

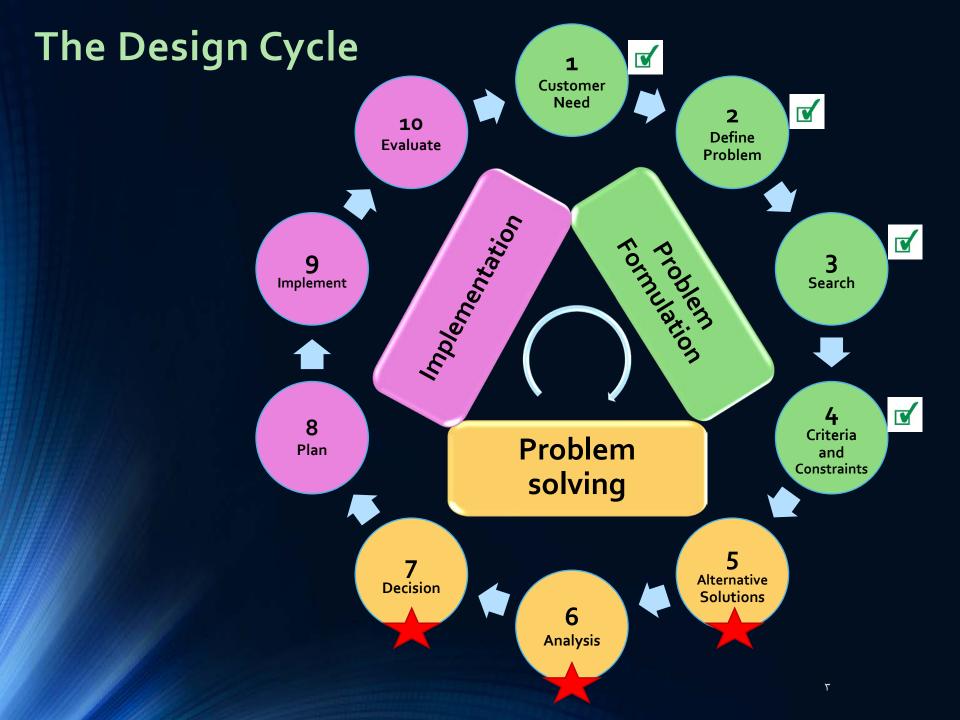
GE105
Introduction to Engineering Design
College of Engineering
King Saud University

Lecture 10.

Concept Generation and Evaluation

SPRING 2016

Introduction


So far you should know how to:

- Interpret the needs and analyze them
- Specify the objectives (primary and secondary)
- Determine the human factors
- Formulate the constraints and criteria
- Conduct a morphological analysis and generate concepts.

Today you will learn how to:

Evaluate alternatives through the weight-and-rate technique

This will be covered through a "solar oven" design example

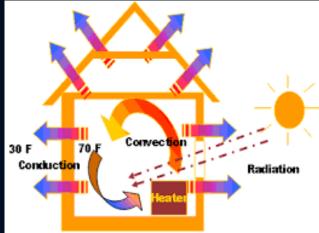
The Solar Oven Example

It is required to design a solar oven. The oven should be simple, easy to manufacture, inexpensive and highly effective

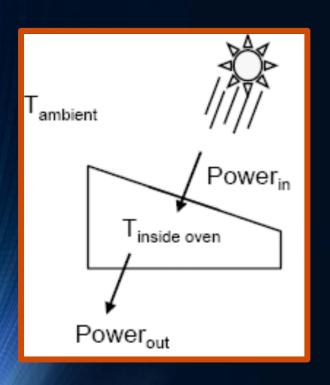
-Learn about heat transfer

-Learn about solar ovens A well Understood problem

The first step is not about finding solutions; It is about understanding the problem


Needs

Heat Transfer


It occurs through one of three modes when a ΔT exists

- Conduction: Heat travels from atom to atom of a solid Example: Doorknob is hot if fire is on other side
- Convection: With a gas or liquid, the heat propagates as molecules move Example: When you open the door of an oven, the temperature in the kitchen increases
- Radiation: A heated surface emits electromagnetic waves which carry energy away from the emitting object Example: Heat felt from a brick wall that has been in the sun all day

Understanding the Problem

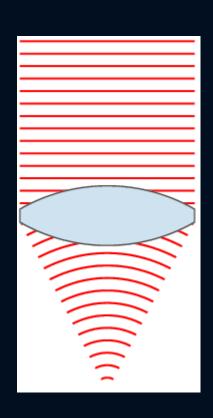
$$\Delta T = T_{inside\ oven} - T_{ambient}$$

Criteria:

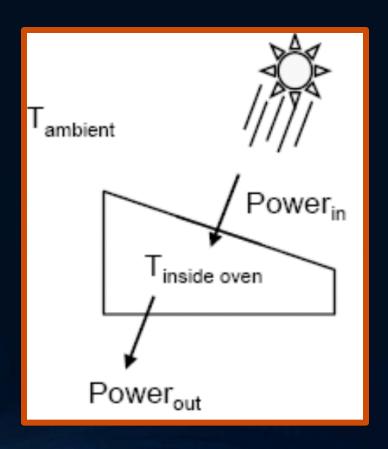
- Maximize ΔT
- Minimize Cost

Key Ideas

- Sunlight contains energy
- You want a solar oven that gets <u>as hot as</u> <u>possible</u> (highest temperature in oven chamber)
- You want your oven to receive solar energy easily
- You also want your oven not to lose the solar energy it has captured

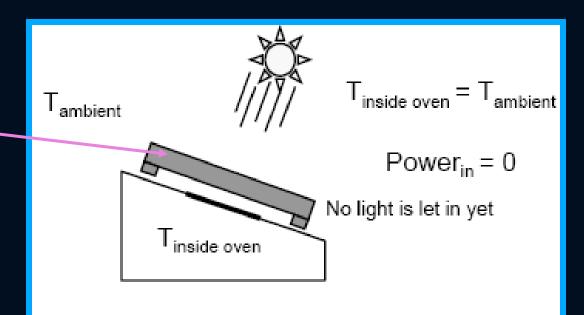


Needs

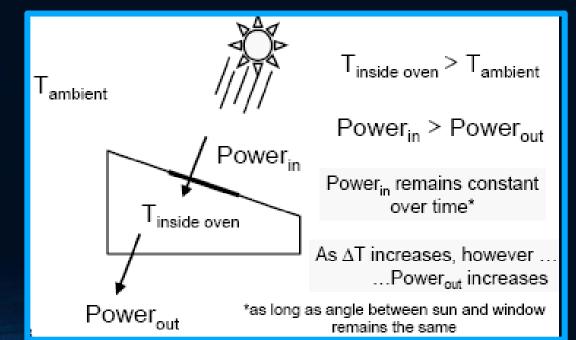

- Low Cost
- Maximum Temperature
- No lenses
- Size of chamber (partition)
- No preheating
- Presence of a thermometer
- High simplicity

•

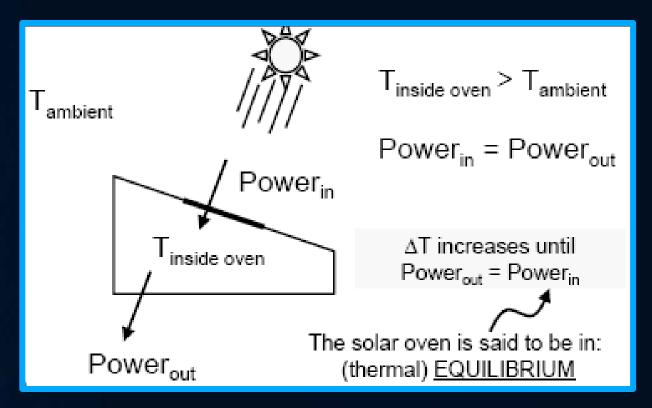
Solar Oven Heat Transfer


$$\Delta T = T_{inside\ oven} - T_{ambiant}$$

Time = 0



Cover


Time = Shortly after Cover Removed

Time = a long time after "0"

Summarizing what we know

- We want the largest ΔT we can get for a given cost
- To get a larger ΔT, we need either to:
 - 1. Increase Power in (get more sun into the oven)
 - 2. Decrease Power out for a given ΔT (reduce the rate at which energy is leaving the oven)

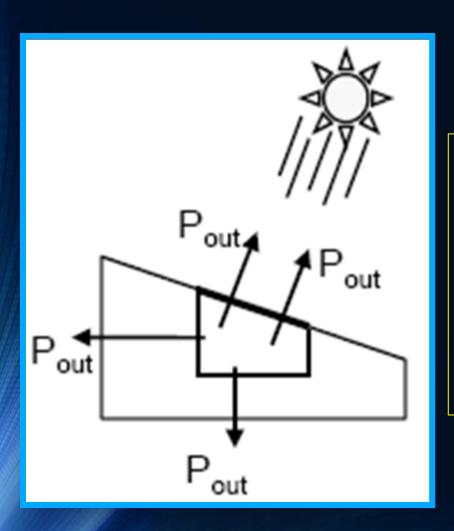
$$\uparrow \Delta T = \uparrow T_2 - T_1$$

$$\uparrow \Delta T = T_2 - \downarrow T_1$$

Increasing Powerin

Solar Intensity=1000 W/m²

Increase the area


What determines Power_{in}:

- Window Size
- Sun Intensity
- Window Thickness
- Angle light hits window
- Color of oven Wall

To increase Power_{in}:

- Bigger window
- Thinner window

Decreasing Powerout for a given ΔT ?

Energy leaves the oven through:

- Radiation (back out window)
- Conduction and Convection
 - back out window
 - sides of oven
 - bottom of oven

Decreasing Powerout for a given ΔT ?

Heat Transfer Via Window

- About 25 W /(m² °C) when T inside oven=150°C
- About 12 W/(m² °C) for a thicker window

Heat Transfer Via Sides and Bottom

About 1.5 W/(m² °C)

More heat is lost through window

- Therefore, you want a smaller, thicker window to keep heat in!
- Some good insulation on sides and bottom

Putting it all Together

- To increase Powerin
 - Increase window size
 - Decrease window thickness
- To decrease Power_{out}
 - Decrease window size
 - Increase window thickness
- Conflicting objectives? well, this is Engineering Design; you must make trade-offs (a compromise)

Solar Oven Concept Generation (Brainstorming)

No Reflector

Single Flat Reflector

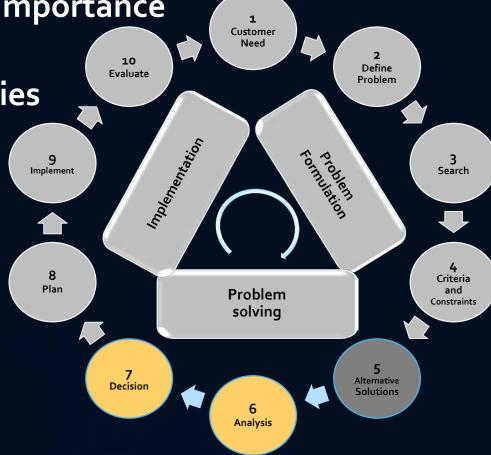
Parabolic

4 Flat Reflectors Open Corners

4 Flat Reflectors
Closed Corners

Concept Evaluation

- Characteristics of Engineering Decisions
 - Multiple criteria


Criteria are of different importance

Criteria are conflicting

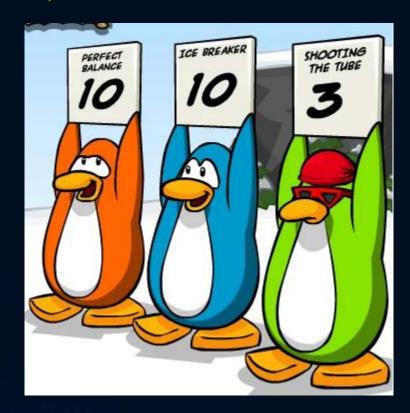
Multiple interested parties

Use a Decision Matrix:
 A simple decision approach to weigh prosand cons applying weight and rate concept (multiply and sum)

Applying weight-and-rate

- Features/attributes of the solar viewed important:
 - ✓ Direct Energy into Oven
 - ✓ Easy to Manufacture
 - **✓** Room for Error in Aim
 - ✓ Hold Energy in Oven
 - ✓ Durable
 - \checkmark

• Keep attributes as independent as possible!


Weights

 To determine the importance of each attribute, we use a simple approach based on weights that sum to 100

	Direct Energy	Manufac turability	Flexibility	Holding Energy in Oven	Total Weight
Scenario 1: Compromise	25	25	25	25	100%
Scenario 2: Most light in	40	5	15	40	100%
Scenario 3: Easy to make	20	40	20	20	100%

Rates

- Once alternative concepts are determined, rate each attribute for each alternative concept on a scale from 1 (worst) to 10 (best)
- For the solar oven example, we will only use three alternative concepts and four attributes
- Normally, you would have more concepts and more attributes

Rating the Concepts

- Let us use the "most light in" Scenario
- This scenario uses weights (40,5,15,40)

	Direct Energy	Manufac turability	Flexibility	Holding Energy in Oven	Score
Weights →	40	5	15	4 0	
Concept 1: No reflector	1	10	5	3	20-
Big window	40	50	75	120	⊕ ²⁸⁵
Concept 2: 1 reflector	4	8	7	6	F / F
Small window	160	40	105	240	545
Concept 3:	9	2	4	4	
Parabolic	360	10	60	160	590

Rating the Concepts

- Let us use the "compromise" Scenario
- This scenario uses weights (25, 25, 25, 25)

	Direct Energy	Manufac turability	Flexibility	Holding Energy in Oven	Score
Weights >	25	25	25	25	
Concept 1: No reflector Big window	1	10	5	3	475
	25	250	125	75	
Concept 2: 1 reflector Small window	4	8	7	6	625
	100	200	175	150	
Concept 3: Parabolic	9	2	4	4	475
	225	50	100	100	

Final Remarks

- Decision matrices (weightand-rate) are helpful tools for exploring trade-offs
- Use more than one scenario and do not be driven by a single-objective mentality
- You do not necessarily have to use the one with the highest score

