King Saud University College of Applied Studies and Community Service Department of Natural Sciences

Atom and Natural Radioactivity

General Physics II PHYS 111

Nouf Alkathran nalkathran@ksu.edu.sa

Outline

- HISTORY OF THE ATOM
- Early Models of the Atom Rutherford
- Atomic Structure
- HELIUM ATOM
- The Bohr Model of the Atom
- Energy-Level Postulate
- Transitions Between Energy Levels
- The Bohr Model of the Atom:Ground and Excited States
- Line spectrum of
- some elements

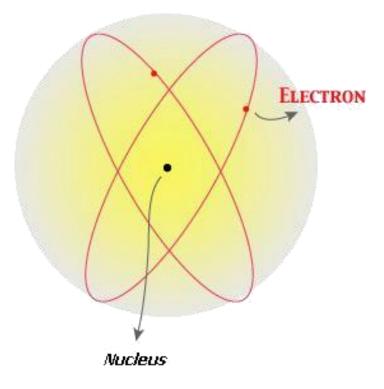
Outline

- The Bohr Model of the Atom: Hydrogen Spectrum
- Radioactivity
- Radioactive Decay
- Radioactive decay processes
 - 1. Beta (minus) decay
 - 2. Beta (plus) decay
 - 3. Electron capture
 - 4. Gamma decay
 - 5. Alpha decay
- Questions

HISTORY OF THE ATOM

John Dalton

 suggested that all matter was made up of tiny spheres that were able to bounce around with perfect elasticity and called them ATOMS

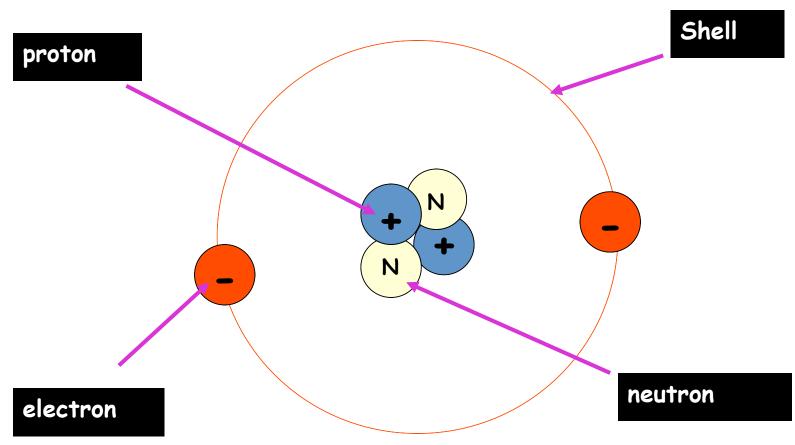

• Joseph Thompson

 found that atoms could sometimes eject a far smaller negative particle which he called an ELECTRON

Early Models of the Atom **Rutherford**

- Mostly empty space
- Small, positive <u>nucleus</u>
- Contained protons
- Negative electrons scattered around the outside

RUTHERFORD'S MODEL OF ATOM



Atomic Structure

Atoms are composed of -protons – positively charged particles -neutrons – neutral particles -electrons – negatively charged particles

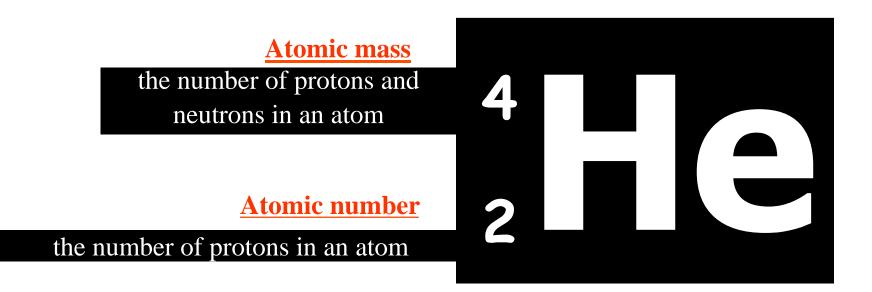
Protons and neutrons are located in the **nucleus**. Electrons are found in orbitals surrounding the nucleus

HELIUM ATOM

Atomic Structure

Every different atom has a characteristic number of protons in the nucleus.

atomic number = number of protons


Atoms with the same atomic number have the same chemical properties and belong to the same **element**.

ATOMIC STRUCTURE

The sum of protons and neutrons is the atom's **atomic mass**.

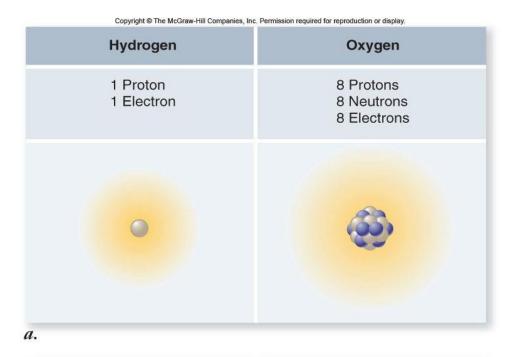
Isotopes – atoms of the same element that have different atomic mass numbers due to different numbers of neutrons.

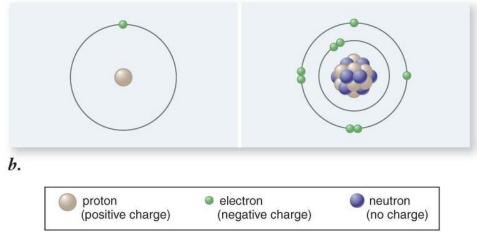
ATOMIC STRUCTURE

number of electrons = number of protons

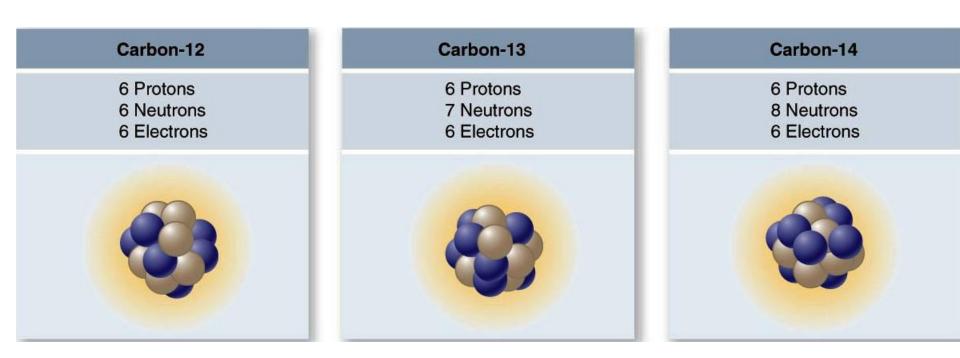
ATOMIC STRUCTURE

- **ATOMIC NUMBER** (Z) = number of protons in nucleus
 - MASS NUMBER (A) = number of protons + number of neutrons

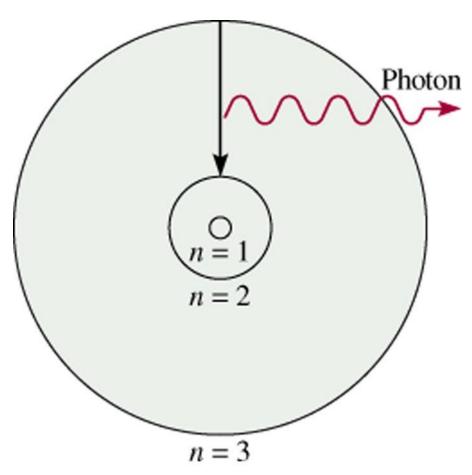

= atomic number (Z) + number of neutrons


ISOTOPS are atoms of the same element (X) with different numbers of neutrons in the nucleus

Mass Number AAtomic Number Z X \leftarrow Element Symbol


 $\begin{array}{cccc} {}^{1}_{1}H & {}^{2}_{1}H (D) & {}^{3}_{1}H (T) \\ \\ {}^{235}_{92} U & {}^{238}_{92} U \\ \end{array}$

Atomic Structure



Atomic Structure

The Bohr Model of the Atom

- •In 1913, Neils Bohr, set down postulates to account for
- •1. The stability of the hydrogen atom
- •2. The line spectrum of the atom

Energy-Level Postulate

•An electron can have only certain energy values, called energy levels. Energy levels are quantized.

•For an electron in a hydrogen atom, the energy is given by the following equation:

$$E = -\frac{R_{\rm H}}{n^2}$$

• $R_{\rm H} = 2.179 \ge 10^{-18} \text{ J}$ •n = principal quantum number

Transitions Between Energy Levels

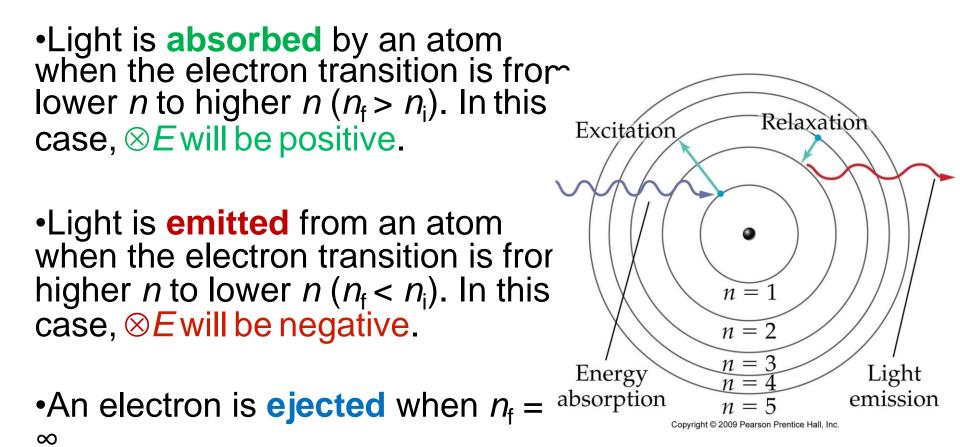
- An electron can change energy levels by absorbing energy to move to a higher energy level or by emitting energy to move to a lower energy level.
- For a hydrogen electron the energy change is given by

$$\Delta E = E_{\rm f} - E_{\rm i}$$

$$\Delta E = -R_{\rm H} \left[\frac{1}{n_{\rm f}^2} - \frac{1}{n_{\rm i}^2} \right]$$

 $R_{\rm H} = 2.179 \times 10^{-18}$ J, Rydberg constant

Transitions Between Energy Levels


• The energy of the emitted or absorbed photon is related to $\otimes E$:

$$E_{photon} = |\mathbf{I} E_{electron}| = hv$$

 $h = Planck's constant$

•We can now combine these two equations:

$$h_{\rm V} = \left| -R_{\rm H} \left[\frac{1}{n_{\rm f}^2} - \frac{1}{n_{\rm i}^2} \right] \right|$$

The Bohr Model of the Atom

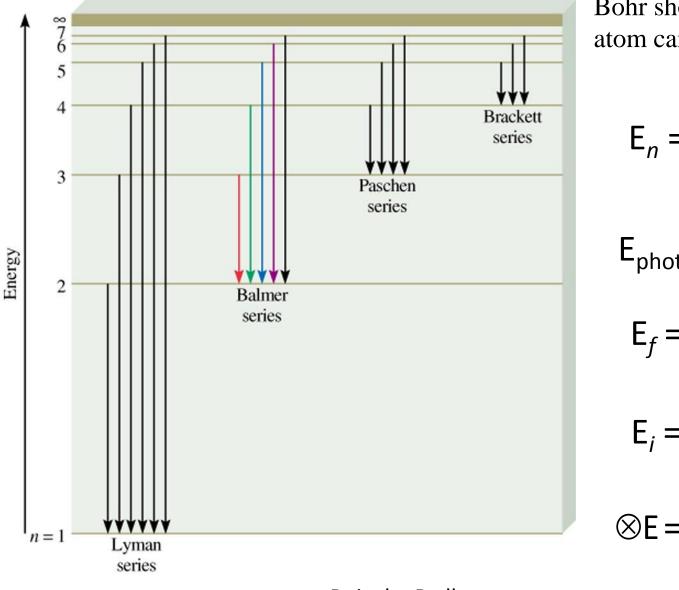
<u>The Bohr Model of the</u> <u>Atom:Ground and Excited States</u>

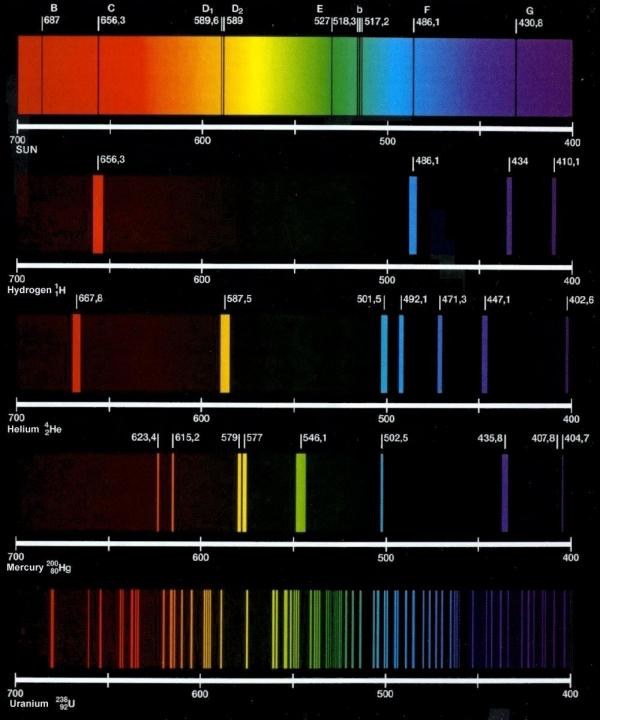
- In the Bohr model of hydrogen, the lowest amount of energy hydrogen's one electron can have corresponds to being in the *n* = 1 orbit. We call this its ground state.
- When the atom gains energy, the electron leaps to a higher energy orbit. We call this an **excited state**.
- The atom is less stable in an excited state and so it will release the extra energy to return to the ground state.

Bohr showed the energy a H atom can have E is equal to:

$$E_n = -R_H \left(\frac{1}{n^2}\right)$$

$$E_{photon} = \bigotimes E = E_{f} - E_{i}$$

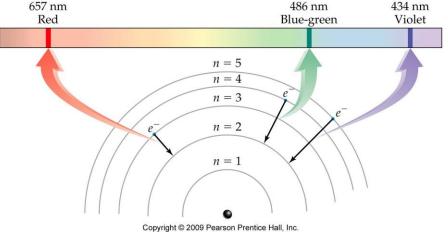

$$E_{f} = -R_{H} \left(\frac{1}{n_{f}^{2}}\right)$$


$$E_{i} = -R_{H} \left(\frac{1}{n_{i}^{2}}\right)$$

$$\bigotimes E = R_{H} \left(\frac{1}{n_{i}^{2}} - \frac{1}{n_{f}^{2}}\right)$$

 $\rm R_{\rm H}$ is the Rydberg constant

n is the principal quantum number



<u>Line spectrum of</u> <u>some elements</u>

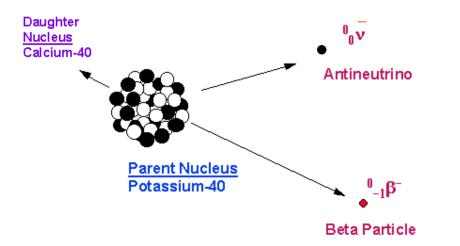
The Bohr Model of the Atom: Hydrogen Spectrum

- Every hydrogen atom has identical orbits, so every hydrogen atom can undergo the same energy transitions.
- However, since the distances between the orbits in an atom are not all the same, no two leaps in an atom will have the same energy.
 - The closer the orbits are in energy, the lower the energy of the photon emitted.
 - Lower energy photon = longer wavelength.
- Therefore, we get an emission spectrum that has a lot of lines that are unique to hydrogen.

Radioactivity

- Radioactivity is a natural and spontaneous process in which an unstable atomic nucleus loses energy by emitting radiation in the form of particles or electromagnetic waves.
- After emission the remaining daughter atom can either be a lower energy form of the same element or a completely different element.
- The emitted particles or waves are called ionising radiation because they have the ability to remove electrons from the atoms of any matter they interact with.

Radioactive Decay

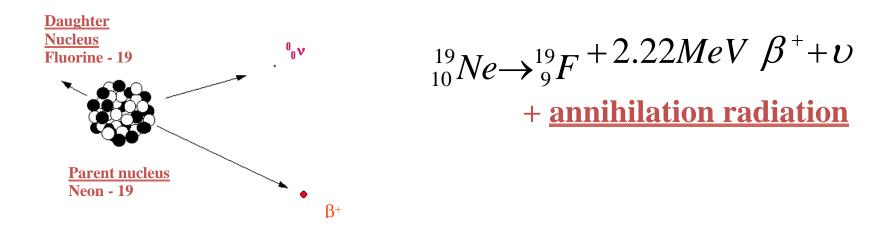

- The atoms of radioactive elements emit three distinct types of radiation called *alpha particles*, *beta particles*, and *gamma rays*.
 - alpha particles have a positive electric charge
 - beta particles are negative
 - gamma rays are electrically neutral

Radioactive decay processes

- 1. Beta (minus) decay, β^{-}
- 2. Beta (plus) decay , β^+
- 3. Electron capture, e
- 4. Gamma decay, γ
- 5. Alpha decay, α

Radioactive decay processes

1. Beta (minus) decay


$$^{40}_{19}K \rightarrow ^{40}_{20}Ca + 1.32MeV \beta^{-}$$
max

General equation for beta minus decay:

$$_{Z}^{A}X \rightarrow_{Z+1}^{A}Y + \beta^{-} + \upsilon$$

2. Beta (plus) decay

2. Beta (plus) decay

General equa4on for beta plus decay:

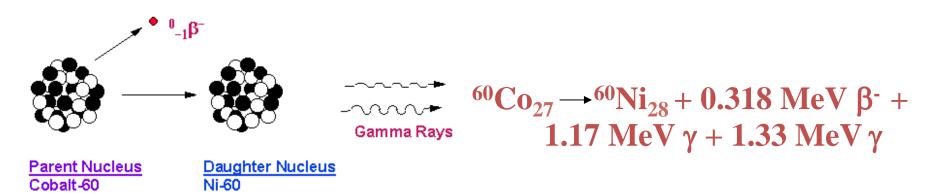
$$_{Z}^{A}X \rightarrow_{Z-1}^{A}Y + \beta^{+} + \upsilon$$

annihilation radiation = $m_e c^2 = 0.511 \text{ MeV} (x2)$

3. Electron capture

3. Electron capture:

Excess of protons, stability reached by different process than β^+ Orbital electron is *captured* by the nucleus, neutrino emitted.

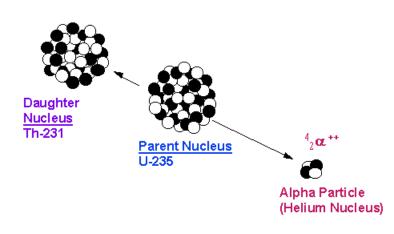

<u>Commonly</u> nucleus is left in an 'excited' state and returns to its ground state by emitting a gamma-ray photon from the *nucleus In all cases* a characteristic X-ray photon is emitted by the *atom*.

The general equation for the electron capture process is: $_{Z}^{A}X + e \rightarrow_{Z-1}^{A}Y + \upsilon + X - rays + \gamma - rays (possibly)$

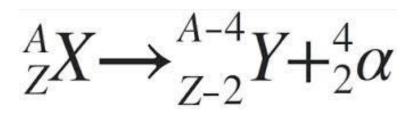
 $^{125}_{53}I + e \rightarrow ^{125}_{52}Te + Tellurium \quad X - rays(0.027Mev) + 0.035 MeV \gamma - rays$

4. Gamma decay

4. Gamma decay:



Nucleons have quantised energy levels - emitted γ -ray photons from a particular nucleus have a unique γ -ray spectrum.


γ-ray spectrum can be used to identify unknown isotopes and calibrate instruments.

5. Alpha decay

5. Alpha decay:

Nuclides with Z > 82 α particle = ⁴He₂ (helium nucleus) and are monoenergetic

Decay chain:

Generally, unstable heavy elements require a series of alpha and beta decays until a lighter more stable element is reached

Туре	Common equation	Example
Alpha decay	$A_{z}^{A}X \rightarrow A_{z-2}^{A-4}Y + {}_{2}^{4}He$	$^{238}_{92}$ Th $\rightarrow \frac{234}{90}$ U + $^{4}_{2}$ He + <i>energy</i>
Beta decay	$^{A}_{Z}X \rightarrow ^{A}_{Z+1}Y + ^{0}_{-1}e$	$^{209}_{82}$ Pb $\rightarrow ^{209}_{83}$ Bi + $^{0}_{-1}$ e + energy
		${}^{14}_{6}C \rightarrow {}^{14}_{7}N + {}^{0}_{1}e + energy$
Gamma decay	${}^{A}_{z} X \rightarrow {}^{A}_{z} Y + \gamma$	$^{210}_{84}$ Po $\rightarrow ^{206}_{82}$ Pb + $^{4}_{2}$ He + γ + energy
		$^{60}_{27}$ Co $\rightarrow \frac{^{60}_{27}}{^{27}}$ Co + γ + energy

Questions

- Almost the entire mass of an atom is concentrated in the _____.
 - 1. proton
 - 2. electrons
 - 3. nucleus
 - 4. neutrons
- Electron was discovered by____
 - 1. Chadwick
 - 2. Thomson
 - 3. Goldstein
 - 4. Bohr

Questions

- An atom has a mass number of 23 and atomic number 11. The number of protons are
 - 1. 11
 - 2. 12
 - 3. 23
 - 4. 44
- - 1. neutrons
 - 2. neutron and proton
 - 3. electron
 - 4. electron and neutron

Questions

- Uranium-235, uranium-238, and uranium-239 are different
 - 1. elements.
 - 2. ions.
 - 3. isotopes.
 - 4. nucleons.