	x_k	$f(x_k)$	m_k	$m_k f(x_k)$
0	1	1	1	1
1	1.25	0.8	2	1.6
2	1.5	0.6667	2	1.3334
3	1.75	0.5714	2	1.1428
4	2	0.5	1	0.5
$Sum = \sum_{k=1}^4 m_k f(x_k)$				5.5762

Hence,

$$\int_{1}^{2} \frac{1}{x} dx \approx \frac{1}{8} [5.5762] = 0.697.$$

2) We estimate the error by using the theorem:

$$f(x) = \frac{1}{x} \Rightarrow f'(x) = \frac{-1}{x^2} \Rightarrow f''(x) = \frac{2}{x^3} \Rightarrow f'''(x) = -\frac{6}{x^4}.$$

Since f''(x) is a decreasing function on the interval [1,2], then f''(x) is maximized at x=1. Hence, M=|f''(1)|=2 and $|E_T|\leq \frac{2(2-1)^3}{12(4)^2}=\frac{1}{96}=0.0104$.

4 U P 4 UP P 4 E P 4 E P 7 C P

MATH 106 January 16, 2019 37 / 43

Simpson's Rule

Figure: Approximation of a definite integral by using Simpson's rule.

First, let P be a regular partition of the interval [a,b] to generate n subintervals such that $|P| = \frac{(b-a)}{n}$ and n is an even number.

MATH 106 January 16, 2019 38 / 43

Take three points lying on the parabola as shown in the next figure. Assume for simplicity that $x_0 = -h$, $x_1 = 0$ and $x_2 = h$. Since the equation of a parabola is

$$y = ax^2 + bx + c$$

, then from the figure, the area under the graph bounded by $\left[-h,h\right]$ is

$$\int_{-h}^{h} (ax^2 + bx + c) dx = \frac{h}{3} (2ah^2 + 6c).$$

Thus, since the points P_0 , P_1 and P_2 lie on the parabola, then

$$y_0 = ah^2 - bh + c$$

$$y_1 = c$$

$$y_2 = ah^2 + bh + c.$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めらぐ

39 / 43

Some computations lead to $2ah^2 + 6c = y_0 + 4y_1 + y_2$. Therefore,

$$\int_{-h}^{h} (ax^2 + bx + c) \ dx = \frac{h}{3} (y_0 + 4y_1 + y_2) = \frac{h}{3} (f(x_0) + 4f(x_1) + f(x_2)).$$

Generally, for any three points P_{k-1} , P_k and P_{k+1} , we have

$$\frac{h}{3}(y_{k-1}+4y_k+y_{k+1})=\frac{h}{3}(f(x_{k-1})+4f(x_k)+f(x_{k+1})).$$

By summing the areas of all parabolas, we have

$$\int_{a}^{b} f(x) dx = \frac{h}{3} (f(x_{0}) + 4f(x_{1}) + f(x_{2}))$$

$$+ \frac{h}{3} (f(x_{2}) + 4f(x_{3}) + f(x_{4}))$$
...
$$+ \frac{h}{3} (f(x_{n-2}) + 4f(x_{n-1}) + f(x_{n}))$$

$$= \frac{b - a}{3n} [f(x_{0}) + 4f(x_{1}) + 2f(x_{2}) + 4f(x_{3}) + ... + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_{n})]$$

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

MATH 106 January 16, 2019 40 / 43

Simpson's Rule

Let f be continuous on [a, b]. If $P = \{x_0, x_1, ..., x_n\}$ is a regular partition of [a, b] where n is even, then

$$\int_a^b f(x) \ dx \approx \frac{(b-a)}{3n} \Big[f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + ... + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n) \Big].$$

Error Estimation

The estimation of the error under Simpson's method is given by the following theorem.

Theorem

Suppose $f^{(4)}$ is continuous on [a,b] and M is the maximum value for $f^{(4)}$ on [a,b]. If E_S is the error in calculating $\int_a^b f(x) \ dx$ under Simpson's rule, then

$$\mid E_{S} \mid \leq \frac{M(b-a)^{5}}{180 n^{4}}.$$

By using Simpson's rule with n=4, approximate the integral $\int_1^3 \sqrt{x^2+1} \ dx$. Then, estimate the error.

Solution:

- 1) We approximate the integral $\int_1^3 \sqrt{x^2 + 1} \ dx$ under Simpson's rule.
- a) Find the partition $P = \{x_0, x_1, x_2, ..., x_n\}$ where $\Delta x = \frac{(b-a)}{n}$ and $x_k = x_0 + k\Delta x$. We divide the interval [1,3] into four subintervals where the length of each subinterval is $\Delta x = \frac{3-1}{4} = \frac{1}{2}$ as follows:

$$x_0 = 1$$
 $x_1 = 1 + \frac{1}{2} = 1\frac{1}{2}$ $x_2 = 1 + 2(\frac{1}{2}) = 2$ $x_3 = 1 + 3(\frac{1}{2}) = 2\frac{1}{2}$ $x_4 = 1 + 4(\frac{1}{2}) = 3$

The partition is $P = \{1, 1.5, 2, 2.5, 3\}.$

b) Approximate the integral by using the following table:

MATH 106 January 16, 2019 42 / 43

k	X _k	$f(x_k)$	m_k	$m_k f(x_k)$
0	1	1.4142	1	2
1	1.5	1.8028	4	7.2112
2	2	2.2361	2	4.4722
3	2.5	2.6926	4	10.7704
4	3	3.1623	1	10
$Sum = \sum_{k=1}^4 m_k f(x_k)$				27.0302

Hence,
$$\int_{1}^{3} \sqrt{x^2 + 1} \ dx \approx \frac{2}{12} [27.0302] = 4.5050.$$

MATH 106

43 / 43

k	X _k	$f(x_k)$	m_k	$m_k f(x_k)$
0	1	1.4142	1	2
1	1.5	1.8028	4	7.2112
2	2	2.2361	2	4.4722
3	2.5	2.6926	4	10.7704
4	3	3.1623	1	10
$Sum = \sum_{k=1}^4 m_k f(x_k)$				27.0302

Hence,
$$\int_{1}^{3} \sqrt{x^2 + 1} \ dx \approx \frac{2}{12} [27.0302] = 4.5050.$$

2) We estimate the error by using the theorem.

Since $f^{(5)}(x) = -(15x(4x^2-3))/\sqrt{(x^2+1)^9}$, then $f^{(4)}(x)$ is a decreasing function on the interval [1, 3]. Therefore, $f^{(4)}(x)$ is maximized at x=1. Then, $M=|f^{(4)}(1)|=0.7955$ and

$$\mid E_s \mid < \frac{(0.7955)(3-1)^5}{180(4)^4} = 5.5243 \times 10^{-4}.$$

4□ > 4□ > 4 = > 4 = > = 90

MATH 106 January 16, 2019 43