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12.2 Representing Boolean Functions 819

In Exercises 35–42, use the laws in Definition 1 to show that
the stated properties hold in every Boolean algebra.

35. Show that in a Boolean algebra, the idempotent laws
x ∨ x = x and x ∧ x = x hold for every element x.

36. Show that in a Boolean algebra, every element x has a
unique complement x such that x ∨ x = 1 and x ∧ x = 0.

37. Show that in a Boolean algebra, the complement of the
element 0 is the element 1 and vice versa.

38. Prove that in a Boolean algebra, the law of the double
complement holds; that is, x = x for every element x.

39. Show that De Morgan’s laws hold in a Boolean algebra.

That is, show that for all x and y, (x ∨ y) = x ∧ y and
(x ∧ y) = x ∨ y.

40. Show that in a Boolean algebra, the modular properties
hold. That is, show that x ∧ (y ∨ (x ∧ z)) = (x ∧ y) ∨
(x ∧ z) and x ∨ (y ∧ (x ∨ z)) = (x ∨ y) ∧ (x ∨ z).

41. Show that in a Boolean algebra, if x ∨ y = 0, then x = 0
and y = 0, and that if x ∧ y = 1, then x = 1 and y = 1.

42. Show that in a Boolean algebra, the dual of an iden-
tity, obtained by interchanging the ∨ and ∧ operators
and interchanging the elements 0 and 1, is also a valid
identity.

43. Show that a complemented, distributive lattice is a
Boolean algebra.

12.2 Representing Boolean Functions

Two important problems of Boolean algebra will be studied in this section. The first problem
is: Given the values of a Boolean function, how can a Boolean expression that represents this
function be found? This problem will be solved by showing that any Boolean function can be
represented by a Boolean sum of Boolean products of the variables and their complements. The
solution of this problem shows that every Boolean function can be represented using the three
Boolean operators ·,+, and . The second problem is: Is there a smaller set of operators that
can be used to represent all Boolean functions? We will answer this question by showing that
all Boolean functions can be represented using only one operator. Both of these problems have
practical importance in circuit design.

Sum-of-Products Expansions

We will use examples to illustrate one important way to find a Boolean expression that represents
a Boolean function.

EXAMPLE 1 Find Boolean expressions that represent the functions F(x, y, z) and G(x, y, z), which are given
in Table 1.

Solution: An expression that has the value 1 when x = z = 1 and y = 0, and the value 0 other-
wise, is needed to represent F . Such an expression can be formed by taking the Boolean product
of x, y, and z. This product, xyz, has the value 1 if and only if x = y = z = 1, which holds if
and only if x = z = 1 and y = 0.

TABLE 1

x y z F G

1 1 1 0 0

1 1 0 0 1

1 0 1 1 0

1 0 0 0 0

0 1 1 0 0

0 1 0 0 1

0 0 1 0 0

0 0 0 0 0

To represent G, we need an expression that equals 1 when x = y = 1 and z = 0, or x = z =
0 and y = 1. We can form an expression with these values by taking the Boolean sum of two
different Boolean products. The Boolean product xyz has the value 1 if and only if x = y = 1
and z = 0. Similarly, the product xyz has the value 1 if and only if x = z = 0 and y = 1. The
Boolean sum of these two products, xyz+ xyz, represents G, because it has the value 1 if and
only if x = y = 1 and z = 0, or x = z = 0 and y = 1. ▲

Example 1 illustrates a procedure for constructing a Boolean expression representing a
function with given values. Each combination of values of the variables for which the function
has the value 1 leads to a Boolean product of the variables or their complements.
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DEFINITION 1 A literal is a Boolean variable or its complement. A minterm of the Boolean variables
x1, x2, . . . , xn is a Boolean product y1y2 · · · yn, where yi = xi or yi = xi . Hence, a minterm
is a product of n literals, with one literal for each variable.

A minterm has the value 1 for one and only one combination of values of its variables. More
precisely, the minterm y1y2 . . . yn is 1 if and only if each yi is 1, and this occurs if and only
if xi = 1 when yi = xi and xi = 0 when yi = xi .

EXAMPLE 2 Find a minterm that equals 1 if x1 = x3 = 0 and x2 = x4 = x5 = 1, and equals 0 otherwise.

Solution: The minterm x1x2x3x4x5 has the correct set of values. ▲

By taking Boolean sums of distinct minterms we can build up a Boolean expression with a
specified set of values. In particular, a Boolean sum of minterms has the value 1 when exactly
one of the minterms in the sum has the value 1. It has the value 0 for all other combinations of
values of the variables. Consequently, given a Boolean function, a Boolean sum of minterms
can be formed that has the value 1 when this Boolean function has the value 1, and has the
value 0 when the function has the value 0. The minterms in this Boolean sum correspond to
those combinations of values for which the function has the value 1. The sum of minterms that
represents the function is called the sum-of-products expansion or the disjunctive normal
form of the Boolean function.

(See Exercise 42 in Section 1.3 for the development of disjunctive normal form in propo-
sitional calculus.)

EXAMPLE 3 Find the sum-of-products expansion for the function F(x, y, z) = (x + y)z.

Solution: We will find the sum-of-products expansion of F(x, y, z) in two ways. First, we will
use Boolean identities to expand the product and simplify. We find that

F(x, y, z) = (x + y)z

= xz+ yz Distributive law

= x1z+ 1yz Identity law

= x(y + y)z+ (x + x)yz Unit property

= xyz+ xy z+ xyz+ xyz Distributive law

= xyz+ xy z+ xy z. Idempotent law

Second, we can construct the sum-of-products expansion by determining the values of F for
all possible values of the variables x, y, and z. These values are found in Table 2. The sum-of-
products expansion of F is the Boolean sum of three minterms corresponding to the three rows
of this table that give the value 1 for the function. This gives

F(x, y, z) = xyz+ xy z+ xyz. ▲

It is also possible to find a Boolean expression that represents a Boolean function by taking
a Boolean product of Boolean sums. The resulting expansion is called the conjunctive normal
form or product-of-sums expansion of the function. These expansions can be found from
sum-of-products expansions by taking duals. How to find such expansions directly is described
in Exercise 10.
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TABLE 2

x y z x + y z (x + y)z

1 1 1 1 0 0

1 1 0 1 1 1

1 0 1 1 0 0

1 0 0 1 1 1

0 1 1 1 0 0

0 1 0 1 1 1

0 0 1 0 0 0

0 0 0 0 1 0

Functional Completeness

Every Boolean function can be expressed as a Boolean sum of minterms. Each minterm is the
Boolean product of Boolean variables or their complements. This shows that every Boolean
function can be represented using the Boolean operators ·,+, and −. Because every Boolean
function can be represented using these operators we say that the set {·,+,− } is functionally
complete. Can we find a smaller set of functionally complete operators? We can do so if one
of the three operators of this set can be expressed in terms of the other two. This can be done
using one of De Morgan’s laws. We can eliminate all Boolean sums using the identity

x + y = x y,

which is obtained by taking complements of both sides in the second De Morgan law, given in
Table 5 in Section 12.1, and then applying the double complementation law. This means that
the set {·,− } is functionally complete. Similarly, we could eliminate all Boolean products using
the identity

xy = x + y,

which is obtained by taking complements of both sides in the first De Morgan law, given in
Table 5 in Section 12.1, and then applying the double complementation law. Consequently
{+,− } is functionally complete. Note that the set {+, ·} is not functionally complete, be-
cause it is impossible to express the Boolean function F(x) = x using these operators (see
Exercise 19).

We have found sets containing two operators that are functionally complete. Can we find
a smaller set of functionally complete operators, namely, a set containing just one opera-
tor? Such sets exist. Define two operators, the | or NAND operator, defined by 1 | 1 = 0 and
1 | 0 = 0 | 1 = 0 | 0 = 1; and the ↓ or NOR operator, defined by 1 ↓ 1 = 1 ↓ 0 = 0 ↓ 1 = 0
and 0 ↓ 0 = 1. Both of the sets { | } and { ↓ } are functionally complete. To see that { | } is
functionally complete, because {·,− } is functionally complete, all that we have to do is show
that both of the operators · and − can be expressed using just the | operator. This can be done as

x = x | x,

xy = (x | y) | (x | y).

The reader should verify these identities (see Exercise 14). We leave the demonstration that { ↓ }
is functionally complete for the reader (see Exercises 15 and 16).
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Exercises

1. Find a Boolean product of the Boolean variables x, y,
and z, or their complements, that has the value 1 if and
only if
a) x = y = 0, z = 1. b) x = 0, y = 1, z = 0.
c) x = 0, y = z = 1. d) x = y = z = 0.

2. Find the sum-of-products expansions of these Boolean
functions.
a) F(x, y) = x + y b) F(x, y) = x y
c) F(x, y) = 1 d) F(x, y) = y

3. Find the sum-of-products expansions of these Boolean
functions.
a) F(x, y, z) = x + y + z
b) F(x, y, z) = (x + z)y
c) F(x, y, z) = x
d) F(x, y, z) = x y

4. Find the sum-of-products expansions of the Boolean
function F(x, y, z) that equals 1 if and only if
a) x = 0. b) xy = 0.
c) x + y = 0. d) xyz = 0.

5. Find the sum-of-products expansion of the Boolean func-
tion F(w, x, y, z) that has the value 1 if and only if an
odd number of w, x, y, and z have the value 1.

6. Find the sum-of-products expansion of the Boolean func-
tion F(x1, x2, x3, x4, x5) that has the value 1 if and only
if three or more of the variables x1, x2, x3, x4, and x5 have
the value 1.

Another way to find a Boolean expression that represents a
Boolean function is to form a Boolean product of Boolean
sums of literals. Exercises 7–11 are concerned with represen-
tations of this kind.

7. Find a Boolean sum containing either x or x, either y

or y, and either z or z that has the value 0 if and only if
a) x = y = 1, z = 0. b) x = y = z = 0.
c) x = z = 0, y = 1.

8. Find a Boolean product of Boolean sums of literals that
has the value 0 if and only if x = y = 1 and z = 0,
x = z = 0 and y = 1, or x = y = z = 0. [Hint: Take the
Boolean product of the Boolean sums found in parts (a),
(b), and (c) in Exercise 7.]

9. Show that the Boolean sum y1 + y2 + · · · + yn, where
yi = xi or yi = xi , has the value 0 for exactly one combi-
nation of the values of the variables, namely, when xi = 0
if yi = xi and xi = 1 if yi = xi . This Boolean sum is
called a maxterm.

10. Show that a Boolean function can be represented as
a Boolean product of maxterms. This representation is
called the product-of-sums expansion or conjunctive
normal form of the function. [Hint: Include one max-
term in this product for each combination of the variables
where the function has the value 0.]

11. Find the product-of-sums expansion of each of the
Boolean functions in Exercise 3.

12. Express each of these Boolean functions using the oper-
ators · and −.
a) x + y + z b) x + y(x + z)

c) x + y d) x(x + y + z)

13. Express each of the Boolean functions in Exercise 12 us-
ing the operators + and .

14. Show that
a) x = x | x. b) xy = (x | y) | (x | y).

c) x + y = (x | x) | (y | y).

15. Show that
a) x = x ↓ x.

b) xy = (x ↓ x) ↓ (y ↓ y).

c) x + y = (x ↓ y) ↓ (x ↓ y).

16. Show that { ↓ } is functionally complete using Exer-
cise 15.

17. Express each of the Boolean functions in Exercise 3 using
the operator | .

18. Express each of the Boolean functions in Exercise 3 using
the operator ↓.

19. Show that the set of operators {+, ·} is not functionally
complete.

20. Are these sets of operators functionally complete?
a) {+,⊕} b) { ,⊕} c) {·,⊕}

12.3 Logic Gates

Introduction

Boolean algebra is used to model the circuitry of electronic devices. Each input and each output
of such a device can be thought of as a member of the set {0, 1}. A computer, or other electronic
device, is made up of a number of circuits. Each circuit can be designed using the rules of
Boolean algebra that were studied in Sections 12.1 and 12.2. The basic elements of circuits


