27-4 Resistance and Temperature

1. Introduction

- Electrical resistance (R) is a measure of how much a material opposes or resists the flow of electric current.
- The resistance of a material **changes with temperature** due to variations in atomic vibrations and electron scattering.
- This temperature dependence is crucial in designing electrical circuits, power transmission lines, and electronic sensors.

2. Resistivity and Temperature Dependence

- Resistivity (ρ) is an intrinsic property of a material that determines how much it resists current flow.
- The relationship between resistivity and temperature is given by:

$$\rho = \rho_0 [1 + \alpha (T - T_0)]$$

where:

- ρ = resistivity at temperature T ($\Omega \cdot \mathbf{m}$)
- ρ_0 = resistivity at reference temperature T_0 (usually ${\bf 20^{\circ}C}$ or ${\bf 0^{\circ}C}$)
- α = temperature coefficient of resistivity (°C⁻¹)
- T,T_0 = temperatures in $^{\circ}C$

Also, we can calculate α as following"

$$\alpha = \frac{\Delta \rho / \rho_0}{\Delta T}$$

Where:
$$\Delta \rho = \rho - \rho_0$$
 ; $\Delta T = T - T_0$

Understanding α:

- **For metals**: α >0, meaning resistivity **increases** with temperature.
- For semiconductors and insulators: α <0, meaning resistivity decreases with temperature.

As *T* approaches absolute zero, the resistivity approaches a

nonzero value.

Material	Resistivity at 20°C (Ω·m)	Temperature Coefficient (α) (°C ⁻¹)
Copper (Cu)	1.68×10 ⁻⁸	3.9×10^{-3}
Aluminum (Al)	2.65×10^{-8}	4.0×10^{-3}
Silver (Ag)	1.59×10^{-8}	3.8×10^{-3}
Silicon (Si)	6.4×10 ²⁶	-75×10^{-3}

3. Derivation of Resistance-Temperature Relationship

We know that **resistance** is related to **resistivity** by:

$$R = \rho \frac{l}{A}$$

where:

- $R = resistance (\Omega)$
- $\rho = \text{resistivity } (\mathbf{\Omega} \cdot \mathbf{m})$
- $l = \text{conductor length } (\mathbf{m})$
- $A = cross-sectional area (m^2)$

Substituting ρ:

Using the equation for resistivity:

$$R = \left[\rho_0 \left(1 + \alpha (T - T_0)\right)\right] \frac{l}{A}$$

Since *l* and A are constant, we simplify:

$$R = \left[R_0 \left(1 + \alpha (T - T_0) \right) \right]$$

where:

- $R_0 = \rho_0 \frac{l}{A}$ is the resistance at the reference temperature T_0 .
- This equation shows that **resistance increases linearly with temperature** for most conductors.

4. Superconductors and Thermistors

A. Superconductors

• Some materials exhibit **zero resistance** below a critical temperature (T_c).

• This is called **superconductivity** and is used in **MRI machines**, **maglev trains**, and **quantum computing**.

B. Thermistors

- Thermistors are semiconductor devices with a high negative α .
- Used in **temperature sensors** since their resistance changes significantly with temperature.

Problem 1: Change in Resistance with Temperature

Given: A copper wire has a resistance of 10.0 Ω at 20°C. Find its resistance at 100°C. (Given: $\alpha(Cu)=3.9\times10^{-3}$ °C).

Problem 2: Change in Resistivity

Given: A silver wire has a resistivity of $1.59 \times 10^{-8} \Omega \cdot m$ at $20^{\circ} C$. Find its resistivity at $100^{\circ} C$. (Given: $\alpha(Ag)=3.8\times 10^{-3} \circ C$).

Problem 3:

A resistance thermometer, which measures temperature by the change in resistance of a conductor, is made from platinum and has a resistance of 50 Ω at 20 °C. When immersed in a vessel containing melting indium, its resistance increases to 76.8 Ω . Calculate the melting point of the indium. Assume the temperature dependence of resistance for platinum is linear in this range with $\alpha = 3.92 \times 10^{-3}$ (°C)⁻¹.

Solution

For a metal resistance thermometer, the resistance varies with temperature approximately linearly:

$$R = R_0 [1 + \alpha (T - T_0)].$$

Solve for the temperature rise $\Delta T = T - T_0$:

$$\Delta T = (R - R_0) / (\alpha R_0).$$

Insert the values: $R = 76.8 \Omega$, $R_0 = 50 \Omega$, $\alpha = 3.92 \times 10^{-3} (^{\circ}\text{C})^{-1}$.

$$\Delta T = (76.8 - 50) / (3.92 \times 10^{-3} \times 50) = 136.735 \, ^{\circ}\text{C} \approx 137 \, ^{\circ}\text{C}.$$

Therefore, $T = T_0 + \Delta T = 20 \, ^{\circ}\text{C} + 136.735 \, ^{\circ}\text{C} = 156.735 \, ^{\circ}\text{C} \approx 157 \, ^{\circ}\text{C}$.

Melting point of indium ≈ 157 °C.

6. Applications of Temperature-Dependent Resistance

Electrical Wiring: High-voltage power lines use materials with low α to reduce energy losses.								
☑ Temperature Sensors:	Thermistors	in	medical	devices	and	thermostats.		
Superconductors: Used in	MRI machin	es,	fusion react	tors, and	particle	accelerators.		
☑ Electronic Circuits: Some components (e.g., resistors) are designed to minimize temperature								
effects.								

Option:

Example: Plotting Resistance vs. Temperature

This script calculates and plots the resistance of **copper** as a function of temperature using the equation:

```
Python Code:
_____
import numpy as np
import matplotlib.pyplot as plt
# Given values
R0 = 10 # Resistance at reference temperature (\Omega)
T0 = 20 # Reference temperature (°C)
alpha copper = 3.9e-3 # Temperature coefficient for copper (°C<sup>-1</sup>)
# Define temperature range
T = np.linspace(-50, 200, 100) # From -50°C to 200°C
# Calculate resistance at each temperature
R = R0 * (1 + alpha_copper * (T - T0))
# Plot the graph
plt.figure(figsize=(8, 5))
plt.plot(T, R, label="Copper", color='b')
plt.axvline(x=T0, color='r', linestyle='--', label="Reference Temp (20°C)")
# Labels and title
plt.xlabel("Temperature (°C)")
plt.ylabel("Resistance (\Omega)")
plt.title("Resistance vs. Temperature for Copper")
plt.legend()
plt.grid(True)
plt.show()
```