
Lecture 2

tangent space, differential forms, Riemannian manifolds

differentiable manifolds

A manifold is a set that locally look like Rn. For example, a two-dimensional sphere S2 can
be covered by two subspaces, one can be the northen hemisphere extended slightly below the
equator and another can be the southern hemisphere extended slightly above the equator. Each
patch can be mapped smoothly into an open set of R2.

In general, a manifold M consists of a family of open sets Ui which covers M , i.e. ∪iUi =M ,
and, for each Ui, there is a continuous invertible map ϕi : Ui → Rn. To be precise, to define
what we mean by a continuous map, we has to define M as a topological space first. This
requires a certain set of properties for open sets of M . We will discuss this in a couple of weeks.
For now, we assume we know what continuous maps mean for M . If you need to know now,
look at one of the standard textbooks (e.g., Nakahara).

Each (Ui, ϕi) is called a coordinate chart. Their collection {(Ui, ϕi)} is called an atlas.

The map has to be one-to-one, so that there is an inverse map from the image ϕi(Ui) to
Ui. If Ui and Uj intersects, we can define a map ϕi ◦ ϕ−1

j from ϕj(Ui ∩ Uj)) to ϕi(Ui ∩ Uj).
Since ϕj(Ui ∩ Uj)) to ϕi(Ui ∩ Uj) are both subspaces of Rn, we express the map in terms of n
functions and ask if they are differentiable. If the map is differentiable for every intersecting
pair of coordinate charts, namely if every change of coordinates is differentiable, then we call M
a differentiable manifold.

An important point of this definition of differential manifolds is the following. Suppose there
is a function f :M → R. Consider its restriction on Ui∩Uj . We can express the function in two
different sets of coordiantes, fi = f ◦ϕ−1

i : ϕi(Ui∩Uj) → R and fj = f ◦ϕ−1
j : ϕj(Ui∩Uj) → R.

If fi is differentiable, fj is also differentiable, and vice versa, since ϕi ◦ ϕ−1
j and its inverse are

both differnetiable. Thus, on a differentiable manifold, we can tell whether a given function is
differentiable or not.

We can also give an invariant meaning to differentials of a function as follows.

tangent vectors

A function f : M → R is called differentiable if f ◦ ϕ−1
i : ϕi(Ui) → R is differentiable for

every Ui. Let us denote the space of such differentiable functions by C0(M).

A tangent vector field v at M is defined as a linear map C0(M) → C0(M) obeying the rule,

v(fg) = fv(g) + gv(f).

Namely, v behaves like a differential operator on C0(M).

Note that, when u and v are tangent vector fields, f → u(v(f)) does not give a tangent
vector field. On the other hand, their commutator [u, v] : f → u(v(f)) − v(u(f)) is a tangent
vector field.

A tangent vector vp at a point p ∈M is a linear map C0(M) → R obeying

vp(fg) = f(p)vp(g) + g(p)vp(f).
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A set of tangent vectors at p is called a tangent space and is denoted by TpM .

There is another way to think about tangent vectors. Consider two diffentiable curves
c1, c2 : R → M . We say that the two curves are tangent at t = 0 if c1(t = 0) = c2(t = 0) = p
and

d

dt
ϕ(c1(t))|t=0 =

d

dt
ϕ(c2(t))|t=0

for some coordinate chart containing p. For each curve c(t) with c(t = 0) = p, we can define a
tangent vector vp at p by

vp(f) =
d

dt
f(c(t))|t=0.

If c1 and c2 are tangent at p, they define the same tangent vector at p. Conversely, any tangent
vector can be constructed in this way.

Let us try to express tangent vectors using coordinates. Consider a chart (U,ϕ), so that q ∈
M is mapped to ϕ(q) = (x1, ..., xn) ∈ Rn. We can then define a curve c(t) = ϕ−1(x1, ..., xi−1, t, xi+1, ..., xn)
for fixed x’s and a tangent vector ei at ϕ

−1(x) by

ei(f) =
d

dt
f(c(t))|t=xi =

∂

∂xi
f(ϕ−1(x1, ..., xn)),

or ei = ∂i for short. Any tangent vector vp at p = ϕ−1(x1, ..., xn) can then be expressed as

vp = v(p)i
(

∂

∂xi

)

p

.

When vp is defined in terms of a curve c(t), its component v(p)i can be obtained by

v(p)i =
d

dt
ϕ(c(t))i|t=0.

differential forms

Remember what we did in Lecture 1. For each vector space V , we can consider its dual space
V ∗ and their wedge product ∧kV ∗ to define a space of k-forms. We can apply this to the case
when V = TpM . Its dual space is V ∗ = T ∗

pM and is called the space of co-tangent vectors.

For a given coordinate chart, a natual basis of TpM is ei = ∂/∂xi. Its dual basis is denoted
by ei = dxi, so that

dxi
(

∂

∂xj

)

= δij .

We can express a k-form ω at p ∈M as

ω(p) =
1

k!
ωi1···ik(p)dx

i1 ∧ · · · ∧ dxik .

If the coefficients ωi1···ik(p) are differentiable functions of p, we call ω as differentiable. Note that
this definition of differentiability is independent of a choice of a coordinate chart. The space of
differentiable k-forms is denoted by Ck(M) or ∧kT ∗M .

exterior derivative d
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The exterior derivative operator d is a map from Ck(M) to Ck+1(M). When acting on
f ∈ C0,

df(p) =
∂f

∂xi
(p)dxi.

This is a good notation since d of xi : p → xi(p) gives dxi. For other forms, d is defined by the
requirements,

(1) d2 = 0, (2) d(α ∧ β) = (dα) ∧ β + (−1)αα ∧ β.
Here (−1)α is equal to +1 or −1 depending on whether α is an even or odd form.

Question 1: Usin the above definition, show that the exterior derivative of a k-form ω can be
expressed in terms of components as

dω =
1

k!
∂jωi1···ikdx

j ∧ dxi1 ∧ · · · ∧ dxik .

So, we can write,

dω = dxi ∧
(

∂

∂xi
ω

)

.

metric

A metric on M is an element of T ∗
pM ⊗ T ∗

pM at each p ∈ M . It is symmetric and non-
degenerate, as the metric on V ⊗ V discussed in Lecture 1. It components are given by gij =
g(∂i, ∂j). If gij is positive definite, (M,g) is called a Riemannian manifold. We can also write
this as,

ds2 = gijdx
i ⊗ dxj .

vielbeins, volume form, Hodge * operator

For simplicity, we will assume that the metric gij is positive definite. For a metric with more
general signature, we just have to introduce appropriate sign factors to some of the formulae
below.

Since the metric gij is symmetric, we can find a basis {eai }a=1,··· ,n so that

gij =

n
∑

a=1

eai e
a
j .

In the last lecture, we used the symbol {ea} to denote general basis (and used Oa for orthonormal
basis). From now on, we reserve this symbol for the orthonormal frame. For a given metric, the
frame is defined modulo O(n).

This can be done at each point p onM . ea’s are called vielbeins. vielmeans many in German,
and bein is a leg. (In 4 dimensions, they are also called vierbeins or tetrads. In dimensions other
than 4, words like fünfbein, etc. have been used. Vielbein covers all dimensions.)

Using the vierbeins, the volume form vol is defined by

vol = e1 ∧ e2 ∧ · · · ∧ en.

Note that it may not be possible to define vol globally on M since it is invariant under SO(n)
but not under O(n). It may not be possible to choose a sign factor for vol (associated to
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Z2 = O(n)/SO(n)) consistently over M . The volume form is well-defined if and only if M is
orientable.

Using coordinates, we can express the volume form as

vol =
√
gdx1 ∧ dx2 ∧ · · · ∧ dxn,

where g = detg (we are assuming that the metric is positive definite). Or,

(vol)i1i2···in =
√
gǫi1i2···in .

For a k-form ω, the Hodge * operator is defined as

(∗ω)ik+1···in =
1

k!

ǫj1···jkjk+1···jn

√
g

ωj1·jkgjk+1ik+1
· · · gjnin .

Here I used the totally anti-symmetric tensor ǫi1···in and ǫi1···in normalized as

ǫ12···n = ǫ12···n = 1.

Under coordinate transformations, ǫi1···in does not transform as a tensor. However, we can
remedy this by multiplying

√
g to make it into the volume form. The volume form transforms

as a tensor if coordinate transformations preserve the orientation. If we change the orientation,
we get an extra (−1).

Question 2: Show
∗ ∗ ω = (−1)k(n−k)ω.

co-differential δ

The co-differential δ on Ck is defined by

δω = (−1)nk+n+1 ∗ d ∗ ω.

The sign is chosen so that δ is hermitian conjugate to the exterior derivative d, we we will see
later. If dim = n is even,

δ = − ∗ d ∗ .
If n is odd,

δ = (−1)k ∗ d ∗ .

We can easily verify the following properties,

δ2 = 0, ∗ δd = dδ∗, d ∗ δ = δ ∗ d = 0.

We can use d and δ to define the Laplace-Beltrami operator ∆ : Ck(M) → Ck(M) as

∆ = δd + dδ.

Question 3: Show that, for f ∈ C0(M), the Laplace-Beltrami operator is

∆f = − 1√
g
∂i

(√
ggij∂jf

)

,
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where g = detg.

integral

We can integrate an n-form ω over an oriented n-dimensional manifold M . Since ω is a top
form, it has only one component,

ω = a(x)dx1 ∧ · · · ∧ dxn.

The integral is defined by
∫

M

ω =

∫

a(x)dx1 · · · dxn.

When M is covered by several coordinate charts, we devide M into segments and use the above
in each segment.

Using the integral, we can define an inner product between α and β ∈ Ck(M) by

(α, β) =

∫

M

α ∧ ∗β.

Question 4: Show that it is symmetric, (α, β) = (β, α).

If the manifold M has a boundary ∂M , and if α ∈ Cn(M) is of the form ω = dα for some
α ∈ Cn−1(M), the Stokes theorem holds,

∫

M

dα =

∫

∂M

α.

In particular, if M has no boundary,
∫

M

dα = 0.

Question 5: Suppose that M has no boundary. For α ∈ Ck+1(M) and β ∈ Ck(M), show

(α, δβ) = (dα, β).

(This is the reason for the choice of sign in the definition of δ.)

supersymmetry

Let us try to compare the mathematics we discussed in this lecture with the fermion picture.
As in the previous lecture, we identify the fermion creation operator ψ̄i with the multiplication
of the 1-form

ψ̄i ↔ dxi ∧ .
This maps a k-form to a (k + 1)-form. The fermion annihilation operator should map a k-form
to a (k − 1)-form. Thus, we define

ψi ↔ (−1)nk+k+1 ∗ dxi ∗ .

The sign is chosen so that

{ψi, ψj} = 0, {ψ̄iψ̄j} = 0, {ψi, ψ̄j} = gij ,
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and
(ψiα, β) = (α, ψ̄iβ).

We also identify, according to the quantum mechanics, a bosonic momentum operator pi
with the derivative ∂/∂xi.

pi ↔ −i ∂
∂xi

.

We can then write the exterior derivative operator d and the co-differential δ as,

d = iψ̄ipi, δ = −iψipi.

Thus,
[d, xi] = ψ̄i, [δ, xi] = −ψi,

and
{d, ψ̄i} = 0, {d, ψi} = igijpj,

{δ, ψ̄i} = −igijpj , {δ, ψ̄i} = 0.

Namely, d and δ generate exchanges between the bosonic oprators pi and the fermionic
operators ψi, ψ̄i.

We can also think of the Laplace-Beltrami operator ∆ = {d, δ} as the Hamiltonian. On a
Riemannian manifold, it is interesting to find the spectrum of ∆. Since d and δ commute with
∆, we can think of d and δ as generating some symmetry. In fact, it is supersymmetry since
they exchange bosons and fermions.

We can think of
∑n

k=0C
k(M) as the Hilbert space of the quantum system. The innter

product is defined by (α∗, β), so we should restrict the space to be those with normalizable
differential forms. With respect to this metric, δ is hermitian conjugate of d, and ∆ is hermitian.

In a later lecture, we will see that there is a dynamical system associated to M which has
supersymmetry and whose quantization gives

∑n
k=0C

k(M) as the Hilbert space.
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