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18. Show that if A and B are sets |A| = |B|, then |P(A)| =
|P(B)|.

19. Show that if A, B, C, and D are sets with |A| = |B| and
|C| = |D|, then |A× C| = |B ×D|.

20. Show that if |A| = |B| and |B| = |C|, then |A| = |C|.
21. Show that if A, B, and C are sets such that |A| ≤ |B| and
|B| ≤ |C|, then |A| ≤ |C|.

22. Suppose that A is a countable set. Show that the set B is
also countable if there is an onto function f from A to B.

23. Show that if A is an infinite set, then it contains a count-
ably infinite subset.

24. Show that there is no infinite set A such that |A| < |Z+| =
ℵ0.

25. Prove that if it is possible to label each element of an
infinite set S with a finite string of keyboard characters,
from a finite list characters, where no two elements of S

have the same label, then S is a countably infinite set.

26. Use Exercise 25 to provide a proof different from that
in the text that the set of rational numbers is countable.
[Hint: Show that you can express a rational number as a
string of digits with a slash and possibly a minus sign.]

∗27. Show that the union of a countable number of countable
sets is countable.

28. Show that the set Z+ × Z+ is countable.
∗29. Show that the set of all finite bit strings is countable.
∗30. Show that the set of real numbers that are solutions of

quadratic equations ax2 + bx + c = 0, where a, b, and c

are integers, is countable.
∗31. Show that Z+ × Z+ is countable by showing that

the polynomial function f : Z+ × Z+ → Z+ with
f (m, n) = (m+ n− 2)(m+ n− 1)/2+m is one-to-
one and onto.

∗32. Show that when you substitute (3n+ 1)2 for each occur-
rence of n and (3m+ 1)2 for each occurrence of m in the
right-hand side of the formula for the function f (m, n)
in Exercise 31, you obtain a one-to-one polynomial func-
tion Z× Z→ Z. It is an open question whether there is
a one-to-one polynomial function Q×Q→ Q.

33. Use the Schröder-Bernstein theorem to show that (0, 1)

and [0, 1] have the same cardinality
34. Show that (0, 1) and R have the same cardinality. [Hint:

Use the Schröder-Bernstein theorem.]
35. Show that there is no one-to-one correspondence from

the set of positive integers to the power set of the set of
positive integers. [Hint: Assume that there is such a one-
to-one correspondence. Represent a subset of the set of
positive integers as an infinite bit string with ith bit 1 if i

belongs to the subset and 0 otherwise. Suppose that you
can list these infinite strings in a sequence indexed by the
positive integers. Construct a new bit string with its ith
bit equal to the complement of the ith bit of the ith string
in the list. Show that this new bit string cannot appear in
the list.]

∗36. Show that there is a one-to-one correspondence from the
set of subsets of the positive integers to the set real num-
bers between 0 and 1. Use this result and Exercises 34 and
35 to conclude that ℵ0 < |P(Z+)| = |R|. [Hint: Look at
the first part of the hint for Exercise 35.]

∗37. Show that the set of all computer programs in a partic-
ular programming language is countable. [Hint: A com-
puter program written in a programming language can be
thought of as a string of symbols from a finite alphabet.]

∗38. Show that the set of functions from the positive inte-
gers to the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is uncountable.
[Hint: First set up a one-to-one correspondence between
the set of real numbers between 0 and 1 and a subset of
these functions. Do this by associating to the real number
0.d1d2 . . . dn . . . the function f with f (n) = dn.]

∗39. We say that a function is computable if there is a com-
puter program that finds the values of this function. Use
Exercises 37 and 38 to show that there are functions that
are not computable.

∗40. Show that if S is a set, then there does not exist an onto
function f from S to P(S), the power set of S. Con-
clude that |S| < |P(S)|. This result is known as Cantor’s
theorem. [Hint: Suppose such a function f existed. Let
T = {s ∈ S | s �∈ f (s)} and show that no element s can
exist for which f (s) = T .]

2.6 Matrices

Introduction

Matrices are used throughout discrete mathematics to express relationships between elements
in sets. In subsequent chapters we will use matrices in a wide variety of models. For instance,
matrices will be used in models of communications networks and transportation systems. Many
algorithms will be developed that use these matrix models. This section reviews matrix arithmetic
that will be used in these algorithms.
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DEFINITION 1 A matrix is a rectangular array of numbers. A matrix with m rows and n columns is called
an m× n matrix. The plural of matrix is matrices. A matrix with the same number of rows
as columns is called square. Two matrices are equal if they have the same number of rows
and the same number of columns and the corresponding entries in every position are equal.

EXAMPLE 1 The matrix

⎡
⎣

1 1
0 2
1 3

⎤
⎦ is a 3× 2 matrix.

▲

We now introduce some terminology about matrices. Boldface uppercase letters will be
used to represent matrices.

DEFINITION 2 Let m and n be positive integers and let

A =

⎡
⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

· · ·
· · ·
· · ·

am1 am2 . . . amn

⎤
⎥⎥⎥⎥⎥⎦

.

The ith row of A is the 1× n matrix [ai1, ai2, . . . , ain]. The j th column of A is the m× 1
matrix

⎡
⎢⎢⎢⎢⎢⎣

a1j

a2j

·
·
·

amj

⎤
⎥⎥⎥⎥⎥⎦

.

The (i, j )th element or entry of A is the element aij , that is, the number in the ith row and
j th column of A. A convenient shorthand notation for expressing the matrix A is to write
A = [aij], which indicates that A is the matrix with its (i, j )th element equal to aij.

Matrix Arithmetic

The basic operations of matrix arithmetic will now be discussed, beginning with a definition of
matrix addition.

DEFINITION 3 Let A = [aij] and B = [bij] be m× n matrices. The sum of A and B, denoted by A + B, is
the m× n matrix that has aij + bij as its (i, j )th element. In other words, A+ B= [aij + bij].

The sum of two matrices of the same size is obtained by adding elements in the corresponding
positions. Matrices of different sizes cannot be added, because the sum of two matrices is defined
only when both matrices have the same number of rows and the same number of columns.

EXAMPLE 2

We have

⎡
⎣

1 0 −1
2 2 −3
3 4 0

⎤
⎦+

⎡
⎣

3 4 −1
1 −3 0
−1 1 2

⎤
⎦ =

⎡
⎣

4 4 −2
3 −1 −3
2 5 2

⎤
⎦.

▲
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We now discuss matrix products.A product of two matrices is defined only when the number
of columns in the first matrix equals the number of rows of the second matrix.

DEFINITION 4 Let A be an m× k matrix and B be a k × n matrix. The product of A and B, denoted by AB, is
the m× n matrix with its (i, j )th entry equal to the sum of the products of the corresponding
elements from the ith row of A and the j th column of B. In other words, if AB = [cij ], then

cij = ai1b1j + ai2b2j + · · · + aikbkj .

In Figure 1 the colored row of A and the colored column of B are used to compute the element
cij of AB. The product of two matrices is not defined when the number of columns in the first
matrix and the number of rows in the second matrix are not the same.

We now give some examples of matrix products.

EXAMPLE 3 Let

A =
⎡
⎢⎣

1 0 4
2 1 1
3 1 0
0 2 2

⎤
⎥⎦ and B =

⎡
⎣

2 4
1 1
3 0

⎤
⎦ .

Find AB if it is defined.

Solution: Because A is a 4× 3 matrix and B is a 3× 2 matrix, the product AB is defined and is
a 4× 2 matrix. To find the elements of AB, the corresponding elements of the rows of A and the
columns of B are first multiplied and then these products are added. For instance, the element in
the (3, 1)th position of AB is the sum of the products of the corresponding elements of the third
row of A and the first column of B; namely, 3 · 2 + 1 · 1+ 0 · 3 = 7. When all the elements of
AB are computed, we see that

AB =
⎡
⎢⎣

14 4
8 9
7 13
8 2

⎤
⎥⎦ .

▲

Matrix multiplication is not commutative. That is, if A and B are two matrices, it is not
necessarily true that AB and BA are the same. In fact, it may be that only one of these two
products is defined. For instance, if A is 2× 3 and B is 3× 4, then AB is defined and is 2× 4;
however, BA is not defined, because it is impossible to multiply a 3× 4 matrix and a 2× 3
matrix.

In general, suppose that A is an m× n matrix and B is an r × s matrix. Then AB is defined
only when n = r and BA is defined only when s = m. Moreover, even when AB and BA are

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1k

a21 a22 . . . a2k

...
...

...

ai1 ai2 . . . aik

...
...

...

am1 am2 . . . amk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

b11 b12 . . . b1j . . . b1n

b21 b22 . . . b2j . . . b2n

...
...

...
...

bk1 bk2 . . . bkj . . . bkn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

c11 c12 . . . c1n

c21 c22 . . . c2n

...
... cij

...

cm1 cm2 . . . cmn

⎤
⎥⎥⎥⎦

FIGURE 1 The Product of A = [aij ] and B = [bij ].
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both defined, they will not be the same size unless m = n = r = s. Hence, if both AB and BA
are defined and are the same size, then both A and B must be square and of the same size.
Furthermore, even with A and B both n× n matrices, AB and BA are not necessarily equal, as
Example 4 demonstrates.

EXAMPLE 4 Let

A =
[

1 1
2 1

]
and B =

[
2 1
1 1

]
.

Does AB = BA?

Solution: We find that

AB =
[

3 2
5 3

]
and BA =

[
4 3
3 2

]
.

Hence, AB �= BA. ▲

Transposes and Powers of Matrices

We now introduce an important matrix with entries that are zeros and ones.

DEFINITION 5 The identity matrix of order n is the n× n matrix In = [δij ], where δij = 1 if i = j and
δij = 0 if i �= j . Hence

In =

⎡
⎢⎢⎢⎢⎢⎣

1 0 . . . 0
0 1 . . . 0
· · ·
· · ·
· · ·
0 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎦

.

Multiplying a matrix by an appropriately sized identity matrix does not change this matrix. In
other words, when A is an m× n matrix, we have

AIn = ImA = A.

Powers of square matrices can be defined. When A is an n× n matrix, we have

A0 = In, Ar = AAA · · ·A︸ ︷︷ ︸ .

r times

The operation of interchanging the rows and columns of a square matrix arises in many
contexts.
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DEFINITION 6 Let A = [aij ] be an m× n matrix. The transpose of A, denoted by At , is the n×m matrix
obtained by interchanging the rows and columns of A. In other words, if At = [bij ], then
bij = aji for i = 1, 2, . . . , n and j = 1, 2, . . . , m.

EXAMPLE 5 The transpose of the matrix

[
1 2 3
4 5 6

]
is the matrix

⎡
⎣

1 4
2 5
3 6

⎤
⎦.

▲

Matrices that do not change when their rows and columns are interchanged are often im-
portant.

DEFINITION 7 A square matrix A is called symmetric if A = At . Thus A = [aij ] is symmetric if aij = aji

for all i and j with 1 ≤ i ≤ n and 1 ≤ j ≤ n.

Note that a matrix is symmetric if and only if it is square and it is symmetric with respect to its
main diagonal (which consists of entries that are in the ith row and ith column for some i). This
symmetry is displayed in Figure 2.

EXAMPLE 6 The matrix

⎡
⎣

1 1 0
1 0 1
0 1 0

⎤
⎦ is symmetric.

▲

aj i

ai j

FIGURE 2 A
Symmetric Matrix.

Zero–One Matrices

A matrix all of whose entries are either 0 or 1 is called a zero–one matrix. Zero–one matrices
are often used to represent discrete structures, as we will see in Chapters 9 and 10. Algorithms
using these structures are based on Boolean arithmetic with zero–one matrices. This arithmetic
is based on the Boolean operations ∧ and ∨, which operate on pairs of bits, defined by

b1 ∧ b2 =
{

1 if b1 = b2 = 1

0 otherwise,

b1 ∨ b2 =
{

1 if b1 = 1 or b2 = 1

0 otherwise.

DEFINITION 8 Let A = [aij ] and B = [bij ] be m× n zero–one matrices. Then the join of A and B is the
zero–one matrix with (i, j )th entry aij ∨ bij . The join of A and B is denoted by A ∨ B. The
meet of A and B is the zero–one matrix with (i, j )th entry aij ∧ bij . The meet of A and B is
denoted by A ∧ B.

EXAMPLE 7 Find the join and meet of the zero–one matrices

A =
[

1 0 1
0 1 0

]
, B =

[
0 1 0
1 1 0

]
.
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Solution: We find that the join of A and B is

A ∨ B =
[

1 ∨ 0 0 ∨ 1 1 ∨ 0
0 ∨ 1 1 ∨ 1 0 ∨ 0

]
=

[
1 1 1
1 1 0

]
.

The meet of A and B is

A ∧ B =
[

1 ∧ 0 0 ∧ 1 1 ∧ 0
0 ∧ 1 1 ∧ 1 0 ∧ 0

]
=

[
0 0 0
0 1 0

]
.

▲

We now define the Boolean product of two matrices.

DEFINITION 9 Let A = [aij ] be an m× k zero–one matrix and B = [bij ] be a k × n zero–one matrix. Then
the Boolean product of A and B, denoted by A�B, is the m× n matrix with (i, j )th entry
cij where

cij = (ai1 ∧ b1j ) ∨ (ai2 ∧ b2j ) ∨ · · · ∨ (aik ∧ bkj ).

Note that the Boolean product of A and B is obtained in an analogous way to the ordinary
product of these matrices, but with addition replaced with the operation∨ and with multiplication
replaced with the operation ∧. We give an example of the Boolean products of matrices.

EXAMPLE 8 Find the Boolean product of A and B, where

A =
⎡
⎣

1 0
0 1
1 0

⎤
⎦ , B =

[
1 1 0
0 1 1

]
.

Solution: The Boolean product A�B is given by

A�B =
⎡
⎣

(1 ∧ 1) ∨ (0 ∧ 0) (1 ∧ 1) ∨ (0 ∧ 1) (1 ∧ 0) ∨ (0 ∧ 1)

(0 ∧ 1) ∨ (1 ∧ 0) (0 ∧ 1) ∨ (1 ∧ 1) (0 ∧ 0) ∨ (1 ∧ 1)

(1 ∧ 1) ∨ (0 ∧ 0) (1 ∧ 1) ∨ (0 ∧ 1) (1 ∧ 0) ∨ (0 ∧ 1)

⎤
⎦

=
⎡
⎣

1 ∨ 0 1 ∨ 0 0 ∨ 0
0 ∨ 0 0 ∨ 1 0 ∨ 1
1 ∨ 0 1 ∨ 0 0 ∨ 0

⎤
⎦

=
⎡
⎣

1 1 0
0 1 1
1 1 0

⎤
⎦ .

▲

We can also define the Boolean powers of a square zero–one matrix. These powers will
be used in our subsequent studies of paths in graphs, which are used to model such things as
communications paths in computer networks.
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DEFINITION 10 Let A be a square zero–one matrix and let r be a positive integer. The rth Boolean power of
A is the Boolean product of r factors of A. The rth Boolean product of A is denoted by A[r].
Hence

A[r] = A�A�A� · · · �A︸ ︷︷ ︸ .
r times

(This is well defined because the Boolean product of matrices is associative.) We also define
A[0] to be In.

EXAMPLE 9 Let A =
⎡
⎣

0 0 1
1 0 0
1 1 0

⎤
⎦. Find A[n] for all positive integers n.

Solution: We find that

A[2] = A�A =
⎡
⎣

1 1 0
0 0 1
1 0 1

⎤
⎦ .

We also find that

A[3] = A[2] �A =
⎡
⎣

1 0 1
1 1 0
1 1 1

⎤
⎦ , A[4] = A[3] �A =

⎡
⎣

1 1 1
1 0 1
1 1 1

⎤
⎦ .

Additional computation shows that

A[5] =
⎡
⎣

1 1 1
1 1 1
1 1 1

⎤
⎦ .

The reader can now see that A[n] = A[5] for all positive integers n with n ≥ 5. ▲

Exercises

1. Let A =
⎡
⎣

1 1 1 3
2 0 4 6
1 1 3 7

⎤
⎦ .

a) What size is A?
b) What is the third column of A?
c) What is the second row of A?
d) What is the element of A in the (3, 2)th position?
e) What is At?

2. Find A+ B, where

a) A =
⎡
⎣

1 0 4
−1 2 2

0 −2 −3

⎤
⎦ ,

B =
⎡
⎣
−1 3 5

2 2 −3
2 −3 0

⎤
⎦ .

b) A =
[−1 0 5 6
−4 −3 5 −2

]
,

B =
[−3 9 −3 4

0 −2 −1 2

]
.

3. Find AB if

a) A =
[

2 1
3 2

]
, B =

[
0 4
1 3

]
.

b) A =
⎡
⎣

1 −1
0 1
2 3

⎤
⎦ , B =

[
3 −2 −1
1 0 2

]
.

c) A =
⎡
⎢⎣

4 −3
3 −1
0 −2
−1 5

⎤
⎥⎦ , B =

[−1 3 2 −2
0 −1 4 −3

]
.
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4. Find the product AB, where

a) A =
⎡
⎣

1 0 1
0 −1 −1
−1 1 0

⎤
⎦ , B =

⎡
⎣

0 1 −1
1 −1 0
−1 0 1

⎤
⎦ .

b) A =
⎡
⎣

1 −3 0
1 2 2
2 1 −1

⎤
⎦ , B =

⎡
⎣

1 −1 2 3
−1 0 3 −1
−3 −2 0 2

⎤
⎦ .

c) A =
⎡
⎣

0 −1
7 2
−4 −3

⎤
⎦ , B =

[
4 −1 2 3 0
−2 0 3 4 1

]
.

5. Find a matrix A such that

[
2 3
1 4

]
A =

[
3 0
1 2

]
.

[Hint: Finding A requires that you solve systems of linear
equations.]

6. Find a matrix A such that

⎡
⎣

1 3 2
2 1 1
4 0 3

⎤
⎦A =

⎡
⎣

7 1 3
1 0 3
−1 −3 7

⎤
⎦ .

7. Let A be an m× n matrix and let 0 be the m× n matrix
that has all entries equal to zero. Show that A = 0+ A =
A+ 0.

8. Show that matrix addition is commutative; that is,
show that if A and B are both m× n matrices, then
A+ B = B+ A.

9. Show that matrix addition is associative; that is, show
that if A, B, and C are all m× n matrices, then
A+ (B+ C) = (A+ B)+ C.

10. Let A be a 3× 4 matrix, B be a 4× 5 matrix, and C be a
4× 4 matrix. Determine which of the following products
are defined and find the size of those that are defined.
a) AB b) BA c) AC
d) CA e) BC f ) CB

11. What do we know about the sizes of the matrices A and
B if both of the products AB and BA are defined?

12. In this exercise we show that matrix multiplication is dis-
tributive over matrix addition.
a) Suppose that A and B are m× k matrices and that C

is a k × n matrix. Show that (A+ B)C = AC+ BC.

b) Suppose that C is an m× k matrix and that A and B are
k × n matrices. Show that C(A+ B) = CA+ CB.

13. In this exercise we show that matrix multiplication is
associative. Suppose that A is an m× p matrix, B is
a p × k matrix, and C is a k × n matrix. Show that
A(BC) = (AB)C.

14. The n× n matrix A = [aij ] is called a diagonal matrix if
aij = 0 when i �= j . Show that the product of two n× n

diagonal matrices is again a diagonal matrix. Give a sim-
ple rule for determining this product.

15. Let

A =
[

1 1
0 1

]
.

Find a formula for An, whenever n is a positive integer.

16. Show that (At )t = A.

17. Let A and B be two n× n matrices. Show that
a) (A+ B)t = At + Bt .
b) (AB)t = BtAt .

If A and B are n× n matrices with AB = BA = In, then B
is called the inverse of A (this terminology is appropriate be-
cause such a matrix B is unique) and A is said to be invertible.
The notation B = A−1 denotes that B is the inverse of A.

18. Show that

⎡
⎣

2 3 −1
1 2 1
−1 −1 3

⎤
⎦

is the inverse of

⎡
⎣

7 −8 5
−4 5 −3

1 −1 1

⎤
⎦ .

19. Let A be the 2× 2 matrix

A =
[
a b

c d

]
.

Show that if ad − bc �= 0, then

A−1 =

⎡
⎢⎢⎣

d

ad − bc

−b

ad − bc

−c

ad − bc

a

ad − bc

⎤
⎥⎥⎦ .

20. Let

A =
[−1 2

1 3

]
.

a) Find A−1. [Hint: Use Exercise 19.]
b) Find A3.
c) Find (A−1)3.
d) Use your answers to (b) and (c) to show that (A−1)3

is the inverse of A3.
21. Let A be an invertible matrix. Show that (An)−1 =

(A−1)n whenever n is a positive integer.

22. Let A be a matrix. Show that the matrix AAt is symmet-
ric. [Hint: Show that this matrix equals its transpose with
the help of Exercise 17b.]

23. Suppose that A is an n× n matrix where n is a positive
integer. Show that A + At is symmetric.
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24. a) Show that the system of simultaneous linear equations

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

an1x1 + an2x2 + · · · + annxn = bn.

in the variables x1, x2, . . . , xn can be expressed as
AX = B, where A = [aij ], X is an n× 1 matrix with
xi the entry in its ith row, and B is an n× 1 matrix
with bi the entry in its ith row.

b) Show that if the matrix A = [aij ] is invertible (as
defined in the preamble to Exercise 18), then the so-
lution of the system in part (a) can be found using the
equation X = A−1B.

25. Use Exercises 18 and 24 to solve the system

7x1 − 8x2 + 5x3 = 5

−4x1 + 5x2 − 3x3 = −3

x1 − x2 + x3 = 0

26. Let

A =
[

1 1
0 1

]
and B =

[
0 1
1 0

]
.

Find
a) A ∨ B. b) A ∧ B. c) A�B.

27. Let

A =
⎡
⎣

1 0 1
1 1 0
0 0 1

⎤
⎦ and B =

⎡
⎣

0 1 1
1 0 1
1 0 1

⎤
⎦ .

Find
a) A ∨ B. b) A ∧ B. c) A�B.

28. Find the Boolean product of A and B, where

A =
⎡
⎣

1 0 0 1
0 1 0 1
1 1 1 1

⎤
⎦ and B =

⎡
⎢⎣

1 0
0 1
1 1
1 0

⎤
⎥⎦ .

29. Let

A =
⎡
⎣

1 0 0
1 0 1
0 1 0

⎤
⎦ .

Find
a) A[2]. b) A[3].
c) A ∨ A[2] ∨ A[3].

30. Let A be a zero–one matrix. Show that
a) A ∨ A = A. b) A ∧ A = A.

31. In this exercise we show that the meet and join opera-
tions are commutative. Let A and B be m× n zero–one
matrices. Show that
a) A ∨ B = B ∨ A. b) B ∧ A = A ∧ B.

32. In this exercise we show that the meet and join opera-
tions are associative. Let A, B, and C be m× n zero–one
matrices. Show that
a) (A ∨ B) ∨ C = A ∨ (B ∨ C).
b) (A ∧ B) ∧ C = A ∧ (B ∧ C).

33. We will establish distributive laws of the meet over the
join operation in this exercise. Let A, B, and C be m× n

zero–one matrices. Show that
a) A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C).
b) A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C).

34. Let A be an n× n zero–one matrix. Let I be the n× n

identity matrix. Show that A� I = I�A = A.
35. In this exercise we will show that the Boolean prod-

uct of zero–one matrices is associative. Assume that A
is an m× p zero–one matrix, B is a p × k zero–one
matrix, and C is a k × n zero–one matrix. Show that
A� (B�C) = (A�B)�C.

Key Terms and Results

TERMS
set: a collection of distinct objects
axiom: a basic assumption of a theory
paradox: a logical inconsistency
element, member of a set: an object in a set
roster method: a method that describes a set by listing its

elements
set builder notation: the notation that describes a set by stating

a property an element must have to be a member
∅ (empty set, null set): the set with no members
universal set: the set containing all objects under considera-

tion
Venn diagram: a graphical representation of a set or sets
S = T (set equality): S and T have the same elements

S ⊆ T (S is a subset of T ): every element of S is also an
element of T

S ⊂ T (S is a proper subset of T ): S is a subset of T and
S �= T

finite set: a set with n elements, where n is a nonnegative
integer

infinite set: a set that is not finite
|S| (the cardinality of S): the number of elements in S

P(S) (the power set of S): the set of all subsets of S

A ∪ B (the union of A and B): the set containing those ele-
ments that are in at least one of A and B

A ∩ B (the intersection of A and B): the set containing those
elements that are in both A and B.


