# MATH203 Calculus

Dr. Bandar Al-Mohsin

School of Mathematics, KSU

6/3/14

## Area and Volume

#### Volume:

In the previous study, we saw that if  $f(x,y)\geqslant 0$  and f is continuous, then the double integral

$$\iint\limits_R f(x,y) \mathrm{d}A \tag{1}$$

gives the volume of the solid that lies under the graph of z=f(x,y) and over a region R in the xy-plane.

#### Area:

The double integral (1) can be used to find the area of the region R if f(x,y)=1 which becomes

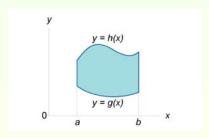
$$\iint\limits_R \mathrm{d}A \tag{2}$$

### Area and Volume

### Double Integral for finding area:

**Formula 1** If a region  $R_x$  is defined by  $a \le x \le b$  and  $g(x) \le y \le h(x)$ , where g(x), h(x) are continuous on [a,b], then the area A of  $R_x$  is given by

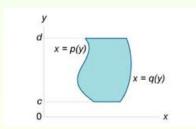
$$A = \int_{a}^{b} \int_{g(x)}^{h(x)} \mathrm{d}y \mathrm{d}x$$



### Area and Volume

**Formula 2** If a region  $R_y$  is defined by  $c\leqslant y\leqslant d$  and  $p(y)\leqslant x\leqslant q(y)$ , where p(y),q(y) are continuous on [c,d], then the area A of  $R_y$  is given by

$$\int_{c}^{d} \int_{p(y)}^{q(y)} \mathrm{d}x \mathrm{d}y$$



# Double Integrals

#### **Examples**

Sketch the region bounded by the graphs of :

- (1)  $y=x^2$  and y=2x. Evaluate  $\iint\limits_R (x^3+4y)dA$  using  $R_x$  region and
- $R_y$  region.
- (2)  $y = \sqrt{x}$  and  $y = \sqrt{3x 18}$  and y = 0 using  $R_x$  region and  $R_y$  region.
- (3) reverse the order of the integration and evaluate

$$\int_0^4 \int_{\sqrt{y}}^2 y \cos x^5 dx dy.$$

(4) Find the area A of the region in the xy-plane bounded by the graph of  $x=y^3$ , x+y=2 and y=0

