MATH203 Calculus

Dr. Bandar AI-Mohsin

School of Mathematics, KSU

$$
9 / 3 / 14
$$

Double Integrals in polar coordinates

Figure 13.26

Double Integrals in polar coordinates

Evaluation theorem:

$$
\begin{equation*}
\lim _{\|P\| \rightarrow 0} \sum_{k} f\left(r_{k}, \theta_{k}\right) r_{k} \Delta r_{k} \Delta \theta_{k}=\iint_{R} f(r, \theta) \mathrm{d} A=\int_{\alpha}^{\beta} \int_{g_{1}(\theta)}^{g_{2}(\theta)} f(r, \theta) r \mathrm{~d} r \mathrm{~d} \theta \tag{1}
\end{equation*}
$$

Note:

If $f(r, \theta)=1$ throughout R, then the above double integral (1) equals the area of R

$$
\int_{\alpha}^{\beta} \int_{g_{1}(\theta)}^{g_{2}(\theta)} r \mathrm{~d} r \mathrm{~d} \theta
$$

Double Integrals in polar coordinates

Some useful polar graphs

1- Straight line $y=3$ has the polar equation

$$
r=3 \csc \theta
$$

2- Straight line $x=2$ has the polar equation

$$
r=2 \sec \theta
$$

3- Circle $x^{2}+y^{2}=4$ is $r=2$.
4- Circle $(x-2)^{2}+y^{2}=4$ is $r=4 \cos \theta$.
5- Circle $x^{2}+(y-2)^{2}=4$ is $r=4 \sin \theta$.
6 -Cardiods $r=a(1+\cos \theta)$ and $r=a(1+\sin \theta)$.

Double Integrals in polar coordinates

Examples

(1) Find the area of the region R that lies outside the circle $r=a$ and inside the circle $r=2 a \sin \theta, a>0$.
(2) Find the area of the region R bounded by one loop of the lemniscate $r^{2}=a^{2} \sin 2 \theta$ where $a>0$.
(3) Use polar coordinates to evaluate
a-

$$
\int_{-a}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}}\left(x^{2}+y^{2}\right)^{3 / 2} \mathrm{~d} y \mathrm{~d} x .
$$

b- $\iint_{R}(x+y)^{3 / 2} \mathrm{dA} ; R$ is bounded by the circle $x^{2}+y^{2}=2 y$.

Surface Area

Consider a surface S given by $z=f(x, y)$ over a region R in $x y$-plane. Suppose that $f(x, y) \geqslant 0$ throughout R and that f has continuous first partial derivatives in R. Note S denotes the portion of the graph of f whose projection in $x y$-plane. Now, the area of the surface S given by $z=f(x, y)$ over R, where R is a closed region in $x y$-plane is given by

$$
\text { Surface Area }=\iint_{R} \mathrm{~d} S=\iint_{R} \sqrt{1+\left[f_{x}(x, y)\right]^{2}+\left[f_{y}(x, y)\right]^{2}} \mathrm{~d} A
$$

Surface Area

(a)

(b)

Surface Area

Note: This formula may also be used if $f(x, y)<0$ on R.

Examples

(1) Find the Surface area of the paraboloid given by $z=4-x^{2}-y^{2}$ for $z \geqslant 0$.
(2) A billowing sail is described as the portion of the graph of $z=3 x+y^{2}$ that lies over the trianglar region R in the $x y$-plane with vertices $(0,0,0),(0,1,0)$ and $(1,1,0)$. Find the surface area A of the sail. (3) Find the Surface area S is the part of the paraboloid $z=x^{2}+y^{2}$ cut off by the plane $z=1$.

