MATH203 Calculus

Dr. Bandar Al-Mohsin

School of Mathematics, KSU

8-12/9/13

Outline

- Theorem 2.
- Theorem 3 (*n*th-term test).
- Theorem 4.
- Theorem 5.
- Theorem 6 (Properties of infinite series).
- Theorem 7.
- Examples.
- Positive term series.
- Theorem 1.
- Theorem 2 (Integral Test).
- Theorem 3 (*p*-Series Test).
- Theorem 4 (Basic Comparison Test).
- Theorem 5 (Limit Comparison Test).

Theorem 2

If a series
$$\sum_{n=1}^{\infty} a_n$$
 is c'gt, then $\lim_{n \to \infty} a_n = 0$.

Theorem 3 (*n*th-term test)

If
$$\lim_{n \to \infty} a_n \neq 0$$
, then the series $\sum_{n=1}^{\infty} a_n$ is d'gt.

Theorem 4

If two series
$$\sum_{n=1}^{\infty} a_n$$
 and $\sum_{n=1}^{\infty} b_n$ are such that $a_i = b_i$ for every $i > k$, where k is a positive interger, then both series converge or diverge together.

Theorem 5

If we delete first k terms of a series $\sum_{n=1}^{\infty}a_n=a_1+a_2+\dots+a_k+\dots+a_n+\dots$ then its behaviour does not change.

Theorem 6 (properties)

Let
$$\sum_{n=1}^{\infty} a_n = A$$
 and $\sum_{n=1}^{\infty} b_n = B$ and C is a real number, then
• $\sum_{n=1}^{\infty} Ca_n = C \sum_{n=1}^{\infty} a_n$
• $\sum_{n=1}^{\infty} (a_n \pm b_n) = A \pm B.$

Theorem 7

If
$$\sum_{n=1}^{\infty} a_n$$
 is convergent, and $\sum_{n=1}^{\infty} b_n$ is divergent, then $\sum_{n=1}^{\infty} (a_n + b_n)$ is divergent.

Examples

In page (26) (i):
$$3 + \frac{3}{4} + \dots + \frac{3}{(4)^{n-1}} + \dots$$

(ii): $\sum_{n=1}^{\infty} (\sqrt{2})^{n-1}$

In page (27) Q25:
$$\sum_{n=1}^{\infty} a_n = \frac{1}{4*5} + \frac{1}{5*6} + \dots + \frac{1}{(n+3)(n+4)} + \dots$$
$$Q28: \sum_{n=1}^{\infty} a_n = \frac{-1}{1*2} + \frac{-1}{2*3} + \dots + \frac{-1}{n(n+1)} + \dots$$
Solution:

In page (28) Q1:
$$\sum_{n=1}^{\infty} \frac{3n}{(5n-1)}$$
Q2:
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[n]{e}}$$
Q4:
$$\sum_{n=1}^{\infty} \frac{n}{\ln(n+1)}$$
Solution:

Def of Positive Term Series

a series
$$\sum_{n=1}^\infty a_n$$
 such that $a_n>0$ for every n

Theorem 1

If $\lim_{n\to\infty}a_n$ is a positive term series and if there exists a number M such that $S_n=a_1+a_2+\cdots+a_n< M$ for every n, then the series is c'gt and has sum $S\leqslant M$. If no such M exists, then the series is d'gt.

Theorem 2 (Integral Test)

Let
$$\sum_{n=1}^{\infty} a_n$$
 be a positive term series. Suppose also

 $\bullet~f$ is a positive continuous function for $x\geqslant 1$ such that

•
$$f(n) = a_n$$
, for $n = 1, 2, 3, ...$

•
$$f$$
 is a decreasing function of interval $[1,\infty)$

then,
$$\sum_{\substack{n=1\\\infty}} a_n$$
 is c'gt if $\int_1^\infty f(x) dx$ is c'gt

and
$$\sum_{n=1} a_n$$
 is d'gt if $\int_1^\infty f(x) dx$ is d'gt

Theorem 3 (p-Series Test)

The *p*-series is given by
$$\sum_{n=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \dots$$
, where $p > 0$ by definition

definition.

- If p > 1, then the series converges.
- If 0 then the series diverges.

Theorem 4 (Basic Comparison Test)

Let
$$\sum_{n=1}^{\infty} a_n$$
 and $\sum_{n=1}^{\infty} b_n$ be two positive term series. If $0 \le a_n \le b_n$ for all n , then the following rules apply:
• If $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ an converges.
• If $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\infty} b_n$ an diverges.

Theorem 5 (Limit Comparison Test)

In page (34) Q2:
$$\sum_{n=1}^{\infty} \frac{n^2}{e^{n^3}}$$
Q3:
$$\sum_{n=1}^{\infty} \frac{\ln n}{n}$$
Q4:
$$\sum_{n=1}^{\infty} \frac{\operatorname{arc} \tan n}{1+n^2}$$
Solution:

In page (38) (i):
$$\sum_{n=1}^{\infty} \frac{1}{5+6^n}$$
 (hint: using direct CT)
(ii):
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[4]{n+1}}$$
 (hint: using direct CT)
In page (39) (i):
$$\sum_{n=1}^{\infty} \frac{1}{1+e^{2n}}$$
 (hint: using Limit CT)
(ii):
$$\sum_{n=1}^{\infty} \frac{n^2 + \sqrt{n}}{6+n^2 + n^{7/2}}$$
 (hint: using Limit CT)

The Ratio Test

Let
$$\sum_{n=1}^\infty a_n$$
 be a positive term series and suppose that $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L$,

then

• If L = 1 (fails), the series may converge or diverge.

(i):
$$\sum_{n=1}^{\infty} n!$$
(ii):
$$\sum_{n=1}^{\infty} \frac{1}{(n+1)!}$$

The Root Test

 ∞

Let
$$\sum_{n=1}a_n$$
 be a positive term series and suppose that $\lim_{n\to\infty}\sqrt[n]{a_n}=L$,

then

• the series
$$\sum_{n=1}^{\infty} a_n$$
 converges if $L < 1$.
• the series $\sum_{n=1}^{\infty} a_n$ diverges if $L > 1$.

• If L = 1 (fails), the series may converge or diverge.

(i):
$$\sum_{n=1}^{\infty} \frac{5^n}{n^n}$$

(ii): $\sum_{n=1}^{\infty} \left(\frac{8n^2 - 7}{n+1}\right)^n$