
Data Link Layer

Slide Set were original prepared by Dr. Tatsuya Susa

1. Data Link Layer Functionality

 Recall:
 Frame creation
 Error detection and/or correction
 Flow control

Creating the illusion of a reliable link

2. Error Control

 No physical link is perfect
 Bits will be corrupted
 We can either:
 detect errors and request retransmission
 or correct errors without retransmission

2.1 Error Detection

 Parity bits
 Polynomial codes or checksums

2.1.1 Polynomial Codes

 Can detect errors on large chunks of data
 Has low overhead
 More robust than parity bit
 Requires the use of a “code polynomial”

 Example: x2 + 1

Cyclic Redundancy Check

 CRC: Example of a polynomial code
 Procedure (at the sender):

1. Let r be the degree of the code polynomial c(x). (Both sender
and the receiver know the code polynomial.) Append r zero
bits to the end of the message bit string. Call the entire bit
string S(x)

2. Divide S(x) by the code polynomial c(x) using modulo 2
division.

3. Subtract the remainder from S(x) using modulo 2 subtraction.
(call resulting polynomial t(x).)

4. Transmit the checksummed message t(x).

 s(x) = f(x)c(x) + remainder
 s(x) - remainder = f(x)c(x) = t(x)

 sender transmits t(x)
 note that t(x) is divisible by c(x)
 if the received sequence at the receiver is not divisible by

c(x), error has occurred

Background

 Modulo 2 calculation
Addition and subtraction are identical to EXCLUSIVE

OR.
No carries

 take modulo 2 addition of 1010 and 0110
t(x) = 1 x x3 + 0 x x2 + 1 x x + 0 = x3 + x

+ e(x) = 0 x x3 + 1 x x2 + 1 x x + 0 = x2 + x
1 x x3 + 1 x x2 + 0 x x + 0 = x3 + x2

 Definition of Exclusive OR
Exclusive OR

0 0 0
0 1 1
1 0 1
1 1 0

Generating a CRC
Example

Message: 1011 1 x x3 + 0 x x2 + 1 x x + 1
= x3 + x + 1

Code Polynomial c(x): x2 + 1 (101)

Step 1: Compute S(x)

r = 2

S(x) = 101100 (x5 + x3 + x2)

Generating a CRC
Example (cont’d)

Step 2: Modulo 2 divide

101100101
101

001
000

010
000
100
101
01

1001

Remainder

Generating a CRC
Example (cont’d)

Step 3: Modulo 2 subtract the remainder from S(x)

101100
- 01
101101

Checksummed Message t(x)

x5 + x3 + x2 = (x2 + 1) (x3 + 1) - 1

x5 + x3 + x2 + 1 = (x2 + 1) (x3 + 1)

Transmit x5 + x3 + x2 + 1 (101101)

Decoding a CRC

 Procedure (at the receiver)
 Divide the received message by the code

polynomial c(x) using modulo 2 division. If the
remainder is zero, there is no error detected.

Choosing a CRC polynomial

 The longer the polynomial, the smaller
the probability of undetected error

 Common standard polynomials:
(1) CRC-12: x12 + x11 + x3 + x2 + x1 + 1
(2) CRC-16: x16 + x15 + x2 + 1
(3) CRC-CCITT: x16 + x12 + x5 + 1

2.2 Error Correction

 Parity bits and polynomial codes catch
errors, but can we correct them without
retransmitting information?

 Yes, using Hamming Codes

2.2.1 Hamming Codes

 Hamming codes, like polynomial codes,
are appended to the transmitted
message

 Hamming codes, unlike polynomial
codes, contain the information
necessary to locate a single bit error

Calculating a Hamming Code

 Procedure:
 Place message bits in their non-power-of-two

Hamming positions
 Build a table listing the binary representation each

each of the message bit positions
 Calculate the check bits

Hamming Code Example

Message to be sent: 1 0 1 1

1 0 1 1
1 2 3 4 5 6 7

20 21 222n: check bits

Position

Hamming Code Example

Message to be sent: 1 0 1 1

1 0 1 1
1 2 3 4 5 6 7

20 21 222n: check bits

Position

Calculate check bits:

3 = 21 + 20 = 0 1 1
5 = 22 + 20 = 1 0 1
6 = 22 + 21 + = 1 1 0
7 = 22 + 21 + 20 = 1 1 1

Hamming Code Example

Calculate check bits:

3 = 21 + 20 = 0 1 1
5 = 22 + 20 = 1 0 1
6 = 22 + 21 + = 1 1 0
7 = 22 + 21 + 20 = 1 1 1

Message to be sent: 1 0 1 1

1 0 1 1
1 2 3 4 5 6 7

20 21 222n: check bits

Position
1 0

5
1
7

1
3

１
１

１

Starting with the 20 position:

Look at positions with 1’s
in them

Count the number of 1’s in the
corresponding message bits

If even, place a 1 in the 20

check bit, i.e., use odd parity

Otherwise, place a 0

Hamming Code Example

Message to be sent: 1 0 1 1

1 0 1 1
1 2 3 4 5 6 7

20 21 222n: check bits

Position

Calculate check bits:

3 = 21 + 20 = 0 1 1
5 = 22 + 20 = 1 0 1
6 = 22 + 21 + = 1 1 0
7 = 22 + 21 + 20 = 1 1 1

Repeat with the 21 position:

Look at positions those
positions with 1’s in them

Count the number of 1’s in the
corresponding message bits

If even, place a 1 in the 21

check bit

Otherwise, place a 0

1 0

Hamming Code Example

Message to be sent: 1 0 1 1

1 0 1 1
1 2 3 4 5 6 7

20 21 222n: check bits

Position

Calculate check bits:

3 = 21 + 20 = 0 1 1
5 = 22 + 20 = 1 0 1
6 = 22 + 21 + = 1 1 0
7 = 22 + 21 + 20 = 1 1 1

1 0 Repeat with the 22 position:

Look at positions those
positions with 1’s in them

Count the number of 1’s in the
corresponding message bits

If even, place a 1 in the 22

check bit

Otherwise, place a 0

1

Hamming Code Example

Original message = 1011
Sent message = 1011011

Now, how do we check for a single-bit
error in the sent message using the
Hamming code?

Using Hamming Codes to Correct
Single-Bit Errors

Received message: 1 0 1 1 0 0 1

2n: check bits

Calculate check bits:

3 = 21 + 20 = 0 1 1
5 = 22 + 20 = 1 0 1
6 = 22 + 21 = 1 1 0
7 = 22 + 21 + 20 = 1 1 1

1 0 1 1 0 0 1
1 2 3 4 5 6 7

20 21 22

Position

Using Hamming Codes to Correct
Single-Bit Errors

Received message: 1 0 1 1 0 0 1

2n: check bits

Calculate check bits:

3 = 21 + 20 = 0 1 1
5 = 22 + 20 = 1 0 1
6 = 22 + 21 = 1 1 0
7 = 22 + 21 + 20 = 1 1 1

1 0 1 1 0 0 1
1 2 3 4 5 6 7

20 21 22

Position

１
１

１

Starting with the 20 position:

Look at positions with 1’s
in them

Count the number of 1’s in
both the corresponding
message bits and the 20 check
bit and compute the parity.

If even parity, there is an error
in one of the four bits that were
checked. Odd parity: No error in bits 1, 3, 5, 7

Using Hamming Codes to Correct
Single-Bit Errors

Received message: 1 0 1 1 0 0 1

2n: check bits

Calculate check bits:

3 = 21 + 20 = 0 1 1
5 = 22 + 20 = 1 0 1
6 = 22 + 21 = 1 1 0
7 = 22 + 21 + 20 = 1 1 1

1 0 1 1 0 0 1
1 2 3 4 5 6 7

20 21 22

Position Repeat with the 21 position:

Look at positions with 1’s
in them

Count the number of 1’s in
both the corresponding
message bits and the 21 check
bit and compute the parity.

If even parity, there is an error
in one of the four bits that were
checked. Even parity: ERROR in bit 2, 3, 6 or 7!

Using Hamming Codes to Correct
Single-Bit Errors

Received message: 1 0 1 1 0 0 1

2n: check bits

Calculate check bits:

3 = 21 + 20 = 0 1 1
5 = 22 + 20 = 1 0 1
6 = 22 + 21 = 1 1 0
7 = 22 + 21 + 20 = 1 1 1

1 0 1 1 0 0 1
1 2 3 4 5 6 7

20 21 22

Position Repeat with the 22 position:

Look at positions with 1’s
in them

Count the number of 1’s in
both the corresponding
message bits and the 22 check
bit and compute the parity.

If even parity, there is an error
in one of the four bits that were
checked. Even parity: ERROR in bit 4, 5, 6 or 7!

1 0 1 1 0 0 1
1 2 3 4 5 6 7Position

Finding the error’s location

1 0 1 1 0 0 1
1 2 3 4 5 6 7Position

Finding the error’s location

No error in bits 1, 3, 5, 7

1 0 1 1 0 0 1
1 2 3 4 5 6 7Position

Finding the error’s location

No error in bits 1, 3, 5, 7

ERROR in bit 2, 3, 6 or 7
ERROR in bit 4, 5, 6 or 7

Error must be in bit 6
because bits 2, 5, 7
are correct, and all the
remaining information
agrees on bit 6

errored bit, change to 1

Finding the error’s location
An Easier Alternative to the Last Slide

3 = 21 + 20 = 0 1 1
5 = 22 + 20 = 1 0 1
6 = 22 + 21 = 1 1 0
7 = 22 + 21 + 20 = 1 1 1

E E NE

1 1 0 = 6
E = error in column

NE = no error in column

Hamming Codes

 Hamming codes can be used to locate
and correct a single-bit error

 If more than one bit is in error, then a
Hamming code cannot correct it

 Hamming codes, like parity bits, are only
useful on short messages

3. Flow Control

 What happens if the sender tries to
transmit faster than the receiver can
accept?

 Data will be lost unless flow control is
implemented

Controlling the Flow of Data

Slow Joe
Fast Frank

Stop and Wait with Noiseless
Channels (cont’d)

 Solution: Stop-and-Wait
 The receiver sends an acknowledgement

frame telling the sender to transmit the next
data frame.

 The sender waits for the ACK, and if the
ACK comes, it transmits the next data
frame.

Stop and Wait with Noiseless
Channels (cont’d)

Data

ACK

Data

3.1 Full Duplex Flow Control
Protocols

Data frames are transmitted in both
directions

Sliding Window
Flow Control Protocols

Sliding Window Protocols
Definitions

Sequence Number: Each frame is assigned a
sequence number that is incremented as each frame
is transmitted

Sender’s Window: Keeps sequence numbers of
frames that have been sent but not yet acknowledged

Sender Window size: The number of frames the
sender may transmit before receiving ACKs

Receiver’s Window: Keeps sequence numbers of
frames that the receiver is allowed to accept

Receiver Window size: The maximum number of
frames the receiver may receive out of order

Sliding Window Protocols
General Remarks

 The sending and receiving windows do not
have to be the same size

 Any frame which falls outside the receiving
window is discarded at the receiver

 Unlike the sender’s window, the receiver’s
window always remains at its initial size

Sliding Window Protocols
Piggybacking Acknowledgements

Since we have full duplex transmission, we can
“piggyback” an ACK onto the header of an outgoing

data frame to make better use of the channel

When a data frame arrives at an IMP, instead of
immediately sending a separate ACK frame, the IMP
waits until it is passed the next data frame to send.
The acknowledgement is attached to the outgoing

data frame.

3.1.1 Simple Sliding Window with
Window Size of 1

A sliding window with a maximum window size of 1
frame

Window for a 3-bit sequence number

0

1

2

34

5

6

7

Sliding Window example
0

1

2

34

5

6

7 0

1

2

34

5

6

7 0

1

2

34

5

6

7 0

1

2

34

5

6

7

0

1

2

34

5

6

7 0

1

2

34

5

6

7 0

1

2

34

5

6

7 0

1

2

34

5

6

7

Sender window

Receiver window

(a) (b) (c) (d)

(a) Initial state, no frames transmitted
(b) Sender transmits frame 0
(c) Receiver receives frame 0 and ACKs
(d) Sender receives ACK

Simple Sliding Window with
Window size 1 (cont’d)

This protocol behaves identically to stop
and wait for a noisy channel

3.1.2 Sliding Window with
Window Size W

With a window size of 1, the sender waits for an
ACK before sending another frame

With a window size of W, the sender can
transmit up to W frames before “being

blocked”

We call using larger window sizes Pipelining

Sender-Side Window with
Window Size W=2

0

1

2

34

5

6

7 0

1

2

34

5

6

7 0

1

2

34

5

6

7 0

1

2

34

5

6

7

0

1

2

34

5

6

7 0

1

2

34

5

6

7 0

1

2

34

5

6

7 0

1

2

34

5

6

7

(a) (b) (c) (d)

(e) (f) (g) (h)

(a) Initial window state
(b) Send frame 0
(c) Send frame 1
(d) ACK for frame 0 arrives

(e) Send frame 2
(f) ACK for frame 1 arrives
(g) ACK for frame 2 arrives, send frame 3
(h) ACK for frame 3 arrives

Receiver-Side Window with
Window Size W=2

0

1

2

34

5

6

7 0

1

2

34

5

6

7 0

1

2

34

5

6

7 0

1

2

34

5

6

7

0

1

2

34

5

6

7 0

1

2

34

5

6

7 0

1

2

34

5

6

7 0

1

2

34

5

6

7

(a) (b) (c) (d)

(e) (f) (g) (h)

(a) Initial window state
(b) Nothing happens
(c) Frame 0 arrives, ACK frame 0
(d) Nothing happens

(e) Frame 1 arrives, ACK frame 1
(f) Frame 2 arrives, ACK frame 2
(g) Nothing happens
(h) Frame 3 arrives, ACK frame 3

Why do Pipelining?

In other words, why have a window size greater than 1?

A B
99

data stream
51 50

4910

ACK stream

By allowing several frames into the network before
receiving acknowledgement, pipelining keeps the

transmission line from being idle

What about Errors?

What if a data or acknowledgement frame
is lost when using a sliding window

protocol?

Two Solutions:
Go Back N

Selective Repeat

 One very important note about
acknowledgement
 Ack for frame n = I am expecting frame n+1

(not “I received fame n”)

3.1.3 Sliding Window with
Go Back N

 When the receiver notices a missing or
erroneous frame, it simply discards all frames
with greater sequence numbers and sends no
ACK

 The sender will eventually time out and
retransmit all the frames in its sending window

Go Back N

0 1 2 3 4 5 6 7 8 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10E D D D D D D

discarded by
receiver

frame with
error

timeout interval

Time

sender

receiver

Go Back N (cont’d)

Go Back N can recover from erroneous or
missing packets

But…

It is wasteful. If there are a lot of errors,
the sender will spend most of its time

retransmitting useless information

3.1.4 Sliding Window with
Selective Repeat

The sender retransmits only the frame with errors
 The receiver stores all the correct frames that arrive

following the bad one. (Note that this requires a
significant amount of buffer space at the receiver.)

 When the sender notices that something is wrong, it
just retransmits the one bad frame, not all its
successors.

Selective Repeat

0 1 2 3 4 5 6 7 8 2 3 4 5 6 9 10

0 1 2 3 4 5 6 9 10E 3 4 5 6 7 8

frame with
error

timeout interval

Time

sender

receiver

11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 1 9 10 11 12 13 14 15 9 10

1. ACK lost, ACK sent out,
receiver window updated.

Time

sender

receiver 2 3 4 5 6 7 8

2. Pkt 3 is valid for receiver’s
window, ACK 3 sent out.

3. ACK 3 received, sender
know pkt 2 correctly
received, timer stopptedTimer stopped

 In this scheme, every time a receiver receives a
frame, it sends an acknowledgement which contains
the sequence number of the next frame expected

4. Bit-Oriented and Character-
Oriented Protocols

1. Character Oriented Protocol
 Basic unit: character
 Frame length is a multiple of character size
 Example: Internet

2. Bit Oriented Protocol
 Basic unit: Bit
 Frame length is not a multiple of character size
 Example: HDLC (High-level Data Link Control)

4.1 Example Character-Oriented
Protocol

 PPP = Point-to-Point Protocol
 Used widely in the Internet
 PPP uses frame tags with character stuffing

01111110 Control Fields Payload (up to 1500 bytes) Checksum 01111110

PPP Frame Format

Character Frame Tags

Character Oriented Protocols
(cont’d)

With character oriented protocols, a frame is composed
of characters in some character code (e.g., ASCII,

EBCDIC, UNICODE)

A computer with 9-bit characters cannot send arbitrary
messages in ASCII code. They must be chopped and

repacked into units of 8 bits.

Bit oriented protocols do not require such chopping up
and repackaging of characters.

4.2 Example Bit Oriented Protocol

 HDLC = High-level Data Link Control
 Used in X.25 networks
 HDLC uses frame tags with bit stuffing

01111110 Control Fields Payload (arbitrarily long) Checksum 01111110

HDLC Frame Format

Character Frame Tags

