
P1: 1

CH12-7T Rosen-2311T MHIA017-Rosen-v5.cls May 13, 2011 10:27

822 12 / Boolean Algebra

Exercises

1. Find a Boolean product of the Boolean variables x, y,
and z, or their complements, that has the value 1 if and
only if
a) x = y = 0, z = 1. b) x = 0, y = 1, z = 0.
c) x = 0, y = z = 1. d) x = y = z = 0.

2. Find the sum-of-products expansions of these Boolean
functions.
a) F(x, y) = x + y b) F(x, y) = x y
c) F(x, y) = 1 d) F(x, y) = y

3. Find the sum-of-products expansions of these Boolean
functions.
a) F(x, y, z) = x + y + z
b) F(x, y, z) = (x + z)y
c) F(x, y, z) = x
d) F(x, y, z) = x y

4. Find the sum-of-products expansions of the Boolean
function F(x, y, z) that equals 1 if and only if
a) x = 0. b) xy = 0.
c) x + y = 0. d) xyz = 0.

5. Find the sum-of-products expansion of the Boolean func-
tion F(w, x, y, z) that has the value 1 if and only if an
odd number of w, x, y, and z have the value 1.

6. Find the sum-of-products expansion of the Boolean func-
tion F(x1, x2, x3, x4, x5) that has the value 1 if and only
if three or more of the variables x1, x2, x3, x4, and x5 have
the value 1.

Another way to find a Boolean expression that represents a
Boolean function is to form a Boolean product of Boolean
sums of literals. Exercises 7–11 are concerned with represen-
tations of this kind.

7. Find a Boolean sum containing either x or x, either y

or y, and either z or z that has the value 0 if and only if
a) x = y = 1, z = 0. b) x = y = z = 0.
c) x = z = 0, y = 1.

8. Find a Boolean product of Boolean sums of literals that
has the value 0 if and only if x = y = 1 and z = 0,
x = z = 0 and y = 1, or x = y = z = 0. [Hint: Take the
Boolean product of the Boolean sums found in parts (a),
(b), and (c) in Exercise 7.]

9. Show that the Boolean sum y1 + y2 + · · · + yn, where
yi = xi or yi = xi , has the value 0 for exactly one combi-
nation of the values of the variables, namely, when xi = 0
if yi = xi and xi = 1 if yi = xi . This Boolean sum is
called a maxterm.

10. Show that a Boolean function can be represented as
a Boolean product of maxterms. This representation is
called the product-of-sums expansion or conjunctive
normal form of the function. [Hint: Include one max-
term in this product for each combination of the variables
where the function has the value 0.]

11. Find the product-of-sums expansion of each of the
Boolean functions in Exercise 3.

12. Express each of these Boolean functions using the oper-
ators · and −.
a) x + y + z b) x + y(x + z)

c) x + y d) x(x + y + z)

13. Express each of the Boolean functions in Exercise 12 us-
ing the operators + and .

14. Show that
a) x = x | x. b) xy = (x | y) | (x | y).

c) x + y = (x | x) | (y | y).

15. Show that
a) x = x ↓ x.

b) xy = (x ↓ x) ↓ (y ↓ y).

c) x + y = (x ↓ y) ↓ (x ↓ y).

16. Show that { ↓ } is functionally complete using Exer-
cise 15.

17. Express each of the Boolean functions in Exercise 3 using
the operator | .

18. Express each of the Boolean functions in Exercise 3 using
the operator ↓.

19. Show that the set of operators {+, ·} is not functionally
complete.

20. Are these sets of operators functionally complete?
a) {+,⊕} b) { ,⊕} c) {·,⊕}

12.3 Logic Gates

Introduction

Boolean algebra is used to model the circuitry of electronic devices. Each input and each output
of such a device can be thought of as a member of the set {0, 1}. A computer, or other electronic
device, is made up of a number of circuits. Each circuit can be designed using the rules of
Boolean algebra that were studied in Sections 12.1 and 12.2. The basic elements of circuits

P1: 1

CH12-7T Rosen-2311T MHIA017-Rosen-v5.cls May 13, 2011 10:27

12.3 Logic Gates 823

x
x + y

y

x

y

x xy

(a) Inverter (b) OR gate (c) AND gate

x

FIGURE 1 Basic Types of Gates.

are called gates, and were introduced in Section 1.2. Each type of gate implements a Boolean
operation. In this section we define several types of gates. Using these gates, we will apply the
rules of Boolean algebra to design circuits that perform a variety of tasks. The circuits that we
will study in this chapter give output that depends only on the input, and not on the current
state of the circuit. In other words, these circuits have no memory capabilities. Such circuits are
called combinational circuits or gating networks.

We will construct combinational circuits using three types of elements. The first is an
inverter, which accepts the value of one Boolean variable as input and produces the complement
of this value as its output. The symbol used for an inverter is shown in Figure 1(a). The input to
the inverter is shown on the left side entering the element, and the output is shown on the right
side leaving the element.

The next type of element we will use is the OR gate. The inputs to this gate are the values
of two or more Boolean variables. The output is the Boolean sum of their values. The symbol
used for an OR gate is shown in Figure 1(b). The inputs to the OR gate are shown on the left
side entering the element, and the output is shown on the right side leaving the element.

The third type of element we will use is the AND gate. The inputs to this gate are the values
of two or more Boolean variables. The output is the Boolean product of their values. The symbol
used for an AND gate is shown in Figure 1(c). The inputs to the AND gate are shown on the left
side entering the element, and the output is shown on the right side leaving the element.

We will permit multiple inputs to AND and OR gates. The inputs to each of these gates are
shown on the left side entering the element, and the output is shown on the right side. Examples
of AND and OR gates with n inputs are shown in Figure 2.

•
•

•

•
•

•

x1
x2

xn

x1x2 • • • xn

x1
x2

xn

x1 + x2 + • • • + xn

FIGURE 2 Gates with n Inputs.

Combinations of Gates

Combinational circuits can be constructed using a combination of inverters, OR gates, and AND
gates. When combinations of circuits are formed, some gates may share inputs. This is shown in
one of two ways in depictions of circuits. One method is to use branchings that indicate all the
gates that use a given input. The other method is to indicate this input separately for each gate.
Figure 3 illustrates the two ways of showing gates with the same input values. Note also that
output from a gate may be used as input by one or more other elements, as shown in Figure 3.
Both drawings in Figure 3 depict the circuit that produces the output xy + xy.

EXAMPLE 1 Construct circuits that produce the following outputs: (a) (x + y)x, (b) x (y + z), and (c) (x +
y + z)(x y z).

Solution: Circuits that produce these outputs are shown in Figure 4. ▲

P1: 1

CH12-7T Rosen-2311T MHIA017-Rosen-v5.cls May 13, 2011 10:27

824 12 / Boolean Algebra

x
x

xy + xy

y

x xy

y

xy

x

xy + xy

y

x xy

xy

FIGURE 3 Two Ways to Draw the Same Circuit.

(c)

y

x

x

x + y

x

(x + y) x

y

x

y + z

x (y + z)

x

(y + z)

z
z

(x + y + z)x y z

xyz

x

y

z

x

y

z

x
y
z

 x + y + z

(b)

(a)

FIGURE 4 Circuits that Produce the Outputs Specified in Example 1.

P1: 1

CH12-7T Rosen-2311T MHIA017-Rosen-v5.cls May 13, 2011 10:27

12.3 Logic Gates 825

Examples of Circuits

We will give some examples of circuits that perform some useful functions.

EXAMPLE 2 A committee of three individuals decides issues for an organization. Each individual votes either
yes or no for each proposal that arises. A proposal is passed if it receives at least two yes votes.
Design a circuit that determines whether a proposal passes.

Solution: Let x = 1 if the first individual votes yes, and x = 0 if this individual votes no;
let y = 1 if the second individual votes yes, and y = 0 if this individual votes no; let z = 1
if the third individual votes yes, and z = 0 if this individual votes no. Then a circuit must be
designed that produces the output 1 from the inputs x, y, and z when two or more of x, y,
and z are 1. One representation of the Boolean function that has these output values is
xy + xz+ yz (see Exercise 12 in Section 12.1). The circuit that implements this function is
shown in Figure 5. ▲

x

y
x

z

y

z

xy

xz

yz

xy + xz + yz

FIGURE 5 A Circuit for Majority Voting.

EXAMPLE 3 Sometimes light fixtures are controlled by more than one switch. Circuits need to be designed
so that flipping any one of the switches for the fixture turns the light on when it is off and turns
the light off when it is on. Design circuits that accomplish this when there are two switches and
when there are three switches.

TABLE 1

x y F(x, y)

1 1 1

1 0 0

0 1 0

0 0 1

Solution: We will begin by designing the circuit that controls the light fixture when two different
switches are used. Let x = 1 when the first switch is closed and x = 0 when it is open, and let
y = 1 when the second switch is closed and y = 0 when it is open. Let F(x, y) = 1 when the
light is on and F(x, y) = 0 when it is off. We can arbitrarily decide that the light will be on
when both switches are closed, so that F(1, 1) = 1. This determines all the other values of F .
When one of the two switches is opened, the light goes off, so F(1, 0) = F(0, 1) = 0. When
the other switch is also opened, the light goes on, so F(0, 0) = 1. Table 1 displays these values.
Note that F(x, y) = xy + x y. This function is implemented by the circuit shown in Figure 6.

x

y

xy

xy + xy
x

y

x

y

xy

FIGURE 6 A Circuit for a Light Controlled by Two Switches.

P1: 1

CH12-7T Rosen-2311T MHIA017-Rosen-v5.cls May 13, 2011 10:27

826 12 / Boolean Algebra

xyz

x

y

y

x

z
y
x

z

x

z

x

y

z

y xyz

y

z

z

x

xyz

xyz

xyz + xyz + xyz + xyz

FIGURE 7 A Circuit for a Fixture Controlled by Three Switches.

We will now design a circuit for three switches. Let x, y, and z be the Boolean variables that
indicate whether each of the three switches is closed. We let x = 1 when the first switch is closed,
and x = 0 when it is open; y = 1 when the second switch is closed, and y = 0 when it is open;
and z = 1 when the third switch is closed, and z = 0 when it is open. Let F(x, y, z) = 1 when the
light is on and F(x, y, z) = 0 when the light is off. We can arbitrarily specify that the light be on
when all three switches are closed, so that F(1, 1, 1) = 1. This determines all other values of F .
When one switch is opened, the light goes off, so F(1, 1, 0) = F(1, 0, 1) = F(0, 1, 1) = 0.
When a second switch is opened, the light goes on, so F(1, 0, 0) = F(0, 1, 0) = F(0, 0, 1) = 1.
Finally, when the third switch is opened, the light goes off again, so F(0, 0, 0) = 0. Table 2
shows the values of this function.

TABLE 2

x y z F(x, y, z)

1 1 1 1

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

0 0 0 0

TABLE 3
Input and
Output for the
Half Adder.

Input Output

x y s c

1 1 0 1

1 0 1 0

0 1 1 0

0 0 0 0

The function F can be represented by its sum-of-products expansion as F(x, y, z) =
xyz+ xy z+ xyz+ x yz. The circuit shown in Figure 7 implements this function. ▲
Adders

We will illustrate how logic circuits can be used to carry out addition of two positive integers
from their binary expansions. We will build up the circuitry to do this addition from some
component circuits. First, we will build a circuit that can be used to find x + y, where x and y

are two bits. The input to our circuit will be x and y, because these each have the value 0 or the
value 1. The output will consist of two bits, namely, s and c, where s is the sum bit and c is the
carry bit. This circuit is called a multiple output circuit because it has more than one output.
The circuit that we are designing is called the half adder, because it adds two bits, without
considering a carry from a previous addition. We show the input and output for the half adder
in Table 3. From Table 3 we see that c = xy and that s = xy + xy = (x + y)(xy). Hence, the
circuit shown in Figure 8 computes the sum bit s and the carry bit c from the bits x and y.

We use the full adder to compute the sum bit and the carry bit when two bits and a carry
are added. The inputs to the full adder are the bits x and y and the carry ci . The outputs are the
sum bit s and the new carry ci+1. The inputs and outputs for the full adder are shown in Table 4.

P1: 1

CH12-7T Rosen-2311T MHIA017-Rosen-v5.cls May 13, 2011 10:27

12.3 Logic Gates 827

xy (xy)

Sum = (x + y)(xy)

x + y

Carry = xy

x

y

FIGURE 8 The Half Adder.

(x + y)(xy)
Half
adder

Half
adder

 s = xyci + xyci + xyci + xyci

xy

ci+1 = xyci + xyci +
 xyci + xyci

ci

x

y

FIGURE 9 A Full Adder.

The two outputs of the full adder, the sum bit s and the carry ci+1, are given by the sum-
of-products expansions xyci + xy ci + xyci + x yci and xyci + xyci + xyci + xyci , respec-
tively. However, instead of designing the full adder from scratch, we will use half adders to
produce the desired output. A full adder circuit using half adders is shown in Figure 9.

TABLE 4
Input and
Output for
the Full Adder.

Input Output

x y ci s ci+1

1 1 1 1 1

1 1 0 0 1

1 0 1 0 1

1 0 0 1 0

0 1 1 0 1

0 1 0 1 0

0 0 1 1 0

0 0 0 0 0

Finally, in Figure 10 we show how full and half adders can be used to add the two three-bit
integers (x2x1x0)2 and (y2y1y0)2 to produce the sum (s3s2s1s0)2. Note that s3, the highest-order
bit in the sum, is given by the carry c2.

Full
adder

y1

x2

Half
adder

x0

y0

Full
adder

c0

ci
s2

s1

s0

c2 = s3

x1

y2

FIGURE 10 Adding Two Three-Bit
Integers with Full and Half Adders.

Exercises

In Exercises 1–5 find the output of the given circuit.

1. x

y

y

2. x

y

3.

z

y

x

x

4. x

y

z

x

y

z

P1: 1

CH12-7T Rosen-2311T MHIA017-Rosen-v5.cls May 13, 2011 10:27

828 12 / Boolean Algebra

5.

x

y

z

z
y
x

z
y
x

6. Construct circuits from inverters, AND gates, and OR
gates to produce these outputs.
a) x + y b) (x + y)x

c) xyz+ x y z d) (x + z)(y + z)

7. Design a circuit that implements majority voting for five
individuals.

8. Design a circuit for a light fixture controlled by four
switches, where flipping one of the switches turns the
light on when it is off and turns it off when it is on.

9. Show how the sum of two five-bit integers can be found
using full and half adders.

10. Construct a circuit for a half subtractor using AND gates,
OR gates, and inverters. A half subtractor has two bits
as input and produces as output a difference bit and a
borrow.

11. Construct a circuit for a full subtractor using AND gates,
OR gates, and inverters. A full subtractor has two bits
and a borrow as input, and produces as output a difference
bit and a borrow.

12. Use the circuits from Exercises 10 and 11 to find the dif-
ference of two four-bit integers, where the first integer is
greater than the second integer.

∗13. Construct a circuit that compares the two-bit integers
(x1x0)2 and (y1y0)2, returning an output of 1 when the
first of these numbers is larger and an output of 0 other-
wise.∗14. Construct a circuit that computes the product of the two-
bit integers (x1x0)2 and (y1y0)2. The circuit should have
four output bits for the bits in the product.

Two gates that are often used in circuits are NAND and NOR
gates. When NAND or NOR gates are used to represent cir-
cuits, no other types of gates are needed. The notation for these
gates is as follows:

x

y

x

y

x NAND y x NOR y

∗15. Use NAND gates to construct circuits with these out-
puts.
a) x b) x + y

c) xy d) x ⊕ y

∗16. Use NOR gates to construct circuits for the outputs given
in Exercise 15.

∗17. Construct a half adder using NAND gates.

∗18. Construct a half adder using NOR gates.

A multiplexer is a switching circuit that produces as output
one of a set of input bits based on the value of control bits.

19. Construct a multiplexer using AND gates, OR gates, and
inverters that has as input the four bits x0, x1, x2, and x3
and the two control bits c0 and c1. Set up the circuit so
that xi is the output, where i is the value of the two-bit
integer (c1c0)2.

The depth of a combinatorial circuit can be defined by spec-
ifying that the depth of the initial input is 0 and if a gate
has n different inputs at depths d1, d2, . . . , dn, respectively,
then its outputs have depth equal to max(d1, d2, . . . , dn)+ 1;
this value is also defined to be the depth of the gate. The depth
of a combinatorial circuit is the maximum depth of the gates
in the circuit.

20. Find the depth of
a) the circuit constructed in Example 2 for majority vot-

ing among three people.

b) the circuit constructed in Example 3 for a light con-
trolled by two switches.

c) the half adder shown in Figure 8.

d) the full adder shown in Figure 9.

12.4 Minimization of Circuits

Introduction

The efficiency of a combinational circuit depends on the number and arrangement of its gates.The
process of designing a combinational circuit begins with the table specifying the output for each
combination of input values. We can always use the sum-of-products expansion of a circuit to
find a set of logic gates that will implement this circuit. However, the sum-of-products expansion

