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13. Suppose that the relation R on the finite set A is rep-
resented by the matrix MR . Show that the matrix that
represents the symmetric closure of R is MR ∨Mt

R .
14. Show that the closure of a relation R with respect to a

property P, if it exists, is the intersection of all the rela-
tions with property P that contain R.

15. When is it possible to define the “irreflexive closure”
of a relation R, that is, a relation that contains R, is ir-
reflexive, and is contained in every irreflexive relation
that contains R?

16. Determine whether these sequences of vertices are paths
in this directed graph.
a) a, b, c, e
b) b, e, c, b, e
c) a, a, b, e, d, e
d) b, c, e, d, a, a, b
e) b, c, c, b, e, d, e, d
f ) a, a, b, b, c, c, b, e, d

ba c

e
d

17. Find all circuits of length three in the directed graph in
Exercise 16.

18. Determine whether there is a path in the directed graph in
Exercise 16 beginning at the first vertex given and ending
at the second vertex given.
a) a, b b) b, a c) b, b
d) a, e e) b, d f ) c, d
g) d, d h) e, a i) e, c

19. Let R be the relation on the set {1, 2, 3, 4, 5} containing
the ordered pairs (1, 3), (2, 4), (3, 1), (3, 5), (4, 3), (5, 1),
(5, 2), and (5, 4). Find
a) R2. b) R3. c) R4.
d) R5. e) R6. f ) R∗.

20. Let R be the relation that contains the pair (a, b) if a
and b are cities such that there is a direct non-stop airline
flight from a to b. When is (a, b) in
a) R2? b) R3? c) R∗?

21. Let R be the relation on the set of all students contain-
ing the ordered pair (a, b) if a and b are in at least one
common class and a �= b. When is (a, b) in
a) R2? b) R3? c) R∗?

22. Suppose that the relation R is reflexive. Show that R∗ is
reflexive.

23. Suppose that the relation R is symmetric. Show that R∗
is symmetric.

24. Suppose that the relation R is irreflexive. Is the
relation R2 necessarily irreflexive?

25. Use Algorithm 1 to find the transitive closures of these
relations on {1, 2, 3, 4}.
a) {(1, 2), (2,1), (2,3), (3,4), (4,1)}
b) {(2, 1), (2,3), (3,1), (3,4), (4,1), (4, 3)}
c) {(1, 2), (1,3), (1,4), (2,3), (2,4), (3, 4)}
d) {(1, 1), (1,4), (2,1), (2,3), (3,1), (3, 2), (3,4), (4, 2)}

26. Use Algorithm 1 to find the transitive closures of these
relations on {a, b, c, d, e}.
a) {(a, c), (b, d), (c, a), (d, b), (e, d)}
b) {(b, c), (b, e), (c, e), (d, a), (e, b), (e, c)}
c) {(a, b), (a, c), (a, e), (b, a), (b,c), (c,a), (c,b), (d,a),

(e, d)}
d) {(a, e), (b, a), (b, d), (c,d), (d,a), (d,c), (e,a), (e,b),

(e, c), (e, e)}
27. Use Warshall’s algorithm to find the transitive closures

of the relations in Exercise 25.

28. Use Warshall’s algorithm to find the transitive closures
of the relations in Exercise 26.

29. Find the smallest relation containing the relation
{(1, 2), (1, 4), (3, 3), (4, 1)} that is
a) reflexive and transitive.
b) symmetric and transitive.
c) reflexive, symmetric, and transitive.

30. Finish the proof of the case when a �= b in Lemma 1.

31. Algorithms have been devised that use O(n2.8) bit opera-
tions to compute the Boolean product of two n× n zero–
one matrices.Assuming that these algorithms can be used,
give big-O estimates for the number of bit operations us-
ingAlgorithm 1 and using Warshall’s algorithm to find the
transitive closure of a relation on a set with n elements.

∗32. Devise an algorithm using the concept of interior vertices
in a path to find the length of the shortest path between
two vertices in a directed graph, if such a path exists.

33. Adapt Algorithm 1 to find the reflexive closure of the
transitive closure of a relation on a set with n elements.

34. Adapt Warshall’s algorithm to find the reflexive closure of
the transitive closure of a relation on a set with n elements.

35. Show that the closure with respect to the property P of
the relation R = {(0, 0), (0, 1), (1, 1), (2, 2)} on the set
{0, 1, 2} does not exist if P is the property
a) “is not reflexive.”
b) “has an odd number of elements.”

9.5 Equivalence Relations

Introduction

In some programming languages the names of variables can contain an unlimited number of
characters. However, there is a limit on the number of characters that are checked when a
compiler determines whether two variables are equal. For instance, in traditional C, only the
first eight characters of a variable name are checked by the compiler. (These characters are
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uppercase or lowercase letters, digits, or underscores.) Consequently, the compiler considers
strings longer than eight characters that agree in their first eight characters the same. Let R be
the relation on the set of strings of characters such that sRt , where s and t are two strings, if s

and t are at least eight characters long and the first eight characters of s and t agree, or s = t . It
is easy to see that R is reflexive, symmetric, and transitive. Moreover, R divides the set of all
strings into classes, where all strings in a particular class are considered the same by a compiler
for traditional C.

The integers a and b are related by the “congruence modulo 4” relation when 4
divides a− b. We will show later that this relation is reflexive, symmetric, and transitive. It
is not hard to see that a is related to b if and only if a and b have the same remainder when
divided by 4. It follows that this relation splits the set of integers into four different classes.
When we care only what remainder an integer leaves when it is divided by 4, we need only
know which class it is in, not its particular value.

These two relations, R and congruence modulo 4, are examples of equivalence relations,
namely, relations that are reflexive, symmetric, and transitive. In this section we will show that
such relations split sets into disjoint classes of equivalent elements. Equivalence relations arise
whenever we care only whether an element of a set is in a certain class of elements, instead of
caring about its particular identity.

Equivalence Relations

In this section we will study relations with a particular combination of properties that allows
them to be used to relate objects that are similar in some way.

DEFINITION 1 A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and
transitive.

Equivalence relations are
important in every branch
of mathematics!

Equivalence relations are important throughout mathematics and computer science. One
reason for this is that in an equivalence relation, when two elements are related it makes sense
to say they are equivalent.

DEFINITION 2 Two elements a and b that are related by an equivalence relation are called equivalent. The
notation a ∼ b is often used to denote that a and b are equivalent elements with respect to a
particular equivalence relation.

For the notion of equivalent elements to make sense, every element should be equivalent to
itself, as the reflexive property guarantees for an equivalence relation. It makes sense to say
that a and b are related (not just that a is related to b) by an equivalence relation, because
when a is related to b, by the symmetric property, b is related to a. Furthermore, because an
equivalence relation is transitive, if a and b are equivalent and b and c are equivalent, it follows
that a and c are equivalent.

Examples 1–5 illustrate the notion of an equivalence relation.

EXAMPLE 1 Let R be the relation on the set of integers such that aRb if and only if a = b or a = −b. In
Section 9.1 we showed that R is reflexive, symmetric, and transitive. It follows that R is an
equivalence relation. ▲

EXAMPLE 2 Let R be the relation on the set of real numbers such that aRb if and only if a − b is an integer.
Is R an equivalence relation?
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Solution: Because a− a = 0 is an integer for all real numbers a, aRa for all real numbers a.
Hence, R is reflexive. Now suppose that aRb. Then a− b is an integer, so b− a is also an
integer. Hence, bRa. It follows that R is symmetric. If aRb and bRc, then a− b and b− c

are integers. Therefore, a− c = (a− b)+ (b− c) is also an integer. Hence, aRc. Thus, R is
transitive. Consequently, R is an equivalence relation. ▲

One of the most widely used equivalence relations is congruence modulo m, where m is an
integer greater than 1.

EXAMPLE 3 Congruence Modulo m Let m be an integer with m > 1. Show that the relation

R = {(a, b) | a ≡ b (mod m)}

is an equivalence relation on the set of integers.

Solution: Recall from Section 4.1 that a ≡ b (mod m) if and only if m divides a − b. Note
that a − a = 0 is divisible by m, because 0 = 0 ·m. Hence, a ≡ a (mod m), so congruence
modulo m is reflexive. Now suppose that a ≡ b (mod m). Then a − b is divisible by m, so
a − b = km, where k is an integer. It follows that b − a = (−k)m, so b ≡ a (mod m). Hence,
congruence modulo m is symmetric. Next, suppose that a ≡ b (mod m) and b ≡ c (mod m).
Then m divides both a − b and b − c. Therefore, there are integers k and l with a − b = km and
b − c = lm. Adding these two equations shows that a − c = (a − b)+ (b − c) = km+ lm =
(k + l)m. Thus, a ≡ c (mod m). Therefore, congruence modulo m is transitive. It follows that
congruence modulo m is an equivalence relation. ▲

EXAMPLE 4 Suppose that R is the relation on the set of strings of English letters such that aRb if and only
if l(a) = l(b), where l(x) is the length of the string x. Is R an equivalence relation?

Solution: Because l(a) = l(a), it follows that aRa whenever a is a string, so that R is reflex-
ive. Next, suppose that aRb, so that l(a) = l(b). Then bRa, because l(b) = l(a). Hence, R

is symmetric. Finally, suppose that aRb and bRc. Then l(a) = l(b) and l(b) = l(c). Hence,
l(a) = l(c), so aRc. Consequently, R is transitive. Because R is reflexive, symmetric, and
transitive, it is an equivalence relation. ▲

EXAMPLE 5 Let n be a positive integer and S a set of strings. Suppose that Rn is the relation on S such
that sRnt if and only if s = t , or both s and t have at least n characters and the first n characters
of s and t are the same. That is, a string of fewer than n characters is related only to itself; a
string s with at least n characters is related to a string t if and only if t has at least n characters
and t begins with the n characters at the start of s. For example, let n = 3 and let S be the set
of all bit strings. Then sR3 t either when s = t or both s and t are bit strings of length 3 or more
that begin with the same three bits. For instance, 01R3 01 and 00111R3 00101, but 01 �R3010
and 01011 �R3 01110.

Show that for every set S of strings and every positive integer n, Rn is an equivalence
relation on S.

Solution: The relation Rn is reflexive because s = s, so that sRn s whenever s is a string in S.
If sRn t , then either s = t or s and t are both at least n characters long that begin with the
same n characters. This means that tRn s. We conclude that Rn is symmetric.

Now suppose that sRn t and tRnu. Then either s = t or s and t are at least n characters
long and s and t begin with the same n characters, and either t = u or t and u are at least n

characters long and t and u begin with the same n characters. From this, we can deduce that
either s = u or both s and u are n characters long and s and u begin with the same n characters
(because in this case we know that s, t , and u are all at least n characters long and both s and u

begin with the same n characters as t does). Consequently, Rn is transitive. It follows that Rn is
an equivalence relation. ▲
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In Examples 6 and 7 we look at two relations that are not equivalence relations.

EXAMPLE 6 Show that the “divides” relation is the set of positive integers in not an equivalence relation.

Solution: By Examples 9 and 15 in Section 9.1, we know that the “divides” relation is reflex-
ive and transitive. However, by Example 12 in Section 9.1, we know that this relation is not
symmetric (for instance, 2 | 4 but 4 � | 2). We conclude that the “divides” relation on the set of
positive integers is not an equivalence relation. ▲

EXAMPLE 7 Let R be the relation on the set of real numbers such that xRy if and only if x and y are real
numbers that differ by less than 1, that is |x − y| < 1. Show that R is not an equivalence relation.

Solution: R is reflexive because |x − x| = 0 < 1 whenever x ∈ R. R is symmetric, for if xRy,
where x and y are real numbers, then |x − y| < 1, which tells us that |y − x| = |x − y| < 1, so
that yRx. However, R is not an equivalence relation because it is not transitive. Take x = 2.8,
y = 1.9, and z = 1.1, so that |x − y| = |2.8− 1.9| = 0.9 < 1, |y − z| = |1.9− 1.1| =
0.8 < 1, but |x − z| = |2.8− 1.1| = 1.7 > 1. That is, 2.8R 1.9, 1.9R 1.1, but 2.8 �R 1.1. ▲

Equivalence Classes

Let A be the set of all students in your school who graduated from high school. Consider the
relation R on A that consists of all pairs (x, y), where x and y graduated from the same high
school. Given a student x, we can form the set of all students equivalent to x with respect to R.
This set consists of all students who graduated from the same high school as x did. This subset
of A is called an equivalence class of the relation.

DEFINITION 3 Let R be an equivalence relation on a set A. The set of all elements that are related to an
element a of A is called the equivalence class of a. The equivalence class of a with respect
to R is denoted by [a]R . When only one relation is under consideration, we can delete the
subscript R and write [a] for this equivalence class.

In other words, if R is an equivalence relation on a set A, the equivalence class of the
element a is

[a]R = {s | (a, s) ∈ R}.
If b ∈ [a]R , then b is called a representative of this equivalence class. Any element of a class
can be used as a representative of this class. That is, there is nothing special about the particular
element chosen as the representative of the class.

EXAMPLE 8 What is the equivalence class of an integer for the equivalence relation of Example 1?

Solution: Because an integer is equivalent to itself and its negative in this equivalence relation,
it follows that [a] = {−a, a}. This set contains two distinct integers unless a = 0. For instance,
[7] = {−7, 7}, [−5] = {−5, 5}, and [0] = {0}. ▲

EXAMPLE 9 What are the equivalence classes of 0 and 1 for congruence modulo 4?

Solution: The equivalence class of 0 contains all integers a such that a ≡ 0 (mod 4). The integers
in this class are those divisible by 4. Hence, the equivalence class of 0 for this relation is

[0] = {. . . ,−8,−4, 0, 4, 8, . . . }.
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Exercises

1. Which of these relations on {0, 1, 2, 3} are equivalence
relations? Determine the properties of an equivalence re-
lation that the others lack.
a) {(0, 0), (1, 1), (2, 2), (3, 3)}
b) {(0, 0), (0, 2), (2, 0), (2, 2), (2, 3), (3, 2), (3, 3)}
c) {(0, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 3)}
d) {(0, 0), (1, 1), (1, 3), (2, 2), (2, 3), (3, 1), (3, 2),

(3, 3)}
e) {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0),

(2, 2), (3, 3)}
2. Which of these relations on the set of all people are equiv-

alence relations? Determine the properties of an equiva-
lence relation that the others lack.
a) {(a, b) | a and b are the same age}
b) {(a, b) | a and b have the same parents}
c) {(a, b) | a and b share a common parent}
d) {(a, b) | a and b have met}
e) {(a, b) | a and b speak a common language}

3. Which of these relations on the set of all functions from Z
to Z are equivalence relations? Determine the properties
of an equivalence relation that the others lack.
a) {(f, g) | f (1) = g(1)}
b) {(f, g) | f (0) = g(0) or f (1) = g(1)}
c) {(f, g) | f (x) − g(x) = 1 for all x ∈ Z}
d) {(f, g) | for some C ∈ Z, for all x ∈ Z, f (x) −

g(x) = C}
e) {(f, g) | f (0) = g(1) and f (1) = g(0)}

4. Define three equivalence relations on the set of students
in your discrete mathematics class different from the re-
lations discussed in the text. Determine the equivalence
classes for each of these equivalence relations.

5. Define three equivalence relations on the set of buildings
on a college campus. Determine the equivalence classes
for each of these equivalence relations.

6. Define three equivalence relations on the set of classes of-
fered at your school. Determine the equivalence classes
for each of these equivalence relations.

7. Show that the relation of logical equivalence on the set
of all compound propositions is an equivalence relation.
What are the equivalence classes of F and of T?

8. Let R be the relation on the set of all sets of real numbers
such that S R T if and only if S and T have the same
cardinality. Show that R is an equivalence relation. What
are the equivalence classes of the sets {0, 1, 2} and Z?

9. Suppose that A is a nonempty set, and f is a function that
has A as its domain. Let R be the relation on A consisting
of all ordered pairs (x, y) such that f (x) = f (y).
a) Show that R is an equivalence relation on A.
b) What are the equivalence classes of R?

10. Suppose that A is a nonempty set and R is an equivalence
relation on A. Show that there is a function f with A as its
domain such that (x, y) ∈ R if and only if f (x) = f (y).

11. Show that the relation R consisting of all pairs (x, y) such
that x and y are bit strings of length three or more that
agree in their first three bits is an equivalence relation on
the set of all bit strings of length three or more.

12. Show that the relation R consisting of all pairs (x, y) such
that x and y are bit strings of length three or more that
agree except perhaps in their first three bits is an equiva-
lence relation on the set of all bit strings of length three
or more.

13. Show that the relation R consisting of all pairs (x, y) such
that x and y are bit strings that agree in their first and third
bits is an equivalence relation on the set of all bit strings
of length three or more.

14. Let R be the relation consisting of all pairs (x, y) such
that x and y are strings of uppercase and lowercase En-
glish letters with the property that for every positive in-
teger n, the nth characters in x and y are the same letter,
either uppercase or lowercase. Show that R is an equiva-
lence relation.

15. Let R be the relation on the set of ordered pairs of posi-
tive integers such that ((a, b), (c, d)) ∈ R if and only if
a + d = b + c. Show that R is an equivalence relation.

16. Let R be the relation on the set of ordered pairs of posi-
tive integers such that ((a, b), (c, d)) ∈ R if and only if
ad = bc. Show that R is an equivalence relation.

17. (Requires calculus)
a) Show that the relation R on the set of all differentiable

functions from R to R consisting of all pairs (f, g)

such that f ′(x) = g′(x) for all real numbers x is an
equivalence relation.

b) Which functions are in the same equivalence class as
the function f (x) = x2?

18. (Requires calculus)
a) Let n be a positive integer. Show that the relation

R on the set of all polynomials with real-valued
coefficients consisting of all pairs (f, g) such that
f (n)(x) = g(n)(x) is an equivalence relation. [Here
f (n)(x) is the nth derivative of f (x).]

b) Which functions are in the same equivalence class as
the function f (x) = x4, where n = 3?

19. Let R be the relation on the set of all URLs (or Web ad-
dresses) such that x R y if and only if the Web page at
x is the same as the Web page at y. Show that R is an
equivalence relation.

20. Let R be the relation on the set of all people who have
visited a particular Web page such that x R y if and only
if person x and person y have followed the same set of
links starting at this Web page (going from Web page to
Web page until they stop using the Web). Show that R is
an equivalence relation.


