Molecular methods for microbial diagnosis (Genotyping)

Learning outcome

You should be able to:

- Explain each methods used for diagnosis
- Compare between probe and primer
- Understand the principle, steps, components, and applications of PCR

Genotyping methods

Genotyping methods includes:

- 1. Nucleic acid probes
- 2. PCR
- 3. Nucleic acid sequence analysis
- 4. 16s rRNA analysis

Nucleic acid probes

- Nucleic acid hyperdization detect a specific DNA sequence within microorganism
- The process uses nucleic acid probe specific for that microorganism
- The target DNA is attached to the solid matrix such as nitrocellulose membrane or nylon phase.

Nucleic acid probes

Advantages of using nucleic acid probe

- 1. More specific than antibodies
- 2. More Stable (temperature, pH, organic solvents....)
- 3. Detection of no longer alive microorganism

Polymerase chain reaction (PCR)

- 1. Used widely for microorganisms identification
- 2. Sequence specific primer is used for DNA or RNA amplification of specific pathogen
- 3. Detection of few cells are present and viable non-culturable
- 4. Amplified DNA shows positive confirmation of gene existence of particular pathogen

PCR Steps

Polymerase chain reaction - PCR

Denaturation at 94-96°C
Annealing at ~68°C
Elemention at 22.05

Elongation at ca. 72 °C

PCR-Types

- Quantitative PCR
- Real-Time PCR
- Nested PCR
- Multiplex PCR
- Reverse transcriptase (rtPCR)

PCR Cycles	Target Copies
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024
15	32,768
20	1,048,576
25	33,554,432
30	1,073,741,842

PCR Components

- 1. DNA template (the sample DNA that contains the target sequence)
- 2. Deoxyribonucleoside triphosphates (dNTPs)
- 3. Primers (forward and reverse)
- 4. Taq polymerase
- 5. PCR buffer (Mg⁺²⁾

PCR Applications

- To analyze clinical specimens for the presence of infectious agents, including HIV, hepatitis, malaria, anthrax, etc.
- Providing information on a patient's prognosis, and predict response or resistance to therapy..

PCR Applications Cont.

- Detection of mutations that occur in many genetic diseases (e.g. cystic fibrosis, sickle cell anaemia, and muscular dystrophy).
- Forensics laboratories
- Cloning procedure
- The Human Genome Project

Thank you