
Lecture 4

complex manifolds, Kähler manifold

almost complex structure

Suppose dim M = n is even, n = 2m. We may consider combining 2m coordinates into
complex combinations,

zi = x2i−1 +
√
−1x2i, (i = 1, ...,m).

But, what is a motivation for us to do this? More importantly, this would depend on a choice
of coordinates. The manifold M must have some structure which compells us to introduce such
complex combinations.

A natural structure would be a tensor field Jµ
ν (µ, ν = 1, ..., n = 2m), which has the property,

J2 = −1.

(In today’s lecture, I use Roman characters i, j, ... for complex coordinates,and Greek characters
µ, ν, ... for real coordinates. So, i, j... = 1, ..., n and µ, ν, ... = 1, ...,m.)

In a slightly more sophisticated way of saying, at each point p ∈ M , we have a linear map
J : TpM → TpM obeying J2 = −1. If there is such J , may consider diagonalizing it. However,
since eigenvalues of J must be ±

√
−1, we cannot do so in a vector space with real coefficients

like TpM . To do that, we need to allow vectors in TpM have complex-valued coefficients. The
complexified tangent space can be decompoesed into a holomorphic part TpM

+ and an anti-
holomorphic part TpM

−, both m-dimensional over C, and J has eigenvalues ±
√
−1 on TpM

±.

Note that it is not always possible to have such a tensor field J . For example, it is known
that one cannot have such a tensor field on the 4-sphere S4.

If we can define J on M satisfying J2 = −1, we say that (M,J) is an almost complex
manifold. The tensor J is called almost complex structure.

We say almost since we do not yet have a fully complex manifold. To be called a complex
manifold, on each coordinate patch U , we need to be able to define complex coordinates zi

(i = 1, ...,m) so that {∂/∂zi} gives basis for the holomorphic part TpM
+ of the tangent space at

each point p on U . In order for this to be possible, the tensor field J has to satisfy the following
differential equations,

Jν
µ∂ρJ

µ
σ − Jν

µ∂σJ
µ
ρ − Jµ

σ ∂µJ
ν
ρ + Jµ

σ ∂ρJ
ν
µ = 0.

The left-hand side of this equation is known as the Nijenhuis tensor.

If the Nijenhuis tensor vanishes, we can find holomorphic coordinates zi so that J(∂/∂zi) =√
−1∂/∂zi. Since J is defined globally on M , it follows that the manifold can be covered

smoothly with complex coordinate charts. In holomorphic coordinates zi, the tensor J is of the
form,

J i
j =

√
−1δij , J ī

j̄
= −

√
−1δī

j̄
,

J i
j̄ = 0, J ī

j = 0.

Question 1: Show that, when two coordinatepatches U and V overlap, the transition function
between the two complex coordinates obeying the above set of conditions are holomorphic.
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Not all almost complex manifolds can be made to complex manifolds. For example, we can
define an almost complex structure on the 6-sphere S6, but its Nijenhuis tensor does not vanish.

Kähler manifolds

So far, we did not assume thatM is equipped with a metric gµν . When it exists, it is natural
to impose the following compatibility conditions,

gµνJ
µ
ρ J

ν
σ = gρσ, ∇µJ

ν
ρ = 0.

These imply that the Nijenhuise tensor vanishes and therefore (M,J) is a complex manifold.
But, it implies more. The first condition implies that, in complex coordinates zi, the only
non-zero components of the metric is gij̄ . Namely,

ds2 = gµνdx
µ ⊗ dxν = 2igij̄dz

i ⊗ dz̄j̄ .

To understand what the second equation means, we introduce the Kähler form,

k =
1

2
gµνJ

µ
ρ dx

ρ ∧ dxν = igij̄dz
i ∧ dz̄j̄ .

The second condition then implies that k is closed, dk = 0. In components, it means

∂igjk̄ = ∂jgik̄, ∂j̄gik̄ = ∂k̄gij̄ .

Locally, we can always integrate these equations as,

gij̄ = ∂i∂j̄K(z, z̄),

for some function K(z, z̄), which is known as the Kähler potential. It is unique up to Kähler
transformation, K(z, z̄) → K(z, z̄) + f(z) + f̄(z̄) for any holomorphic function f(z). We should
note that the Kähler potential cannot be a globally defined smooth function on a compact
Riemannian manifold M without boundary. This is because Jm/m! is equal to the volume form
vol (dimM = 2m). If K were globally defined, J would be an exact form and so is vol = Jm/m!.
If the volume form were exact, its integral over M would vanish, which would be inconsistent
with the assumption that the metric is non-degenerate.

Given the metric in the above form, we can compute the affine connection (Christoffel
symbol).

Question 2: Show that the only non-zero components are

Γi
jk = gil̄∂jgkl̄,

and its complex conjugate. Components with mixed indices (mixed in i and j̄) all vanish.

Thus, the only non-zero components of the curvature tensor are,

R k
īj l = ∂īΓ

k
jl.

The connection and the curvature describe how tangent vectors are parallel transported on
the manifold M , in such a way that the metric structure is respected, ∇µgνρ = 0. For a general
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Riemannian manifold without complex structure, the anti-symmetry Rµνρσ = −Rµνσρ means
that the transport is done by an element of the orthogonal group SO(n) (n =dimM). For the
Kähler manifold, we can use complex coordinates zi, and the curvature takes the form R k

īj l
.

This means that the transport is done by an element of the unitary group U(m) ∈ SO(n = 2m).

When we start at p ∈M , pick a tangent vector, and transport a tangent vector by using the
affine connection. We move around the manifold M and come back to the same point p. We
may not get the same vector as the one we started with. On a general Riemannian manifold, the
vectors before and after are related by an element of SO(n). For each closed path on M , we can
associate an element of SO(n). It is called a holonomy for the path. If we consider holonomies
of all paths starting and ending at p ∈ M , it makes a group – the holonomy group. We could
start with another point on M . As far as M is connected, the resulting holonomy group are
equivalent. When M is Kähler, the holonomy group is a subgroup of U(m) ∈ SO(2m).

Question 3: Show that the Ricci tensor for a Kähler manifold takes a particularly simple form,

Rij̄ = −∂i∂j̄ logdet(g).

This expression will be useful when we discuss Calabi-Yau manifolds later.

Hodge-de Rham cohomology

On a Kähler manifold, we can consider forms that contains p dz’s and q dz̄’s. The space of
k-forms Ck(M) can then be decomposed into,

Ck(M) = ⊕p+q=kC
p,q(M),

where elements of ω ∈ Cp,q(M), called (p, q)-forms, are of the form,

ω =
1

p!q!
ωi1···ipj̄1···j̄q

dzi1 ∧ · · · ∧ dzip ∧ dz̄j̄1 ∧ · · · ∧ dz̄j̄q .

Similarly, the exterior derivative and its adjoint δ = − ∗ d∗ (note: the sign factor is (−1)
since M is even dimensional) can be split as

d = ∂ + ∂̄, δ = ∂† + ∂̄†,

where

∂ω = dzi ∧
(

∂

∂zi
ω

)

, ∂̄ω = dz̄j̄ ∧
(

∂

∂z̄j̄
ω

)

,

and
∂† = − ∗ ∂∗, ∂̄† = − ∗ ∂̄ ∗ .

These operators ∂, ∂̄, ∂†, ∂̄† map (p, q)-forms into (p + 1, q), (p, q + 1), (p − 1, q), and (p, q − 1)-
forms, respectively.

Question 4: Show that the Laplace-Beltrami operator is also decomposed as

∆ = dδ + δd = 2(∂∂† + ∂†∂) = 2(∂̄∂̄† + ∂̄†∂̄),

and
∂∂̄† + ∂̄†∂ = 0, ∂̄∂† + ∂†∂̄ = 0.
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We can consider cohomology of (p, q)-forms with respect to d = ∂ + ∂̄. It is called the
Hodge-de Rham cohomology and denoted by Hp,q(M). Since ∂ and ∂̄ change degrees of forms
differently, elements of Hp,q(M) are annihilated by both ∂ and ∂̄, modulo images of ∂ and ∂̄.
This gives the decomposition,

Hk(M) = ⊕p+q=kH
p,q(M).

Since the de Rham cohomology Hk(M) is generated by harmonic forms, so is each Hp,q(M) in
the above decomposition.

On a compact Kähler manifold without boundary, the Kähler form k = igij̄dz
i ∧ dz̄j̄ always

generate a non-trivial element of H1,1(M) since Jm is proportional to the volume form (dim
M = 2m). Thus, dimH1,1(M) ≥ 1. The (1, 1)-cohomology defined by k is called the Kähler
class.

Another potential generator of H1,1(M) is the Ricci form, Rij̄dz
i∧ dz̄j̄ . Later in this course,

we will learn that it is related to the first Chern class ofM . On a Calabi-Yau manifold, the Ricci
form is zero. It was conjectured by Calabi that, if the Ricci form is an exact form (i.e., trivial as
an element of H1,1(M)), we can always choose a metric on M with the same complex structure
and the Kähler class such that the Ricci curvautre is identically equal to zero. This conjecture
was proven by Yau, and a Kähler manifold with zero Ricci curvature is called a Calabi-Yau
manifold.

hyper-Kähler manifolds

Suppose there are more than one J ’s that satisfy the compatibility conditions with the metric,

gµνJ
(a)µ
ρ J (a)ν

σ = gρσ, ∇µJ
(a)ν
ρ = 0, (a = 1, ..., N − 1).

The complex structure we considered in the above corresponds to the case of N = 2. (The
reason we set the number of J ’s to be (N − 1) will become clear later.) Since J (a) is covariantly
constant, it is invariant under parallel transport. Therefore, when we start at a point p ∈ M ,
transport J (a) along a closed path, and come back to the same p, then J (a) does not change.
This means that J (a) commutes with the holonomy group of M . By Shur’s lemman in group
theory, one can show that J (a) must for a division algebra over real numbers. Namely, they make
either the complex numbers, in which case N = 2 and there is a single complex structure J , or
the quaternions, in which case N = 2 and thre are three possible imaginary units J (1), J (2), J (3).
As we saw in the above, the holonomy group for N = 2 case is a subgroup of U(m). The
second case with N = 4 requires that dim M = 4r and the holonomy group is a subgroup of
Sp(r) ∈ U(2r) ∈ SO(4r). In this case, M is called hyper-Kähler. The Ricci curvature of a
hyper-Kähler manifold is zero.

There are manifolds with other types of holonomies. For simply connected Riemannian
manifolds which are not locally a product space and are not a symmetric space (space with
continous group symmetry preserving its metric), possible holonomy groups are:

SO(n), U(n), SU(n), Sp(n) ·Sp(1), Sp(n), G2, and Spin (7). A manifold with SU(n) holonomy
is a Calabi-Yau manifold, and a manifold with Sp(n)·Sp(1) holonomy is known as a quaternionic-
Kähler manifold.

extended supersymmetry
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On a Kähler manifold, differential forms are generated by dzi and dz̄ ī. Correspondingly, we
can consider fermions,

ψ̄i ↔ dzi∧, ψ̄ī ↔ dz̄ ī∧,
and

ψi ↔ (−1)nk+k+1 ∗ dzi∗, ψī ↔ (−1)nk+k+1 ∗ dz̄ ī ∗ .
They obey the anti-commutation relations,

{ψi, ψ̄j̄} = {ψ̄i, ψ̄j̄} = gij̄ , {(others)} = 0.

If we identify pi and pj̄ by −i∂/∂zi and −i∂/∂z̄j̄ according to quantum mechanics, we can
write

∂ = iψ̄ipi, ∂̄ = iψ̄j̄pj̄.

These, together with their hermitian conjugates, generate extended supersymmetry. We have
twice as many supersymmetry generators (supercharges), so the resulting symmetry is called
N = 2 supersymmetry.

Similarly, on a hyper-Kähler manifold, we have 4 times more supercharges generating N = 4
supersymmetry.
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