
CSC590: Selected Topics
BIG DATA & DATA MINING

Lecture 4

Mar 19, 2014

Dr. Esam A. Alwagait

Apache Hadoop
An Introduction to HDFS and MapReduce

2

Training Chapters

Introduction

The Motivation For Hadoop

Hadoop: Basic Concepts

Writing a MapReduce Program

3

Training Chapters

Introduction

The Motivation For Hadoop

Hadoop: Basic Concepts

Writing a MapReduce Program

4

Training Chapters

Introduction

The Motivation For Hadoop

Hadoop: Basic Concepts

Writing a MapReduce Program

5

The Motivation For Hadoop

In this chapter you will learn

 What problems exist with ‘traditional’ large-scale computing

systems

 What requirements an alternative approach should have

 How Hadoop addresses those requirements

6

The Motivation For Hadoop

Problems with Traditional Large-Scale Systems

Requirements for a New Approach

Hadoop!

Conclusion

7

Traditional Large-Scale Computation

 Traditionally, computation has been processor-bound

– Relatively small amounts of data

– Significant amount of complex processing performed on that data

 For decades, the primary push was to increase the computing

power of a single machine

– Faster processor, more RAM

 Distributed systems evolved to allow

developers to use multiple machines

for a single job

– MPI (Message Passing Interface)

– PVM (Parallel Virtual Machine)

– Condor

8

Distributed Systems: Problems

CORBA: Common Object Request

Broker Architecture

 Programming for traditional distributed systems is complex

– Data exchange requires synchronization

– Finite bandwidth is available

– Temporal dependencies are complicated

– It is difficult to deal with partial failures of the system

 Ken Arnold, CORBA designer:

– “Failure is the defining difference between distributed and local

programming, so you have to design distributed systems with the

expectation of failure”

– Developers spend more time designing for failure than they

do actually working on the problem itself

9

Distributed Systems: Data Storage

 Typically, data for a distributed system is stored on a SAN

 At compute time, data is copied to the compute nodes

 Fine for relatively limited amounts of data

SAN: Storage Area Network
10

The Data-Driven World

 Modern systems have to deal with far more data than was the

case in the past

– Organizations are generating huge amounts of data

– That data has inherent value, and cannot be discarded

 Examples:

– Facebook – over 70PB of data

– eBay – over 5PB of data

 Many organizations are generating data at a rate of terabytes per

day

11

Data Becomes the Bottleneck

 Moore’s Law has held firm for over 40 years

– Processing power doubles every two years

– Processing speed is no longer the problem

 Getting the data to the processors becomes the bottleneck

 Quick calculation

– Typical disk data transfer rate: 75MB/sec

– Time taken to transfer 100GB of data to the processor: approx 22

minutes!

– Assuming sustained reads

– Actual time will be worse, since most servers have less

than 100GB of RAM available

 A new approach is needed

12

The Motivation For Hadoop

Problems with Traditional Large-Scale Systems

Requirements for a New Approach

Hadoop!

Conclusion

13

Partial Failure Support

 The system must support partial failure

– Failure of a component should result in a graceful degradation of

application performance

– Not complete failure of the entire system

14

Data Recoverability

 If a component of the system fails, its workload should be

assumed by still-functioning units in the system

– Failure should not result in the loss of any data

15

Component Recovery

 If a component of the system fails and then recovers, it should

be able to rejoin the system

– Without requiring a full restart of the entire system

16

Consistency

 Component failures during execution of a job should not affect

the outcome of the job

17

Scalability

 Adding load to the system should result in a graceful decline in

performance of individual jobs

– Not failure of the system

 Increasing resources should support a proportional increase in

load capacity

18

The Motivation For Hadoop

Problems with Traditional Large-Scale Systems

Requirements for a New Approach

Hadoop!

Conclusion

19

Hadoop’s History

 Hadoop is based on work done by Google in the late 1990s/early

2000s

– Specifically, on papers describing the Google File System (GFS)

published in 2003, and MapReduce published in 2004

 This work takes a radical new approach to the problem

of distributed computing

– Meets all the requirements we have for reliability and scalability

 Core concept: distribute the data as it is initially stored in the

system

– Individual nodes can work on data local to those nodes

– No data transfer over the network is required for initial

processing

20

Core Hadoop Concepts

 Applications are written in high-level code

– Developers need not worry about network programming,

temporal dependencies or low-level infrastructure

 Nodes talk to each other as little as possible

– Developers should not write code which communicates

between nodes

– ‘Shared nothing’ architecture

 Data is spread among machines in advance

– Computation happens where the data is stored,

wherever possible

– Data is replicated multiple times on the system for increased

availability and reliability

21

Hadoop: Very High-Level Overview

 When data is loaded into the system, it is split into ‘blocks’

– Typically 64MB or 128MB

 Map tasks (the first part of the MapReduce system) work

on relatively small portions of data

– Typically a single block

 A master program allocates work to nodes such that a Map task

will work on a block of data stored locally on that node whenever

possible

– Many nodes work in parallel, each on their own part of the

overall dataset

22

Fault Tolerance

 If a node fails, the master will detect that failure and re-assign the

work to a different node on the system

 Restarting a task does not require communication with nodes

working on other portions of the data

 If a failed node restarts, it is automatically added back to the

system and assigned new tasks

 If a node appears to be running slowly, the master can

redundantly execute another instance of the same task

– Results from the first to finish will be used

– Known as ‘speculative execution’

23

The Motivation For Hadoop

Problems with Traditional Large-Scale Systems

Requirements for a New Approach

Hadoop!

Conclusion

24

The Motivation For Hadoop

In this chapter you have learned

 What problems exist with ‘traditional’ large-scale computing

systems

 What requirements an alternative approach should have

 How Hadoop addresses those requirements

25

Training Chapters

Introduction

The Motivation For Hadoop

Hadoop: Basic Concepts

Writing a MapReduce Program

26

Hadoop: Basic Concepts

In this chapter you will learn

 What Hadoop is

 What features the Hadoop Distributed File System (HDFS)

provides

 The concepts behind MapReduce

 How a Hadoop cluster operates

27

Hadoop: Basic Concepts

What Is Hadoop?

The Hadoop Distributed File System (HDFS)

Hands-On Exercise: Using HDFS

How MapReduce works

Hands-On Exercise: Running a MapReduce job

Anatomy of a Hadoop Cluster

Other Ecosystem Projects

Conclusion
28

The Hadoop Project

 Hadoop is an open-source project overseen by the Apache

Software Foundation

 Originally based on papers published by Google in 2003 and

2004

 Hadoop committers work at several different organizations

– Including Cloudera, Yahoo!, Facebook

29

Hadoop Components

 Hadoop consists of two core components

– The Hadoop Distributed File System (HDFS)

– MapReduce

 There are many other projects based around core Hadoop

– Often referred to as the ‘Hadoop Ecosystem’

– Pig, Hive, HBase, Flume, Oozie, Sqoop, etc

 A set of machines running HDFS and MapReduce is known as a

Hadoop Cluster

– Individual machines are known as nodes

– A cluster can have as few as one node, as many as

several thousands

– More nodes = better performance!

30

Hadoop Components: HDFS

 HDFS, the Hadoop Distributed File System, is responsible for

storing data on the cluster

 Data is split into blocks and distributed across multiple nodes in

the cluster

– Each block is typically 64MB or 128MB in size

 Each block is replicated multiple times

– Default is to replicate each block three times

– Replicas are stored on different nodes

– This ensures both reliability and availability

31

Hadoop Components: MapReduce

 MapReduce is the system used to process data in the Hadoop

cluster

 Consists of two phases: Map, and then Reduce

– Between the two is a stage known as the shuffle and sort

 Each Map task operates on a discrete portion of the overall

dataset

– Typically one HDFS block of data

 After all Maps are complete, the MapReduce system distributes

the intermediate data to nodes which perform the Reduce phase

– Much more on this later!

32

Hadoop: Basic Concepts

What Is Hadoop?

The Hadoop Distributed File System (HDFS)

Hands-On Exercise: Using HDFS

How MapReduce works

Hands-On Exercise: Running a MapReduce job

Anatomy of a Hadoop Cluster

Conclusion

33

HDFS Basic Concepts

 HDFS is a filesystem written in Java

– Based on Google’s GFS

 Sits on top of a native filesystem

– Such as ext3, ext4 or xfs

 Provides redundant storage for massive amounts of data

– Using cheap, unreliable computers

34

HDFS Basic Concepts (cont’d)

 HDFS performs best with a ‘modest’ number of large files

– Millions, rather than billions, of files

– Each file typically 100MB or more

 Files in HDFS are ‘write once’

– No random writes to files are allowed

– Append support is included in Cloudera’s Distribution

including Apache Hadoop (CDH) for HBase reliability

– Not recommended for general use

 HDFS is optimized for large, streaming reads of files

– Rather than random reads

35

How Files Are Stored

 Files are split into blocks

– Each block is usually 64MB or 128MB

 Data is distributed across many machines at load time

– Different blocks from the same file will be stored on different

machines

– This provides for efficient MapReduce processing (see later)

 Blocks are replicated across multiple machines, known as

DataNodes

– Default replication is three-fold

– Meaning that each block exists on three different machines

 A master node called the NameNode keeps track of which blocks

make up a file, and where those blocks are located

– Known as the metadata
36

How Files Are Stored: Example

 NameNode holds metadata

for the two files (Foo.txt and

Bar.txt)

 DataNodes hold the

actual blocks

– Each block will be 64MB

or 128MB in size

– Each block is replicated

three times on the cluster

37

More On The HDFS NameNode

 The NameNode daemon must be running at all times

– If the NameNode stops, the cluster becomes inaccessible

– Your system administrator will take care to ensure that the

NameNode hardware is reliable!

 The NameNode holds all of its metadata in RAM for fast access

– It keeps a record of changes on disk for crash recovery

 A separate daemon known as the Secondary NameNode takes

care of some housekeeping tasks for the NameNode

– Be careful: The Secondary NameNode is not a

backup NameNode!

38

HDFS: Points To Note

 Although files are split into 64MB or 128MB blocks, if a file is

smaller than this the full 64MB/128MB will not be used

 Blocks are stored as standard files on the DataNodes, in a set of

directories specified in Hadoop’s configuration files

 Without the metadata on the NameNode, there is no way to

access the files in the HDFS cluster

 When a client application wants to read a file:

– It communicates with the NameNode to determine which

blocks make up the file, and which DataNodes those blocks

reside on

– It then communicates directly with the DataNodes to read

the data. Hence, the NameNode will not be a bottleneck

39

Accessing HDFS

 Applications can read and write HDFS files directly via the Java

API

– Covered later in the course

 Typically, files are created on a local filesystem and must be

moved into HDFS

 Likewise, files stored in HDFS may need to be moved to a

machine’s local filesystem

 Access to HDFS from the command line is achieved with the
hadoop fs command

40

hadoop fs Examples

 Copy file foo.txt from local disk to the user’s directory in HDFS

hadoop fs -copyFromLocal foo.txt foo.txt

– This will copy the file to /user/username/foo.txt

 Get a directory listing of the user’s home directory in HDFS

hadoop fs -ls

 Get a directory listing of the HDFS root directory

hadoop fs –ls /

41

hadoop fs Examples (cont’d)

 Display the contents of the HDFS file /user/fred/bar.txt

hadoop fs –cat /user/fred/bar.txt

 Move that file to the local disk, named as baz.txt

hadoop fs –copyToLocal /user/fred/bar.txt baz.txt

 Create a directory called input under the user’s home directory

hadoop fs –mkdir input

42

hadoop fs Examples (cont’d)

 Delete the directory input_old and all its contents

hadoop fs –rmr input_old

43

Hadoop: Basic Concepts

What Is Hadoop?

The Hadoop Distributed File System (HDFS)

Hands-On Exercise: Using HDFS

How MapReduce works

Hands-On Exercise: Running a MapReduce job

Anatomy of a Hadoop Cluster

Conclusion

44

Aside: The Training Virtual Machine

 During this course, you will perform numerous Hands-On

Exercises using the Cloudera Training Virtual Machine (VM)

 The VM has Hadoop installed in pseudo-distributed mode

– This essentially means that it is a cluster comprised of a

single node

– Using a pseudo-distributed cluster is the typical way to test

your code before you run it on your full cluster

– It operates almost exactly like a ‘real’ cluster

– A key difference is that the data replication factor is set to 1,

not 3

45

Hands-On Exercise: Using HDFS

 In this Hands-On Exercise you will gain familiarity with

manipulating files in HDFS

46

Hadoop: Basic Concepts

What Is Hadoop?

The Hadoop Distributed File System (HDFS)

Hands-On Exercise: Using HDFS

How MapReduce works

Hands-On Exercise: Running a MapReduce job

Anatomy of a Hadoop Cluster

Conclusion

47

What Is MapReduce?

 MapReduce is a method for distributing a task across multiple

nodes

 Each node processes data stored on that node

– Where possible

 Consists of two phases:

– Map

– Reduce

48

Features of MapReduce

 Automatic parallelization and distribution

 Fault-tolerance

 Status and monitoring tools

 A clean abstraction for programmers

– MapReduce programs are usually written in Java

– Can be written in any scripting language using

Hadoop Streaming (see later)

– All of Hadoop is written in Java

 MapReduce abstracts all the ‘housekeeping’ away from the

developer

– Developer can concentrate simply on writing the Map

and Reduce functions

49

MapReduce: The Big Picture

50

MapReduce: The JobTracker

 MapReduce jobs are controlled by a software daemon known as

the JobTracker

 The JobTracker resides on a ‘master node’

– Clients submit MapReduce jobs to the JobTracker

– The JobTracker assigns Map and Reduce tasks to other

nodes on the cluster

– These nodes each run a software daemon known as the

TaskTracker

– The TaskTracker is responsible for actually instantiating the Map

or Reduce task, and reporting progress back to the JobTracker

51

MapReduce: Terminology

 A job is a ‘full program’

– A complete execution of Mappers and Reducers over a dataset

 A task is the execution of a single Mapper or Reducer over a slice

of data

 A task attempt is a particular instance of an attempt to execute a

task

– There will be at least as many task attempts as there are tasks

– If a task attempt fails, another will be started by the JobTracker

– Speculative execution (see later) can also result in more

task attempts than completed tasks

52

MapReduce: The Mapper

 Hadoop attempts to ensure that Mappers run on nodes which

hold their portion of the data locally, to avoid network traffic

– Multiple Mappers run in parallel, each processing a portion of the

input data

 The Mapper reads data in the form of key/value pairs

 It outputs zero or more key/value pairs

map(in_key, in_value) ->

(inter_key, inter_value) list

53

MapReduce: The Mapper (cont’d)

 The Mapper may use or completely ignore the input key

– For example, a standard pattern is to read a line of a file at a time

– The key is the byte offset into the file at which the line starts

– The value is the contents of the line itself

– Typically the key is considered irrelevant

 If the Mapper writes anything out, the output must be in the form

of key/value pairs

54

Example Mapper: Upper Case Mapper

 Turn input into upper case (pseudo-code):

let map(k, v) =

emit(k.toUpper(), v.toUpper())

('foo',

('foo',

('baz',

'bar') -> ('FOO', 'BAR')

'other') -> ('FOO', 'OTHER')

'more data') -> ('BAZ', 'MORE DATA')

55

Example Mapper: Explode Mapper

 Output each input character separately (pseudo-code):

let map(k, v) =

foreach char c in v:

emit (k, c)

('foo', 'bar') -> ('foo', 'b'), ('foo', 'a'),

('foo', 'r')

('baz', 'other') -> ('baz', 'o'), ('baz', 't'),

('baz',

('baz',

'h'),

'r')

('baz', 'e'),

56

Example Mapper: Filter Mapper

 Only output key/value pairs where the input value is a prime

number (pseudo-code):

let map(k, v) =

if (isPrime(v)) then emit(k, v)

('foo', 7) ->

('baz', 10) ->

('foo', 7)

nothing

57

Example Mapper: Changing Keyspaces

 The key output by the Mapper does not need to be identical to

the input key

 Output the word length as the key (pseudo-code):

let map(k, v) =

emit(v.length(), v)

('foo',

('baz',

('foo',

'bar') ->

'other') ->

(3, 'bar')

(5, 'other')

'abracadabra') -> (11, 'abracadabra')

58

MapReduce: The Reducer

 After the Map phase is over, all the intermediate values for a

given intermediate key are combined together into a list

 This list is given to a Reducer

– There may be a single Reducer, or multiple Reducers

– This is specified as part of the job configuration (see later)

– All values associated with a particular intermediate key

are guaranteed to go to the same Reducer

– The intermediate keys, and their value lists, are passed to

the Reducer in sorted key order

– This step is known as the ‘shuffle and sort’

 The Reducer outputs zero or more final key/value pairs

– These are written to HDFS

– In practice, the Reducer usually emits a single key/value pair

for each input key
59

Example Reducer: Sum Reducer

 Add up all the values associated with each intermediate key

(pseudo-code):

let reduce(k, vals) =

sum = 0

foreach int i in

sum += i

emit(k, sum)

vals:

(’bar', [9, 3, -17, 44]) -> (’bar', 39)

(’foo', [123, 100, 77]) -> (’foo', 300)

60

Example Reducer: Identity Reducer

 The Identity Reducer is very common (pseudo-code):

let reduce(k, vals) =

foreach v in vals:

emit(k, v)

('foo', [9, 3, -17, 44]) -> ('foo', 9), ('foo', 3),

('foo', -17), ('foo', 44)

('bar', [123, 100, 77]) -> ('bar', 123), ('bar', 100),

('bar', 77)

61

MapReduce Example: Word Count

 Count the number of occurrences of each word in a large amount

of input data

– This is the ‘hello world’ of MapReduce programming

map(String input_key, String input_value)

foreach word w in input_value:

emit(w, 1)

reduce(String output_key,

Iterator<int> intermediate_vals)

set count = 0

foreach v in intermediate_vals:

count += v

emit(output_key, count)

62

MapReduce Example: Word Count (cont’d)

 Input to the Mapper:

(3414, 'the cat sat on the mat')

(3437, 'the aardvark sat on the sofa')

 Output from the Mapper:

('the',

('the',

('sat',

1), ('cat', 1), ('sat',

1), ('mat', 1), ('the',

1),

1), ('on', 1),

1), ('aardvark', 1),

('on', 1), ('the', 1), ('sofa', 1)

63

MapReduce Example: Word Count (cont’d)

 Intermediate data sent to the Reducer:

('aardvark', [1])

('cat', [1])

('mat', [1])

('on', [1, 1])

('sat', [1, 1])

('sofa', [1])

('the', [1, 1, 1, 1])

 Final Reducer output:

('aardvark', 1)

('cat', 1)

('mat', 1)

('on', 2)

('sat', 2)

('sofa', 1)

('the', 4)

64

MapReduce: Data Locality

 Whenever possible, Hadoop will attempt to ensure that a Map

task on a node is working on a block of data stored locally on

that node via HDFS

 If this is not possible, the Map task will have to transfer the data

across the network as it processes that data

 Once the Map tasks have finished, data is then transferred

across the network to the Reducers

– Although the Reducers may run on the same physical machines

as the Map tasks, there is no concept of data locality for the

Reducers

– All Mappers will, in general, have to communicate with all

Reducers

65

MapReduce: Is Shuffle and Sort a Bottleneck?

 It appears that the shuffle and sort phase is a bottleneck

– The reduce method in the Reducers cannot start until

all Mappers have finished

 In practice, Hadoop will start to transfer data from Mappers to

Reducers as the Mappers finish work

– This mitigates against a huge amount of data transfer starting

as soon as the last Mapper finishes

– Note that this behavior is configurable

– The developer can specify the percentage of Mappers which

should finish before Reducers start retrieving data

– The developer’s reduce method still does not start until

all intermediate data has been transferred and sorted

66

MapReduce: Is a Slow Mapper a Bottleneck?

 It is possible for one Map task to run more slowly than the others

– Perhaps due to faulty hardware, or just a very slow machine

 It would appear that this would create a bottleneck

– The reduce method in the Reducer cannot start until

every Mapper has finished

 Hadoop uses speculative execution to mitigate against this

– If a Mapper appears to be running significantly more slowly

than the others, a new instance of the Mapper will be started on

another machine, operating on the same data

– The results of the first Mapper to finish will be used

– Hadoop will kill off the Mapper which is still running

67

Hadoop: Basic Concepts

What Is Hadoop?

The Hadoop Distributed File System (HDFS)

Hands-On Exercise: Using HDFS

How MapReduce works

Hands-On Exercise: Running a MapReduce job

Anatomy of a Hadoop Cluster

Other Ecosystem Projects

Conclusion
68

Hands-On Exercise: Running A MapReduce Job

 In this Hands-On Exercise, you will run a MapReduce job on your

pseudo-distributed Hadoop cluster

69

Hadoop: Basic Concepts

What Is Hadoop?

The Hadoop Distributed File System (HDFS)

Hands-On Exercise: Using HDFS

How MapReduce works

Hands-On Exercise: Running a MapReduce job

Anatomy of a Hadoop Cluster

Conclusion

70

Installing A Hadoop Cluster

 Cluster installation is usually performed by the system

administrator, and is outside the scope of this talk

 However, it’s very useful to understand how the component parts

of the Hadoop cluster work together

 Typically, a developer will configure their machine to run in

pseudo-distributed mode

– This effectively creates a single-machine cluster

– All five Hadoop daemons are running on the same machine

– Very useful for testing code before it is deployed to the real

cluster

71

The Five Hadoop Daemons

 Hadoop is comprised of five separate daemons

 NameNode

– Holds the metadata for HDFS

 Secondary NameNode

– Performs housekeeping functions for the NameNode

– Is not a backup or hot standby for the NameNode!

 DataNode

– Stores actual HDFS data blocks

 JobTracker

– Manages MapReduce jobs, distributes individual tasks
to machines running the…

 TaskTracker

– Instantiates and monitors individual Map and Reduce tasks

72

The Five Hadoop Daemons (cont’d)

 Each daemon runs in its own Java Virtual Machine (JVM)

 No node on a real cluster will run all five daemons

– Although this is technically possible

 We can consider nodes to be in two different categories:

– Master Nodes

– Run the NameNode, Secondary NameNode,

JobTracker daemons

– Only one of each of these daemons runs on the cluster

– Slave Nodes

– Run the DataNode and TaskTracker daemons

– A slave node will run both of these daemons

73

Basic Cluster Configuration

74

Basic Cluster Configuration (cont’d)

 On very small clusters, the NameNode, JobTracker and

Secondary NameNode can all reside on a single machine

– It is typical to put them on separate machines as the cluster

grows beyond 20-30 nodes

 Each dotted box on the previous diagram represents a

separate Java Virtual Machine (JVM)

75

Submitting A Job

 When a client submits a job, its configuration information is

packaged into an XML file

 This file, along with the .jar file containing the actual program

code, is handed to the JobTracker

– The JobTracker then parcels out individual tasks to TaskTracker

nodes

– When a TaskTracker receives a request to run a task, it

instantiates a separate JVM for that task

– TaskTracker nodes can be configured to run multiple tasks at the

same time

– If the node has enough processing power and memory

76

Submitting A Job (cont’d)

 The intermediate data is held on the TaskTracker’s local disk

 As Reducers start up, the intermediate data is distributed across

the network to the Reducers

 Reducers write their final output to HDFS

 Once the job has completed, the TaskTracker can delete the

intermediate data from its local disk

– Note that the intermediate data is not deleted until the entire job

completes

77

Hadoop: Basic Concepts

What Is Hadoop?

The Hadoop Distributed File System (HDFS)

Hands-On Exercise: Using HDFS

How MapReduce works

Hands-On Exercise: Running a MapReduce job

Anatomy of a Hadoop Cluster

Conclusion

78

Conclusion

In this chapter you have learned

 What Hadoop is

 What features the Hadoop Distributed File System (HDFS)

provides

 The concepts behind MapReduce

 How a Hadoop cluster operates

 What other Hadoop Ecosystem projects exist

79

Training Chapters

Introduction

The Motivation For Hadoop

Hadoop: Basic Concepts

Writing a MapReduce Program

80

Writing a MapReduce Program

In this chapter you will learn

 How to use the Hadoop API to write a MapReduce program in

Java

 How to use the Streaming API to write Mappers and Reducers in

other languages

 How to use Eclipse to speed up your Hadoop development

 The differences between the Old and New Hadoop APIs

81

Writing a MapReduce Program

The MapReduce Flow

Examining our Sample MapReduce program

The Driver Code

The Mapper

The Reducer

Hadoop’s Streaming API

Using Eclipse for Rapid Development

Hands-On Exercise: Write a MapReduce program

The New MapReduce API

Conclusion 82

A Sample MapReduce Program: Introduction

 In the previous chapter, you ran a sample MapReduce program

– WordCount, which counted the number of occurrences of

each unique word in a set of files

 In this chapter, we will examine the code for WordCount

– This will demonstrate the Hadoop API

 We will also investigate Hadoop Streaming

– Allows you to write MapReduce programs in (virtually)

any language

83

The MapReduce Flow: Introduction

 On the following slides we show the MapReduce flow

 Each of the portions (RecordReader, Mapper, Partitioner,

Reducer, etc.) can be created by the developer

 We will cover each of these as we move through the course

 You will always create at least a Mapper, Reducer, and driver

code

– Those are the portions we will investigate in this chapter

84

The MapReduce Flow: The Mapper

85

The MapReduce Flow: Shuffle and Sort

86

The MapReduce Flow: Reducers to Outputs

87

Writing a MapReduce Program

The MapReduce Flow

Examining our Sample MapReduce program

The Driver Code

The Mapper

The Reducer

Using Eclipse for Rapid Development

Hands-On Exercise: Write a MapReduce program

The New MapReduce API

Conclusion

88

Our MapReduce Program: WordCount

 To investigate the API, we will dissect the WordCount program

you ran in the previous chapter

 This consists of three portions

– The driver code

– Code that runs on the client to configure and submit the job

– The Mapper

– The Reducer

 Before we look at the code, we need to cover some basic

Hadoop API concepts

89

Getting Data to the Mapper

 The data passed to the Mapper is specified by an InputFormat

– Specified in the driver code

– Defines the location of the input data

– A file or directory, for example

– Determines how to split the input data into input splits

– Each Mapper deals with a single input split

– InputFormat is a factory for RecordReader objects to

extract (key, value) records from the input source

90

Getting Data to the Mapper (cont’d)

91

Some Standard InputFormats

 FileInputFormat

– The base class used for all file-based InputFormats

 TextInputFormat

– The default
– Treats each \n-terminated line of a file as a value

– Key is the byte offset within the file of that line

 KeyValueTextInputFormat

– Maps \n-terminated lines as ‘key SEP value’

– By default, separator is a tab

 SequenceFileInputFormat

– Binary file of (key, value) pairs with some additional metadata

 SequenceFileAsTextInputFormat

– Similar, but maps (key.toString(), value.toString())

92

Keys and Values are Objects

 Keys and values in Hadoop are Objects

 Values are objects which implement Writable

 Keys are objects which implement WritableComparable

93

What is Writable?

 Hadoop defines its own ‘box classes’ for strings, integers and so

on

– IntWritable for ints

– LongWritable for longs

– FloatWritable for floats

– DoubleWritable for doubles

– Text for strings

– Etc.

 The Writable interface makes serialization quick and easy

for Hadoop

 Any value’s type must implement the Writable interface

94

What is WritableComparable?

 A WritableComparable is a Writable which is also

Comparable

– Two WritableComparables can be compared against

each other to determine their ‘order’

– Keys must be WritableComparables because they are

passed to the Reducer in sorted order

– We will talk more about WritableComparable later

 Note that despite their names, all Hadoop box classes implement

both Writable and WritableComparable

– For example, IntWritable is actually a

WritableComparable

95

Writing a MapReduce Program

The MapReduce Flow

Examining our Sample MapReduce program

The Driver Code

The Mapper

The Reducer

Using Eclipse for Rapid Development

Hands-On Exercise: Write a MapReduce program

The New MapReduce API

Conclusion

96

The Driver Code: Introduction

 The driver code runs on the client machine

 It configures the job, then submits it to the cluster

97

The Driver: Complete Code

98

The Driver: Complete Code (cont’d)

conf.setMapOutputKeyClass(Text.class);

conf.setMapOutputValueClass(IntWritable.class)

;

conf.setOutputKeyClass(Text.class);

conf.setOutputValueClass(IntWritable.class)

;

JobClient.runJob(conf)

; return 0;

}

public static void main(String[] args) throws Exception

{ int exitCode = ToolRunner.run(new WordCount(),

args); System.exit(exitCode);
}

}

99

The Driver: Import Statements

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;

import org.apache.hadoop.mapred.FileOutputFormat;

import org.apache.hadoop.mapred.JobClient;

import org.apache.hadoop.mapred.JobConf;

import org.apache.hadoop.conf.Configured;

import org.apache.hadoop.util.Tool;

import org.apache.hadoop.util.ToolRunner;

public c

public

lass WordCount extends Configured implements Tool {

int run(String[] args) throws Exception {

rgs.length != 2) {

stem.out.printf(

"Usage: %s [generic options] <input dir> <output dir>\n",

getClass().getSimpleName());

olRunner.printGenericCommandUsage(System.out);

turn -1;

onf conf = new JobConf(getConf(), WordCount.class);

if (a

Sy

To

re
}

JobC

conf.setJobName(this.getClass().getName());

FileInputFormat.setInputPaths(conf, new Path(args[0]));

FileOutputFormat.setOutputPath(conf, new Path(args[1]));

conf.setMapperClass(WordMapper.class);

conf.setReducerClass(SumReducer.class);

You will typically import these classes into every

MapReduce job you write. We will omit the import

statements in future slides for brevity.

100

The Driver: Main Code

public class WordCount extends Configured implements Tool

{ public int run(String[] args) throws Exception {

if (args.length != 2)

{ System.out.printf(
"Usage: %s [generic options] <input dir> <output dir>\n", getClass().getSimpleName());

ToolRunner.printGenericCommandUsage(System.out);

return -1;

}

JobConf conf = new JobConf(getConf(), WordCount.class);

conf.setJobName(this.getClass().getName());

FileInputFormat.setInputPaths(conf, new Path(args[0]));

FileOutputFormat.setOutputPath(conf, new Path(args[1]));

conf.setMapperClass(WordMapper.class);

conf.setReducerClass(SumReducer.class);

conf.setMapOutputKeyClass(Text.class);

conf.setMapOutputValueClass(IntWritable.class);

conf.setOutputKeyClass(Text.class);

conf.setOutputValueClass(IntWritable.class);

JobClient.runJob(conf);

return 0;

}

public static void main(String[] args) throws Exception {

int exitCode = ToolRunner.run(new WordCount(), args);

System.exit(exitCode);
}

}

101

The Driver Class: Using ToolRunner

public class WordCount extends Configured implements Tool {

public int run(String[] args) throws Exception {

if (args.length != 2) {

System.out.printf(
"Usage: %s [generic options] <input dir> <output dir>\n", getClass().getSimpleName())

ToolRunner.printGenericCommandUsage(System.out);

return -1;

obConf conf = new JobConf(getConf(), WordCount.class);

onf.setJobName(this.getClass().getName());

ileInputFormat.setInputPaths(conf, new Path(args[0]));

ileOutputFormat.setOutputPath(conf, new Path(args[1]));

onf.setMapperClass(WordMapper.class);

onf.setReducerClass(SumReducer.class);

onf.setMapOutputKeyClass(Text.class);

;

}

J

c
F

F

c

c

c

conf.setMapOutputValueClass(IntWritable.class);

conf.setOutputKeyClass(Text.class);

conf.setOutputValueClass(IntWritable.class);

JobClient.runJob(conf);

return 0;

}

Your driver class extends Configured and implements Tool.

This allows the user to specify configuration settings on the

command line, which will then be incorporated into the job’s

configuration when it is submitted to the server. Although this

is not compulsory, it is considered a best practice. (We will

discuss ToolRunner in more detail later.)

public static void main(String[] args) throws Exception {

int exitCode = ToolRunner.run(new WordCount(), args);

System.exit(exitCode);
}

} 102

The Driver Class: Using ToolRunner (cont’d)

103

Sanity Checking The Job’s Invocation

104

Configuring The Job With JobConf

105

Creating a New JobConf Object

 The JobConf class allows you to set configuration options for

your MapReduce job

– The classes to be used for your Mapper and Reducer

– The input and output directories

– Many other options

 Any options not explicitly set in your driver code will be read

from your Hadoop configuration files

– Usually located in /etc/hadoop/conf

 Any options not specified in your configuration files will receive

Hadoop’s default values

106

Naming The Job

107

Specifying Input and Output Directories

108

Specifying the InputFormat

 The default InputFormat (TextInputFormat) will be used

unless you specify otherwise

 To use an InputFormat other than the default, use e.g.

conf.setInputFormat(KeyValueTextInputFormat.class)

109

Determining Which Files To Read

 By default, FileInputFormat.setInputPaths() will read

all files from a specified directory and send them to Mappers

– Exceptions: items whose names begin with a period (.)

or underscore (_)

– Globs can be specified to restrict input

– For example, /2010/*/01/*

 Alternatively, FileInputFormat.addInputPath() can be called

multiple times, specifying a single file or directory each time

 More advanced filtering can be performed by implementing a
PathFilter

– Interface with a method named accept

– Takes a path to a file, returns true or false depending on

whether or not the file should be processed

110

Specifying Final Output With OutputFormat

 FileOutputFormat.setOutputPath() specifies the

directory to which the Reducers will write their final output

 The driver can also specify the format of the output data

– Default is a plain text file

– Could be explicitly written as
conf.setOutputFormat(TextOutputFormat.class);

 We will discuss OutputFormats in more depth in a later chapter

111

Specify The Classes for Mapper and Reducer

112

Specify The Intermediate Data Types

113

Specify The Final Output Data Types

114

Running The Job

115

Running The Job (cont’d)

 There are two ways to run your MapReduce job:

– JobClient.runJob(conf)

– Blocks (waits for the job to complete before continuing)

– JobClient.submitJob(conf)

– Does not block (driver code continues as the job is running)

 JobClient determines the proper division of input data into

InputSplits

 JobClient then sends the job information to the JobTracker

daemon on the cluster

116

Reprise: Driver Code

public class WordCount extends Configured implements Tool

{ public int run(String[] args) throws Exception {

if (args.length != 2)

{ System.out.printf(
"Usage: %s [generic options] <input dir> <output dir>\n", getClass().getSimpleName());

ToolRunner.printGenericCommandUsage(System.out);

return -1;

}

JobConf conf = new JobConf(getConf(), WordCount.class);

conf.setJobName(this.getClass().getName());

FileInputFormat.setInputPaths(conf, new Path(args[0]));

FileOutputFormat.setOutputPath(conf, new Path(args[1]));

conf.setMapperClass(WordMapper.class);

conf.setReducerClass(SumReducer.class);

conf.setMapOutputKeyClass(Text.class);

conf.setMapOutputValueClass(IntWritable.class);

conf.setOutputKeyClass(Text.class);

conf.setOutputValueClass(IntWritable.class);

JobClient.runJob(conf);

return 0;

}

public static void main(String[] args) throws Exception {

int exitCode = ToolRunner.run(new WordCount(), args);

System.exit(exitCode);
}

}

117

Writing a MapReduce Program

The MapReduce Flow

Examining our Sample MapReduce program

The Driver Code

The Mapper

The Reducer

Hadoop’s Streaming API

Using Eclipse for Rapid Development

Hands-On Exercise: Write a MapReduce program

The New MapReduce API

Conclusion 118

The Mapper: Complete Code

import java.io.IOException;

import

import

import

import

import

import

import

org.apache.hadoop.io.IntWritable;

org.apache.hadoop.io.LongWritable;

org.apache.hadoop.io.Text;

org.apache.hadoop.mapred.MapReduceBase;

org.apache.hadoop.mapred.Mapper;

org.apache.hadoop.mapred.OutputCollector;

org.apache.hadoop.mapred.Reporter;

public class WordMapper extends MapReduceBase implements

Mapper<LongWritable, Text, Text, IntWritable> {

public void map(LongWritable key, Text value,

OutputCollector<Text, IntWritable> output, Reporter

throws IOException {

String s = value.toString();

for (String word : s.split("\\W+")) {

if (word.length() > 0) {

reporter)

output.collect(new Text(word), new IntWritable(1));

}

}

}

}

119

The Mapper: import Statements

import java.io.IOException;

import

import

import

import

import

import

import

org.apache.hadoop.io.IntWritable;

org.apache.hadoop.io.LongWritable;

org.apache.hadoop.io.Text;

org.apache.hadoop.mapred.MapReduceBase;

org.apache.hadoop.mapred.Mapper;

org.apache.hadoop.mapred.OutputCollector;

org.apache.hadoop.mapred.Reporter;

public class WordMapper extends MapReduceBase implements

<LongWritable, Text, Text, IntWritable> {

oid map(LongWritable key, Text value,

putCollector<Text, IntWritable> output, Reporter reporter)

ows IOException {

s = value.toString();

String word : s.split("\\W+")) {

word.length() > 0) {

Mapper

public v

Out

thr

String

for (

if (

output.collect(new Text(word), new IntWritable(1));

}

}

}

}

You will typically import java.io.IOException, and

the org.apache.hadoop classes shown, in every

Mapper you write. We will omit the import statements

in future slides for brevity.

120

The Mapper: Main Code

public class WordMapper extends MapReduceBase

implements Mapper<LongWritable, Text, Text, IntWritable> {

public void map(LongWritable key, Text value,

OutputCollector<Text, IntWritable> output, Reporter reporter)

throws IOException {

String s = value.toString();

for (String word : s.split("\\W+")) {

if (word.length() > 0) {

output.collect(new Text(word), new IntWritable(1));

}

}

}

}

121

The Mapper: Main Code (cont’d)

public class WordMapper extends MapReduceBase

implements Mapper<LongWritable, Text, Text, IntWritable> {

public void map(LongWritable key, Text value,

utputCollector<Text, IntWritable> output, Reporter re

hrows IOException {

ring s = value.toString();

(String word : s.split("\\W+")) {

f (word.length() > 0) {

output.collect(new Text(word), new IntWritable(1));

O

t

porter)

St

for

i

}

}

}

}

Your Mapper class should extend MapReduceBase,

and implement the Mapper interface. The Mapper

interface expects four generics, which define the types

of the input and output key/value pairs. The first two

parameters define the input key and value types, the

second two define the output key and value types.

122

The map Method

public class WordMapper extends MapReduceBase

implements Mapper<LongWritable, Text, Text, IntWritable> {

public void map(LongWritable key, Text value,

OutputCollector<Text, IntWritable> output, Reporter reporter)

throws IOException {

String s = value.toString();
for (String word : s.split("\\W+"))

{ if (word.length() > 0) {

output.collect(new Text(word), new IntWritable(1));

}

}

}

}

The map method’s signature looks like this. It will be

passed a key, a value, an OutputCollector object

and a Reporter object. The OutputCollector is

used to write the intermediate data; you must specify

the data types that it will write.

123

The map Method: Processing The Line

public class WordMapper extends MapReduceBase

implements Mapper<LongWritable, Text, Text, IntWritable> {

public void map(LongWritable key, Text value,

OutputCollector<Text, IntWritable> output, Reporter reporter)

throws IOException {

String s = value.toString();

for (String word : s.split("\\W+")) {
if (word.length() > 0) {

output.collect(new Text(word), new IntWritable(1

}

}

));

}

}

value is a Text object, so we retrieve the string it

contains.

124

The map Method: Processing The Line (cont’d)

public class WordMapper extends MapReduceBase

implements Mapper<LongWritable, Text, Text, IntWritable> {

public void map(LongWritable key, Text value,

OutputCollector<Text, IntWritable> output, Reporter reporter)

throws IOException {

String s = value.toString();

for (String word : s.split("\\W+")) {

if (word.length() > 0) {

output.collect(new Text(word), new IntWritable(1));

}

}

}

}

We then split the string up into words using any non-

alphanumeric characters as the word delimiter, and

loop through those words.

125

Outputting Intermediate Data

public class WordMapper extends MapReduceBase

implements Mapper<LongWritable, Text, Text, IntWritable> {

public void map(LongWritable key, Text value,

OutputCollector<Text, IntWritable> output, Reporter reporter)

throws IOException {

String s = value.toString();

for (String word : s.split("\\W+")) {

if (word.length() > 0) {

output.collect(new Text(word), new IntWritable(1));

}

}

}

}
To emit a (key, value) pair, we call the collect method of our

OutputCollector object. The key will be the word itself, the

value will be the number 1. Recall that the output key must be of

type WritableComparable, and the value must be a Writable.

126

Reprise: The Map Method

public class WordMapper extends MapReduceBase

implements Mapper<LongWritable, Text, Text, IntWritable> {

public void map(LongWritable key, Text value,

OutputCollector<Text, IntWritable> output, Reporter reporter)

throws IOException {

String s = value.toString();

for (String word : s.split("\\W+")) {

if (word.length() > 0) {

output.collect(new Text(word), new IntWritable(1));

}

}

}

}

127

The Reporter Object

 Notice that in this example we have not used the Reporter

object which was passed to the Mapper

 The Reporter object can be used to pass some information back

to the driver code

 We will investigate the Reporter later in the course

128

Writing a MapReduce Program

The MapReduce Flow

Examining our Sample MapReduce program

The Driver Code

The Mapper

The Reducer

Hadoop’s Streaming API

Using Eclipse for Rapid Development

Hands-On Exercise: Write a MapReduce program

The New MapReduce API

Conclusion 129

The Reducer: Complete Code

import

import

java.io.IOException;

java.util.Iterator;

import

import

import

import

import

import

org.apache.hadoop.io.IntWritable;

org.apache.hadoop.io.Text;

org.apache.hadoop.mapred.OutputCollector;

org.apache.hadoop.mapred.MapReduceBase;

org.apache.hadoop.mapred.Reducer;

org.apache.hadoop.mapred.Reporter;

public class SumReducer extends MapReduceBase implements

Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterator<IntWritable> values,

OutputCollector<Text, IntWritable> output, Reporter reporter)

throws IOException {

int wordCount = 0;

while (values.hasNext()) {

IntWritable value = values.next();

wordCount += value.get();

}

output.collect(key, new IntWritable(wordCount));

}

}

130

The Reducer: Import Statements

import

import

java.io.IOException;

java.util.Iterator;

import

import

import

import

import

import

org.apache.hadoop.io.IntWritable;

org.apache.hadoop.io.Text;

org.apache.hadoop.mapred.OutputCollector;

org.apache.hadoop.mapred.MapReduceBase;

org.apache.hadoop.mapred.Reducer;

org.apache.hadoop.mapred.Reporter;

public class SumReducer extends MapReduceBase implements

r<Text, IntWritable, Text, IntWritable> {

oid reduce(Text key, Iterator<IntWritable> values,

utCollector<Text, IntWritable> output, Reporter reporter)

ws IOException {

rdCount = 0;

values.hasNext()) {

ritable value = values.next();

Count += value.get();

.collect(key, new IntWritable(wordCount));

Reduce

public v

Outp

thro

int wo

while (

IntW

word

}

output

}

}

As with the Mapper, you will typically import

java.io.IOException, and the org.apache.hadoop

classes shown, in every Reducer you write. You will also

import java.util.Iterator, which will be used to step

through the values provided to the Reducer for each key.

We will omit the import statements in future slides for

brevity.

131

The Reducer: Main Code

public class SumReducer extends MapReduceBase implements

Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterator<IntWritable> values,

OutputCollector<Text, IntWritable> output, Reporter reporter)

throws IOException {

int wordCount = 0;

while (values.hasNext()) {

IntWritable value = values.next();

wordCount += value.get();

}

output.collect(key, new IntWritable(wordCount));

}

}

132

The Reducer: Main Code (cont’d)

public class SumReducer extends MapReduceBase

implements Reducer<Text, IntWritable, Text,

IntWritable> {

public void reduce(Text key, Iterator<IntWritable> values,

utputCollector<Text, IntWritable> output, Reporter re

hrows IOException {

wordCount = 0;

ile (values.hasNext()) {

ntWritable value = values.next();

ordCount += value.get();

tput.collect(key, new IntWritable(wordCount));

O

t

porter)

int

wh

I

w

}

ou

}

}

Your Reducer class should extend MapReduceBase

and implement Reducer. The Reducer interface

expects four generics, which define the types of the

input and output key/value pairs. The first two

parameters define the intermediate key and value

types, the second two define the final output key and

value types. The keys are WritableComparables,

the values are Writables.

133

The reduce Method

public class SumReducer extends MapReduceBase implements

Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterator<IntWritable> values,

OutputCollector<Text, IntWritable> output, Reporter reporter)

throws IOException {

int

wordC

while

(va

IntWrit

wordCou

}

output.co

ount = 0;

lues.hasNext())

{

able value =

values.next(); nt +=

value.get();

llect(key, new IntWritable(wordCount));

}

}

The reduce method receives a key and an Iterator of

values; it also receives an OutputCollector object

and a Reporter object.

134

public class SumReducer extends MapReduceBase implements

Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterator<IntWritable> values,

OutputCollector<Text, IntWritable> output, Reporter reporter)

throws IOException {

int wordCount = 0;

while (values.hasNext()) {

IntWritable value = values.next();

wordCount += value.get();

}

output.collect(key, new IntWritable(wordCount));

}

}

Processing The Values

We use the hasNext() and next() methods on

values to step through all the elements in the iterator.

In our example, we are merely adding all the values

together. We use value().get() to retrieve the

actual numeric value.

135

Writing The Final Output

public class SumReducer extends MapReduceBase implements

Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterator<IntWritable> values,

OutputCollector<Text, IntWritable> output, Reporter reporter)

throws IOException {

int wordCount = 0;

while (values.hasNext()) {

IntWritable value = values.next();

wordCount += value.get();

}

output.collect(key, new IntWritable(wordCount));

}

}

Finally, we write the output (key, value) pair using the

collect method of our OutputCollector object.

136

Reprise: The Reduce Method

public class SumReducer extends MapReduceBase implements

Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterator<IntWritable> values,

OutputCollector<Text, IntWritable> output, Reporter reporter)

throws IOException {

int wordCount = 0;

while (values.hasNext()) {

IntWritable value = values.next();

wordCount += value.get();

}

output.collect(key, new IntWritable(wordCount));

}

}

137

Writing a MapReduce Program

The MapReduce Flow

Examining our Sample MapReduce program

The Driver Code

The Mapper

The Reducer

Hadoop’s Streaming API

Using Eclipse for Rapid Development

Hands-On Exercise: Write a MapReduce program

The New MapReduce API

Conclusion 138

The Streaming API: Motivation

 Many organizations have developers skilled in languages other

than Java, such as

– Ruby

– Python

– Perl

 The Streaming API allows developers to use any language they

wish to write Mappers and Reducers

– As long as the language can read from standard input and

write to standard output

139

The Streaming API: Advantages

 Advantages of the Streaming API:

– No need for non-Java coders to learn Java

– Fast development time

– Ability to use existing code libraries

140

How Streaming Works

 To implement streaming, write separate Mapper and Reducer

programs in the language of your choice

– They will receive input via stdin

– They should write their output to stdout

 If TextInputFormat (the default) is used, the streaming

Mapper just receives each line from the file on stdin

– No key is passed

 Streaming Mapper and streaming Reducer’s output should

be sent to stdout as key (tab) value (newline)

 Separators other than tab can be specified

141

Streaming: Example Mapper

 Example streaming wordcount Mapper:

#!/usr/bin/env perl

while (<>) {

chomp;

(@words) = split /\s+/;

foreach $w (@words) {

print "$w\t1\n";

}

}

142

Streaming Reducers: Caution

 Recall that in Java, all the values associated with a key are

passed to the Reducer as an Iterator

 Using Hadoop Streaming, the Reducer receives its input as (key,

value) pairs

– One per line of standard input

 Your code will have to keep track of the key so that it can detect

when values from a new key start appearing

143

Launching a Streaming Job

 To launch a Streaming job, use e.g.,:

hadoop jar $HADOOP_HOME/contrib/streaming/hadoop-streaming*.jar \

-input myInputDirs \

-output myOutputDir \

-mapper myMapScript.pl \

-reducer myReduceScript.pl \

-file myMapScript.pl \

-file myReduceScript.pl

 Many other command-line options are available

– See the documentation for full details

 Note that system commands can be used as a Streaming

Mapper or Reducer

– For example: awk, grep, sed, or wc
144

Writing a MapReduce Program

The MapReduce Flow

Examining our Sample MapReduce program

The Driver Code

The Mapper

The Reducer

Hadoop’s Streaming API

Using Eclipse for Rapid Development

Hands-On Exercise: Write a MapReduce program

The New MapReduce API

Conclusion 145

Integrated Development Environments

 There are many Integrated Development Environments (IDEs)

available

 Eclipse is one such IDE

– Open source

– Very popular among Java developers

– Has plug-ins to speed development in several different languages

 If you would prefer to write your code this week using a terminal-

based editor such as vi, we certainly won’t stop you!

– But using Eclipse can dramatically speed up your

development process

 On the next few slides we will demonstrate how to use Eclipse to

write a MapReduce program

146

Using Eclipse

 Launch Eclipse by double-clicking on the Eclipse icon on the

desktop

– If you are asked whether you want to send usage data, hit

Cancel

147

Using Eclipse (cont’d)

 Expand the ‘Hadoop’ project

 Right-click on ‘src’, and choose New  Class

148

Using Eclipse (cont’d)

 Enter a class name,

check the box to generate

the main method stub,

and then click Finish

149

Using Eclipse (cont’d)

 You can now edit your class

150

Using Eclipse (cont’d)

 Add other classes in the same way. When you are ready to test

your code, right-click on the default package and choose Export

151

Using Eclipse (cont’d)

 Expand ‘Java’, select

the ‘JAR file’ item, and

then click Next.

152

Using Eclipse (cont’d)

 Enter a path and filename

inside /home/training

(your home directory), and

click Finish

 Your JAR file will be saved; you

can now run it from the command

line with the standard

hadoop jar... command

153

Writing a MapReduce Program

The MapReduce Flow

Examining our Sample MapReduce program

The Driver Code

The Mapper

The Reducer

Hadoop’s Streaming API

Using Eclipse for Rapid Development

Hands-On Exercise: Write a MapReduce program

The New MapReduce API

Conclusion 154

Hands-On Exercise: Write A MapReduce Program

 In this Hands-On Exercise, you will write a MapReduce program

using either Java or Hadoop’s Streaming interface

 Please refer to the Hands-On Exercise Instructions

155

Writing a MapReduce Program

The MapReduce Flow

Examining our Sample MapReduce program

The Driver Code

The Mapper

The Reducer

Hadoop’s Streaming API

Using Eclipse for Rapid Development

Hands-On Exercise: Write a MapReduce program

The New MapReduce API

Conclusion 156

What Is The New API?

 When Hadoop 0.20 was released, a ‘New API’ was introduced

– Designed to make the API easier to evolve in the future

– Favors abstract classes over interfaces

 The ‘Old API’ was deprecated

 However, the New API is still not absolutely feature-complete in

Hadoop 0.20.x

– The Old API should not have been deprecated as quickly as

it was

 Most developers still use the Old API

 All the code examples in this course use the Old API

157

Old API vs New API: Some Key Differences

Old API New API
import org.apache.hadoop.mapred.* import org.apache.hadoop.mapreduce.*

Driver code: Driver code:
JobConf conf = new JobConf(conf, Configuration conf = new Configuration();

Driver.class); Job job = new Job(conf);

conf.setSomeProperty(...); job.setJarByClass(Driver.class);

... job.setSomeProperty(...);

JobClient.runJob(conf); ...

job.waitForCompletion(true);

Mapper:

public class MyMapper extends MapReduceBase

implements

Mapper {

public void map(Keytype k, Valuetype v,

OutputCollector o, Reporter

r) {

...

o.collect(key, val);

}

}

Mapper:

public class MyMapper extends Mapper {

public void map(Keytype k, Valuetype

v,

Context c) {

...

c.write(key, val);

}

}

158

Old API vs New API: Some Key Differences

(cont’d)

Old API New API

Reducer:

public class MyReducer extends MapReduceBase

implements Reducer

{

public void reduce(Keytype k,

Iterator<Valuetype> v,

OutputCollector o, Reporter r)

{ while(v.hasnext()) {

// process

v.next()

o.collect(key,

val);

}

}

}

Reducer:

public class MyReducer extends Reducer {

public void reduce(Keytype k,

Iterable<Valuetype> v, Context c)

{ for(Valuetype v : eachval) {

// process

eachval

c.write(key,

val);

}

}

}

configure(JobConf job) (See later) setup(Context c)

close() (See later) cleanup(Context c)

159

Writing a MapReduce Program

The MapReduce Flow

Examining our Sample MapReduce program

The Driver Code

The Mapper

The Reducer

Hadoop’s Streaming API

Using Eclipse for Rapid Development

Hands-On Exercise: Write a MapReduce program

The New MapReduce API

Conclusion 160

Conclusion

In this chapter you have learned

 How to use the Hadoop API to write a MapReduce program in

Java

 How to use the Streaming API to write Mappers and Reducers in

other languages

 How to use Eclipse to speed up your Hadoop development

 The differences between the Old and New Hadoop APIs

161

