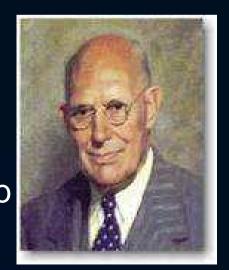
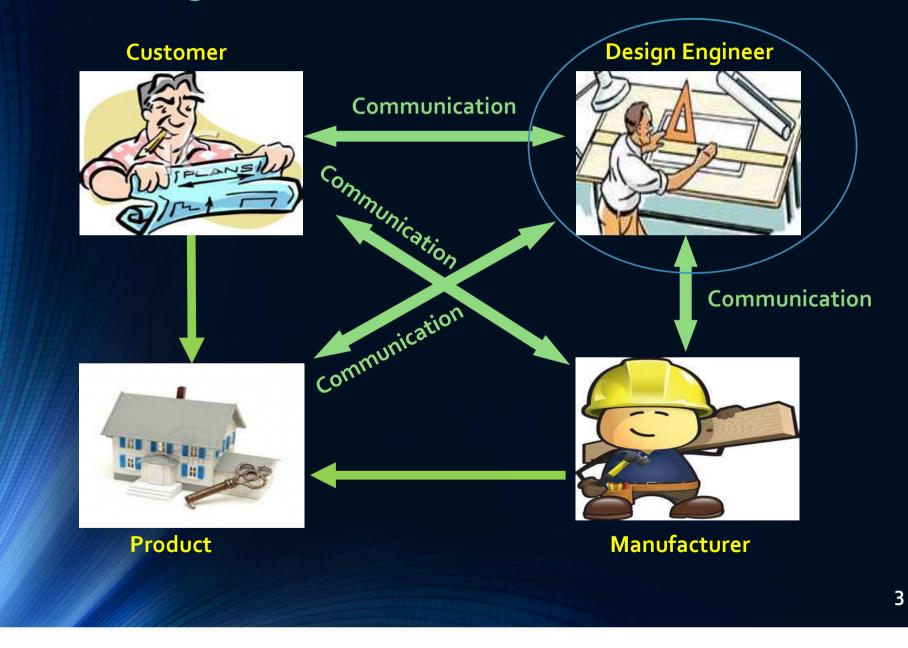

GE105

Introduction to Engineering Design College of Engineering King Saud University

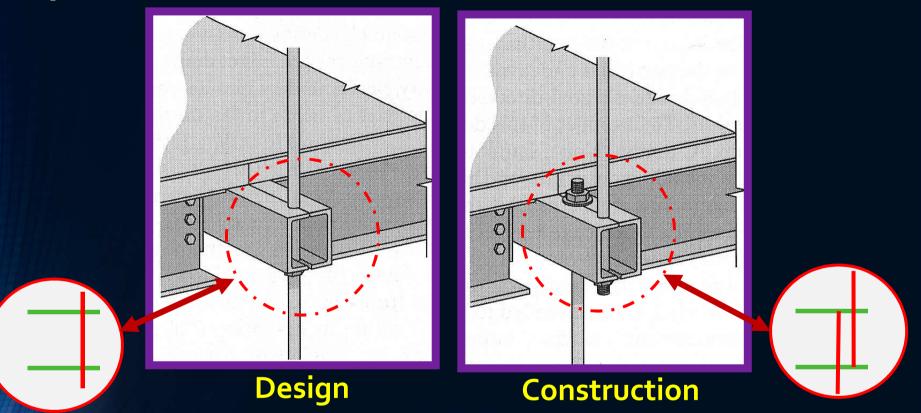
Lecture 5. Need Analysis and Problem Definition


FALL 2016

Before We Start



"If I had only one hour to save the world, I'd spend <u>55 min defining</u> the <u>problem</u> and <u>5 minutes</u> finding a <u>solution</u>"

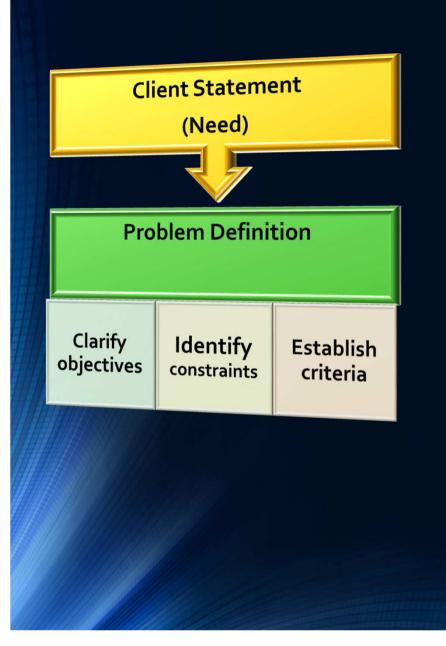

"A problem properly stated is half solved" Charles Kettering (American inventor and the holder of over 300 engineering patents)

The Big Picture

Importance of Communication

Poor communication between the <u>designer</u> and the <u>construction team</u> lead to the collapse of the second floor 114 <u>people died</u> !!!*

<u>Customer</u> needs a solution→ (Client statement)


> <u>Analyze the Needs</u> → problem <u>definition</u> and <u>formulation</u>

<u>System Design</u> (Conceptual + Detailed)

<u>System integration</u> and product test

Properly functioning system

This lecture

Input	Client Need Statement		
Tasks	 Talk with the client (interview) Some potential users (survey) Brainstorming 		
Output	 Problem statement Objectives Constraints Criteria 		

Client's Need Statement

- First <u>understand</u> what <u>the problem</u> is (what does the customer want?)
- Often, the <u>customer does not know exactly</u> what s/he wants nor what is achievable
- Client Statements usually have <u>limitations</u> such as:
 - <u>Bias</u> (e.g., reconsider admission strategy; whereas the problem could be managing classrooms)
 - Implied solutions (e.g., replace the door; whereas another solution can be better*)

 <u>Make sure</u> that the <u>correct problem</u> is being addressed

Example

Client Statement:

The <u>residents</u> of one of my tall buildings are complaining that the <u>elevators are slow</u>

Interpretation 1:

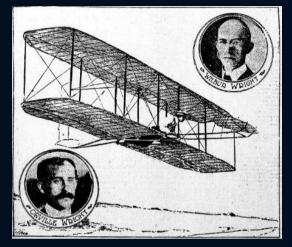
you have to <u>install another elevator</u> at a great expense

Interpretation 2:

Put <u>entertainment</u> on the main floors and provide some coffee*

Problem statement*

 The statement is a very <u>short paragraph</u> providing answers to (What? Why? How?)



- Written in the language of the customer
- Normally <u>straightforward</u>, <u>non-technical</u> and non-quantifiable

The Wright Brothers Example

 The problem addressed by the Wright brothers at the turn of the 20th century was:
 Need a manned machine capable of

achieving powered flight

- This means that:
 - **1.** They wanted to design a <u>flying</u> machine
 - It must carry a <u>person</u> (which rules out model aircraft)
 - 3. An onboard <u>power source</u> must be used to take off (which eliminates hot air balloons)

How to Assess Needs

<u>Question</u> the <u>customer</u>

Explore resources (<u>gathering information</u>)
 Technical <u>literature</u> (books, journals, www)
 Similar <u>designs</u> (competitors, patent

search)

Search <u>legal</u> and regulatory <u>restrictions</u>
 Allocation of frequency bands
 Restriction on tower heights
 Environmental impacts
 Safety

- Brainstorm
- Investigate <u>Manufacturability</u> issues

Types of Specifications

Design Specs : provide basis for evaluating the design (e.g., safe, light, inexpensive, simple)
Functional Specs: describe what the product <u>must do</u> (e.g., drilling, grinding, polishing)
Performance Specs: to judge <u>how good</u> is the design (e.g., speed, energy, accuracy)

 Use (but <u>don't confuse</u>) "<u>Demanded</u>" design elements and "<u>Wished for</u>" design elements
 Be as <u>specific</u> as possible by using <u>numbers</u> where possible (e.g., not "heavy" but "2.5 kg") 8

Wish List

Common Categories for <u>Specifications</u>

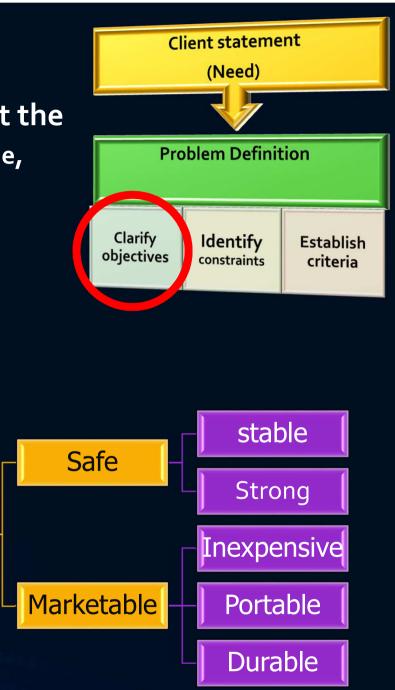
Performance Geometry Materials Energy Time Cost

Manufacturability Standards Safety Transport Ergonomics Weight

Need Analysis Example <u>Questions</u>*:

- 1. When and why do you <u>use</u> the <u>product</u>?
- 2. What do you like about <u>existing products</u>?
- 3. What don't you like about other products?
- 4. What are the required <u>functions</u>?
- 5. Who is the product <u>user</u>?

- 6. <u>Where</u> is the product going to be <u>used</u> (environment)?
- 7. What are the <u>unacceptable options</u>/behaviors of the product?
- 8. What should the product <u>satisfy</u>?
- 9. What <u>specifications</u> do we have/know?
- 10. Are there any <u>legal issues</u>?
- **11**. What are the <u>human factors</u> to be considered?
- 12. What is the expected <u>life duration</u> of the product?


Design Objectives

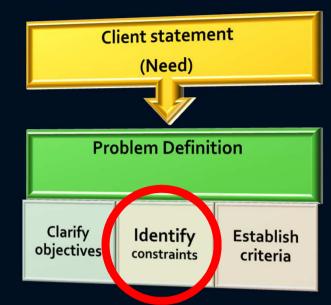
<u>Objectives</u> are the <u>requirements</u> that the <u>design</u> is to <u>satisfy</u> (Specific, <u>Measurable</u>, <u>Achievable</u>, <u>Realistic</u>, <u>Time</u> bound)

- Construct an <u>Objective Tree</u> by:
 - <u>Listing</u> objectives according to the assessed needs

Ladder

- <u>Grouping</u> the relevant objectives
- Forming a hierarchical tree structure

• The Design Objectives can be <u>divided into</u>:


- <u>Primary</u> (need/must)
- Secondary (wish/want)
- The Primary Objective is what the customer/client really needs
 - <u>Without</u> the <u>primary</u> objective the <u>design</u> is a <u>failure</u>

• The <u>Secondary</u> (less important): objectives are not necessarily specified; but can have an <u>added value</u> to the <u>product</u> (e.g., safety, simplicity, beauty)

Constraints

- Constraints are <u>boundaries</u> that limit the engineer's <u>flexibility</u>; they form the <u>design envelope</u> (feasible design <u>space</u>)
- They help to identify <u>acceptable designs</u>
- Should be <u>measurable</u>
- Should be <u>answered with</u>: True/False; <u>Yes/No</u>
 - Example: Cost <1000 SAR? Weight <500 N? Flexible system (yes/no)?

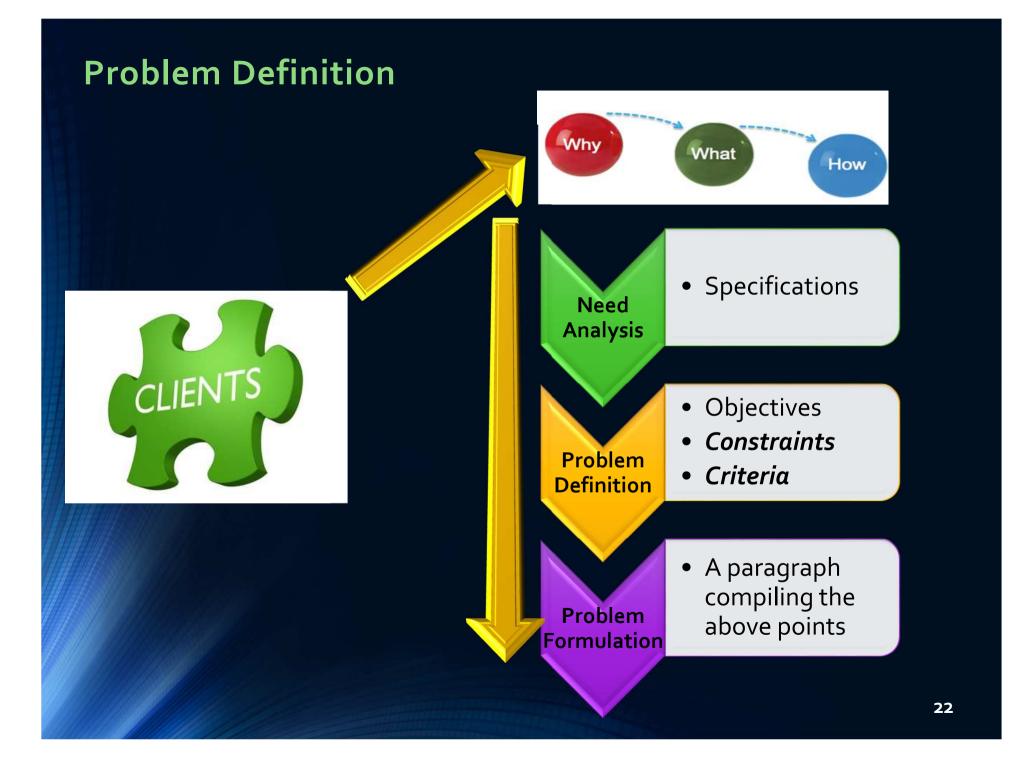
Sources of Constraints

- <u>Cost</u>: cost of <u>design</u>, <u>production</u>, <u>maintenance</u>, <u>support</u>
- <u>Time</u>: <u>delivery</u> dates, <u>processing</u>, time to market
- <u>Legal, ethical</u>: <u>patent</u>s, intellectual property, product reliability, <u>safety</u> requirements
- <u>Physical</u>: <u>size</u>, <u>weight</u>, power, durability
- <u>Natural factors</u>: topography, <u>climate</u>, resources
- <u>Company practices</u>: common <u>parts</u>, manufacturing <u>processes</u>
- <u>Human Factors/Ergonomics</u>
- <u>Sustainability</u>
- <u>Environment</u>: <u>bio-degradable</u> materials, recycled materials, green energy

Design Criteria

- Criteria are indicators <u>defining</u> the <u>success</u> of achieving the objectives
- Criteria define the product <u>physical</u> and <u>functional characteristics</u>
- They represent <u>descriptive adjectives</u> that can be qualified on a <u>given scale</u>: examples: <u>beautiful</u>, <u>low cost</u>, <u>low</u> <u>noise</u>, smart, <u>low weight</u>
- Might be used for judging between <u>different designs</u>

Examples of Criteria


To be qualified say <u>on a scale 1 to 10</u> 1 (worst) and 10 (best) *

- High <u>safety</u>
- Environment friendliness
- Public Acceptance
- Performance
- Ease of <u>operation</u>
- Durability
- Cost

- Ease of <u>Maintenance</u>
- Ease of <u>Manufacturing</u>
- <u>Aesthetic</u> design (Appearance)
- Geometry
- Physical Features
- Reliability
- Use Environment

Example: Specs for Designing an "Auto-Golfer"

Geometry	D	Single unit, 3 foot circle	
Materials	W	Not degrade in rain and snow, 30°F	
Time	D	Ready to go < 14 weeks	
Cost	D	\leq \$600 (exclusive of radios)	
Manufacturing	W	Off-the-shelf parts as possible	
Standards	D	Radios OK for FAA regulations	
Safety	D	Must pass safety review	
Transport	D	Must be portable	
Compactness	W	Should fit in a car or small truck	
D = demand (i.e. primary obj.) W = wish (i.e. secondary obj.)			

To summarize

Need Analysis

- Needs that are well understood
- A well stated objective
- A <u>list</u> of <u>Demanded</u> and <u>Wished</u> for <u>Specifications</u>
- A set of <u>criteria</u>
- A set of <u>constraints</u>

Problem Definition

- Turn the problem statement into a <u>technical</u>, <u>quantified</u> problem definition
- Precise <u>description</u> of the <u>properties</u> of the object being designed
 Can be a <u>long list</u>

<u>Problem</u> Formulation

 A compiled carefully written <u>paragraph</u>