
Lecture A2

conformal field theory

Killing vector fields

The sphere Sn is invariant under the group SO(n + 1). The Minkowski space is invariant
under the Poincaré group, which includes translations, rotations, and Lorentz boosts. For
a general Riemannian manifold M , take a tangent vector field ξ = ξµ∂µ and consider the
infinitesimal coordinate transformation,

xµ → xµ + ǫξµ, (|ǫ| ≪ 1).

Question 1: Show that the metric components gµν transforms as

gµν → gµν + ǫ (∂µξν + ∂νξµ + ξρ∂ρ) + 0(ǫ2) = gµν + ǫ (∇µξν +∇νξµ) + 0(ǫ2).

The metric is invariant under the infinitesimal transformation by ξ iff ∇µξν + ∇νξµ = 0. A
tangent vector field satisfying this equation is called a Killing vector field.

Question 2: Suppose we have two tangent vector fields, ξa = ξµa∂µ (a = 1, 2). Show that their
commutator

[ξ1, ξ2] = (ξν1∂νξ
µ
2 − ξν2∂νξ

µ
1 )∂µ

is also a tangent vector field. Explain why ξν1∂νξ
µ
2 is not a tangent vector field in general.

Question 3: Suppose there are two Killing vector fields, ξa (a = 1, 2). One can consider an
infinitesimal transformation, ga, corresponding to each of them. Namely,

ga : xµ → xµ + ǫξµa , (a = 1, 2).

Show that g1g2g
−1
1 g−1

2 is generated by the commutator, [ξ1, ξ2].

If the metric is invariant under infinitesimal transformations generated by ξ1, ξ2, it should also
be invariant under their commutator, [ξ1, ξ2]. Thus, the space of Killing vector fields is closed
under the commutator – it makes a Lie algebra.

Question 4: What is the Lie algebra of Killing vector fields on S2?

conformal Killing vector fields

Let us relax the condition somewhat and allow the metric to be scaled as gµν(x) → Ω(x)gµν(x)
under transformation, x → x + ǫξ for some positive-definite function Ω(x). This means,
∇µξν + ∇νξµ = f(x)gµν for some function f(x). By taking the trace of both sides, one finds
f(x) = 2

n
∇ · ξ where n = dimM . Thus,

∇µξν +∇νξµ =
2

n
∇ · ξgµν .

A tangent vector field ξ satisfying this equation is called a conformal Killing vector field. Note
that ∇ · ξ = 0 for a Killing vector field.
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Question 5: Count the dimension of the space of conformal Killing vector fields for the n-
dimensional Euclidean space and Minkowski space.

In two dimensions, the space of local solutions to the conformal Killing vector field equation
is infinite dimensional. Consider a two-dimensional Riemannian manifold M with Euclidean
signature (analysis for Minkowskian signature case is the same). In two dimensions, any
Riemannian metric is Kähler and one can choose complex coordinates (z, z̄) so that the metric
becomes ds2 = 2gzz̄dzdz̄. In this metric, the conformal Killing vector equation becomes,

∂z̄ξ
z = 0, ∂zξ

z̄ = 0.

Namely, it simply means that ξz is holomorphic and ξz̄ is anti-holomorphic. There are infinitely
many solutions to this condition. In fact, under any holomorphic coordinate transformation,
w = w(z), one finds,

gww̄ =

∣

∣

∣

∣

∂z

∂w

∣

∣

∣

∣

2

gzz̄.

Namely, it generates a scale transformation of the metric.

The space of conformal Killing vector fields also makes a Lie algebra. In two dimensions,
one can choose ξ = zn+1∂z (n ∈ Z) locally. Then,

[ξn, ξm] = (n −m)ξn+m. (1)

There is a similar relation for ξ̄ = z̄n+1∂z̄.

free massless scalar field in two dimensions

Consider a massless scalar field φ(z, z̄) in two dimensions. Its action is of the form,

S =
1

2π

∫

M

√
ggµν∂µφ∂νφ,

so that the equations of motion is given by ∆φ = 0. The energy-momentum tensor Tµν is defined
by

Tµν =
2π√
g

δS

δgµν
= ∂µφ∂νφ− 1

2
gµν(∂φ)

2.

Note that Tµν is symmetric. It is also traceless, gµνTµν = 0. It is a reflection of the fact that
the action is invariant under the scale transformation, gµν(x) → Ω(x)gµν(x).

If we use complex coordinates (z, z̄), the trace part of the energy-momentum tensor is Tzz̄.
Thus, the only non-zero components are Tzz and Tz̄z̄. The conservation law, ∇µTµν = 0,
then implies that Tzz is holomorphic and Tz̄z̄ is anti-holomorphic. Since the transformation
z → z + ǫzn+1 is symmetry, there must be a corresponding Nöther charge.

Suppose we start with the Minkowski signature space with coordiantes (t, θ) with the metric
ds2 = −dt2+dθ2. Take θ be periodic so that the space is a cylinder. Now Euclideanize the time
coordinate t = −iτ so that ds2 = dτ2 + dθ2. If we define z = eτ+iθ, the past infinity τ → −∞
corresponds to z = 0 and the fugure infinite τ → +∞ corresponds to z = ∞. The constant time
surface τ = const. corresponds to |z| = const. In terms of this z coordinate, the Nöther charge
for z → z + ǫzn+1 is given by

Ln =

∮

z=0

dz

2πi
zn+1Tzz.
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Here the contour is chosen to surround z = 0. Since both zn+1 and Tzz are holomorphic, Ln

is invariant under continuous deformation of the integration contour. The Nöther charge is
conserved.

For the free scalar field, the energy-momentum tensor is given by

Tzz =
1

2
(∂zφ)

2.

Using the operator product expansion,

∂zφ(z)∂wφ(w) ∼
1

(z − w)2
+ 0(1),

one obtains

TzzTww ∼ 1/2

(z − w)4
+

(

2

(z − w)2
+

1

z − w
∂w

)

Tww + 0(1).

Using this, one can derive the commutation relation,

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn+m,0, (2)

with c = 1.

The commutation relation of the conformal Killing vectors (1) is also of this form, with
c = 0. One can think of c as arising from quantum effects. It is called the central charge since
it commutes with all the generators Ln. The algebra generated by Ln’s is called the Virasoro
algebra.

minimal models

The Hilbert space of any conformal field theory (CFT) in two dimensions gives a representa-
tion of the Virasoro algebra (2). In fact, there are two copies of the Virasoro algebra, V ir⊕V ir,
one for Tzz and another for Tz̄z̄. In this lecture, we assume that the value of the central charge
is the same for both Virasoro algebras.

If the CFT is unitary, one should be able to expand its Hilbert space as a sum of unitary
representations of V ir⊕V ir. The hermiticity of the energy-momentum tensor implies L†

n = L−n.
Since L0 + L̄0 can be identified with the Hamiltonian for the translation of the time variable t
and since

[L0, Ln] = −nLn,

a representation with energy bounded below must be of the highest weight type. Namely, we
start with the highest weight state, |h〉, satisfying

L0|h〉 = h|h〉, Ln|h〉 = 0 (n ≥ 1),

and build the representation by acting L−n’s. Such a representation is parameterized by the
highest weight h. Note that the hermiticity of the energy-momentum tensor implies L†

n = L−n.

It is natural to ask for what value of c, we can build a unitary CFT. For c < 1, unitary
represenations appear only at discrete values,

c = 1− 6

m(m+ 1)
, (m = 3, 4, 5, ....).

3



For such c, unitary hightest weight representations are parametrized as

hr,s =
((m+ 1)r −ms)2 − 1

4m(m+ 1)
, 1 ≤ r ≤ m− 1, 1 ≤ s ≤ r.

Let us denote the corresponding highest weight representation by V ir
(m)
r,s . The Hilbert space

Hilb of the CFT should take the form,

Hilb =
∑

r,s:r′,s′

Nr,s;r′,s′V ir(m)
r,s ⊕ V ir

(m)
r′,s′ , (3)

where the coefficients Nr,s;r′,s′ are positive integers. Since the vacuum state must be unique,
N1,1;1,1 = 1.

There is a complete classification of c < 1 unitary CFT’s. The idea is to require the modular
invariance discussed in Lecture 9. Consider the character of the Virasoro algebra defined by,

χr,s(τ) = tr
V ir

(m)
r,s

e2πiτ(L0−
c

24
).

(Do not confuse τ with the imaginary time discussed in the above. It is the modulus of the
torus.) It turns out that χr,s(τ)’s with 1 ≤ s ≤ r ≤ m− 1 transform into themselves under the
modular group action,

τ → aτ + b

cτ + d
, (ad− bc = 1; a, b, c, d ∈ Z).

The partition function of the Hilbert space defined by

Z(τ, τ̄ ) = trHilb

(

e2πiτ(L0−
c

24
)e−2πiτ̄(L̄0−

c

24
)
)

.

The structure of the Hilbert space implies

Z(τ, τ̄ ) =
∑

r,s:r′,s′

Nr,s;r′,s′χr,s(τ)χ̄r′,s′(τ̄ ).

There is a complete classification of modular invariant partition functions for c < 1 unitary
conformal field theories.

primary fields

Suppose there is a field φ(z, z̄) which transforms as φ(dz)h(dz̄)h̄. Under infinitesimal coor-
dinate transformation, z → z + ǫzn+1, it should transform as,

φ → φ+ ǫ
(

zn+1∂z + hnzn
)

φ(z).

Since this coordinate transformation is generated by Ln,

[Ln, φ(z)] = ǫ
(

zn+1∂z + hnzn
)

φ(z).

This is equivalent to the operator product expansion,

T (z)φ(w) ∼
(

h

(z − w)2
+

1

z − w
∂w

)

φ(w).
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The field φ is called a primary field and (h, h̄) are its (left and right) conformal weights. We see
that the energy-momentum tensor T (z) transforms almost as a primary field of weight 2, but
there is a slight anomaly due to the term proportional to c.

state-operator correspondence

Suppose the conformal field theory is defined on the geometry R × S1, where τ ∈ R

corresponds to the Euclideanized time variable and ∈ S1 parametrizes the spatial section.
The Hilbert space is defined at a given time τ . Since the theory is invariant under conformal
coordinate transformation, let us introduce

z = exp(τ + iθ).

In this coordinate, the past infinity is at z = 0.

If there is no operator at z = 0, the energy-momentum tensor is regular at z = 0. This
means that

Ln(0)1 =

∮

z=0

dz

2πi
zn+1T (z)1 = 0, for n ≥ −1.

On the other hand, if we put the primary field φ(z, z̄) of weight h at z = 0,

Ln(0)φ(0) =

∮

z=0

dz

2πi
zn+1T (z)φ(0) = 0, for n ≥ 1.

Moreover,
L0(0)φ(0) = hφ(0).

This is just as if we have the highest weight representation of the Virasoro algebra with the
highest weight h.

Conversely one can start with a highest weight state |h〉 in the coordinates (τ, θ) and perform
the coordinate transformation in the above to define a primary field φ(z, z̄) at z = 0.

This one-to-one correspondence between states and operators is very important in studying
conformal field theories.
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