

Syllabus

KSU

AGE

2340

- □ Catalog Description: Measuring concepts; Engineering Problems and Fundamental Dimensions; System of Units and Unit Conversion. Types of instruments and measurand. Some basics about statistics and probability; Errors in measurement; Data collection and analysis; Uncertainty analysis of data; Evaluation of bias and precision uncertainty; Analog and digital signals analysis; Mean and RMS value of signals; Sampling of analog signals and associated errors; Digital signals; D/A and specifications; A/D converters. Instrumentation Basic components of electrical and mechanical measurement system; Response of measurement system: Concept of order of measurement system; Time response of measurement system Measurement of length; time; mass; force, electric current; resistances; pressure; temperature; energy and power
- Prerequisites: AGE 1150
- Course Text: Figiola, R. S. and Beasley, D. E., Theory and Design for Mechanical Measurements 4th Ed., John Wiley & Sons, 2005.

Tentative Lecture Schedule

Topics	week
Introduction and Basic Concepts.	1
Introduction to probability and Statistical distributions	1
Uncertainty Analysis	1
Static and Dynamic Characteristics of Signals	1.5
Measurement System Behavior	1.5
Analog Electrical Devices and Measurements	1.5
Sampling, Digital Devices,	1.5
Sensors, DAQ using Lab View and Data Acquisition	1
Measurement of basic electrical parameters	1
Temperature and Pressure Measurements	1
Flow Velocity Sensors and Measurements	1
Strain and Force Measurements	1

AGE 2340

KSU

AGE

2340

Reference

□ Figliola, R. S. and Beasley, D. E., *Theory and Design for Mechanical Measurements*, 3th Ed., John Wiley & Sons, 2000.

3

- □ Wheeler A.J. and Ganji Ahmed, *Introduction to Engineering Experimentation* 2nd Ed., Pearson Prentice Hall, 2008.
- Holman, J. P., Experimental Methods for Engineers, 7th. Ed., McGraw-Hill, 2001.
- Beckwith, Marangoni, and Lienhard, *Mechanical Measurements*, 5th Ed., Addison-Wesley, 1993.
- □ Smith, C. A. and Corripio, A. B., *Principles and Practice of Automatic Process Control*, 2nd Ed., John Wiley & Sons, 2006.
- Spitzer, D. W., Flow Measurement: Practice Guides for Measurement and Control, ISA, 2001,
- □ Electronic references of Instrumentation, from http://www.engnetbase.com/

4

One thing you learn in science is that there is no perfect answer, no perfect measure.

A. O. Beckman

Topic 1: Measurements

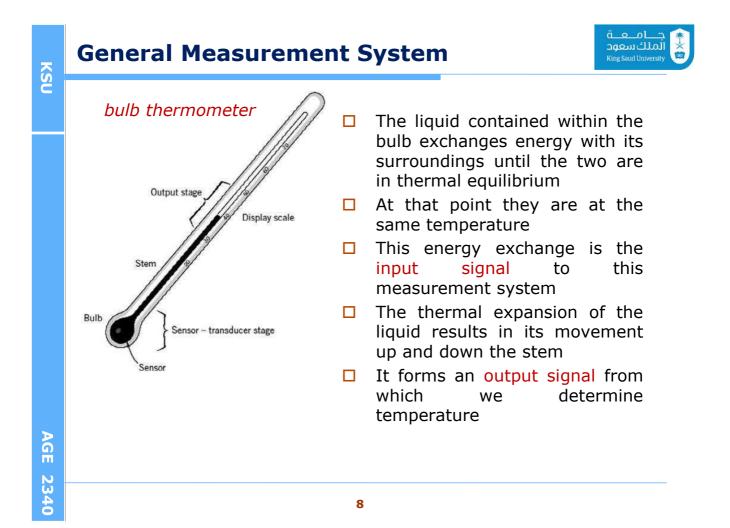
Introduction and Basic Concepts

5

KSU

KSU

Course Objectives


□ To review the basic concepts of measurement.

Significance of Measurement

- □ The primary objective in any measurement system is to establish the value or the tendency of some variable.
- Measurement provides quantitative information on the actual state of the physical variables and processes.
- □ The goal of a measurement system is to convert the sensed information into a form that can be easily quantified
- □ Significant Results of Measurements are
 - Fundamental data for research, design and development,
 - Basic input data for control of processes and operations,
 - Data for safe and economic performance of systems.

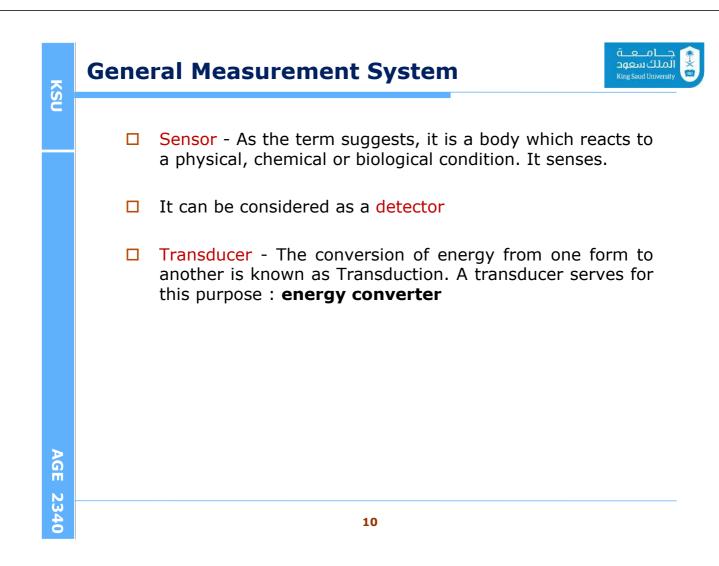
7

KSU

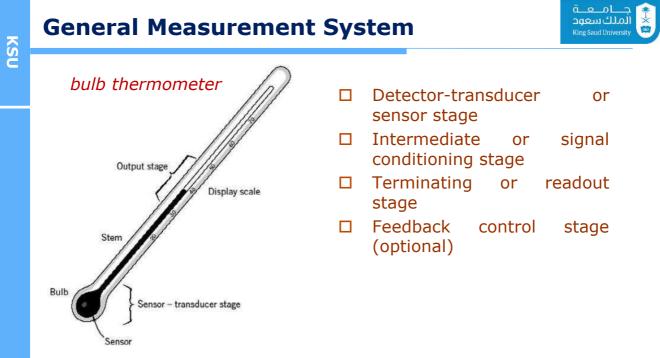
General Measurement System

bulb thermometer Output stage Stem Bulb Sensor - transducer stage

KSU


AGE

2340

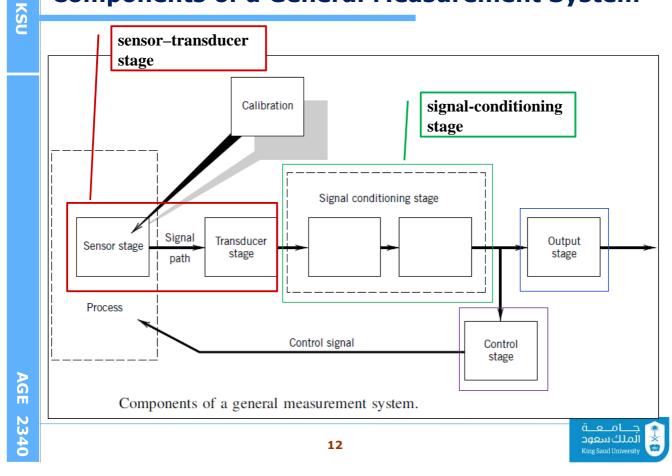

The liquid in the bulb acts as the sensor.

the bulb's internal capillary design acts as a transducer.

the term "transducer" is also often used in reference to a packaged device, which may contain a sensor, transducer, and even some signal conditioning elements

9

□These stages form the bridge between the input to the measurement system and the system output.


The relationship between the input information and the system output is established by a calibration.

11

AGE

2340

Components of a General Measurement System

Components of a General Measurement System

Detector-transducer or sensor stage:
The physical variable to be measured is detected.
 Signal is transformed into more usable form.
Insensitive to every other possible input.
Minimize loading error.
Intermediate or signal processing stage:
The transduced signal is modified by one or more basic operations, such as amplification, filtering, differentiation, integrating or averaging, etc.
Terminating or readout stage:
Acts to indicate, record or control the variable being measured. Output may be analog or digital.
Feedback control stage:
In those measurement systems involved in process control, feedback control stage contains a controller that interprets the measured signal and makes a decision regarding the control of the process.
13

KSU

KSU

Calibration

- □ Calibration affords the opportunity to check the instrument against a known standard and subsequently to reduce errors in accuracy.
 - Example: Calibration of a flow-meter
 - Comparison with a standard flow-measurement facility.
 - Comparison with a flow-meter of known accuracy, which is higher than the instrument to be calibrated.

□ A common denomination of units is essential for the development of trade and economics around the world

Quantity	SI Base Unit	Abbreviation
Length	meter	m
Mass	kilogram	kg
Time	second	S
Electric current	ampere	А
Temperature	Kelvin	K
Amount of substance	mole	mol
Light intensity	candela	cd

AGE 2340

KSU

KSU

Derived Units in the SI System

Quantity	SI Derived Unit	Abbreviation	Definition
Length	micrometer or micron	μ m	$1 \ \mu m = 10^{-6} \ m$
Volume	liter	L	$1 L = 0.001 m^3$
Force	newton	Ν	$1 \ N = 1 \ (kg \cdot m)/s^2$
Torque, or moment of a force	newton-meter	$\mathbf{N}\cdot\mathbf{m}$	
Pressure or stress	pascal	Pa	$1 \text{ Pa} = 1 \text{ N/m}^2$
Energy, work, or heat	joule	J	$1 J = 1 N \cdot m$
Power	watt	W	1 W = 1 J/s
Temperature	degree Celsius	$^{\circ}\mathbf{C}$	$^{\circ}C = K - 273.15$

Derived	
Units	
in USCS	

NSX

07 5	E 3	פפ														
	Temperature	Power		Energy, work, or heat	Pressure or stress	Torque, or moment of a force		Force		Mass	Volume			Length	Quantity	
	degree Fahrenheit	horsepower	British thermal unit	foot-pound	pound/inch ²	foot-pound	ton	ounce	pound-mass	slug	gallon	mile	inch	mil	Derived Unit	
	$^\circ{ m F}$	hp	Btu	ft·lb	psi	ft·lb	ton	ZO	lbm	slug	gal	mi	'n.	mil	Abbreviation	
17	$^{\circ}\mathrm{F} = ^{\circ}\mathrm{R} - 459.67$	$1 \text{ hp} = 550 \text{ (ft} \cdot \text{lb)/s}$	$1 \operatorname{Btu} = 778.2 \operatorname{ft} \cdot \operatorname{lb}$	I	$1 \text{ psi} = 1 \text{ lb/in}^2$	Ι	1 ton = 2000 lb	1 oz = 0.0625 lb	$1 \text{ lbm} = 3.1081 \times 10^{-2} \text{ (lb} \cdot \text{s}^2)/\text{ft}$	$1 \text{ slug} = 1 (\text{lb} \cdot \text{s}^2)/\text{ft}$	$1 \text{ gal} = 0.1337 \text{ ft}^3$	1 mi = 5280 ft	1 in. = 0.0833 ft	1 mil = 0.001 in.	Definition	

078	7	/GE	1											n	SХ
						=1,000,000,000 Hz	2 GHz = 10 ⁹ Hz				Examples:				Prefixes for SI Units
		nano	micro	milli	centi	deci	deca	hecto	kilo	mega	giga	tera	Name		
		n	μ	m	c	р	da	h	k	М	G	Т	Symbol		
18		$0.000,000,001 = 10^{-9}$	$0.000,001 = 10^{-6}$	$0.001 = 10^{-3}$	$0.01 = 10^{-2}$	$0.1 = 10^{-1}$	$10 = 10^1$	$100 = 10^2$	$1000 = 10^3$	$1,000,000 = 10^6$	$1,000,000,000 = 10^9$	$1,000,000,000,000 = 10^{12}$	Multiplicative Factor		<u> て、を、のし、</u> 、 コ գをいれて出たの日 King Saud University

KSU

Quantity	USCS	SI					
	1 in.	=	25.4 mm				
	1 in.	=	0.0254 m				
	1 ft	=	0.3048 m				
Longth	1 mi	=	1.609 km				
Length	1 mm	=	3.9370×10^{-2} in.				
	1 m	=	39.37 in.				
	1 m	=	3.2808 ft				
	1 km	=	0.6214 mi				
	1 in^2	=	645.16 mm ²				
A	1 ft^2	=	$9.2903 \times 10^{-2} \text{ m}^2$				
Area	1 mm^2	=	$1.5500 \times 10^{-3} \text{ in}^2$				
	1 m ²	=	10.7639 ft^2				
	1 ft ³	=	$2.832 \times 10^{-2} \text{ m}^3$				
	1 ft^3	=	28.32 L				
	1 gal	=	$3.7854 \times 10^{-3} \text{ m}^3$				
37.1	1 gal	=	3.7854 L				
Volume	1 m ³	=	35.32 ft ³				
	1 L	=	$3.532 \times 10^{-2} \text{ ft}^3$				
	1 m ³	=	264.2 gal				
	1 L	=	0.2642 gal				

AGE 2340

KSU

Classification of sensors

19

• Many authors have tried to build up a consistent classification scheme of sensors:

- according to the measurand
- according to application fields
- sensors follow a classification according to the measurand
- measurand = quantity to be measured

Classification of sensors

جـــامـعــة الملك سعود King Saud University

• list of physical quantities (measurands)

Mechanical, solids Acceleration Angle Angular velocity Area Diameter Distance Elasticity Expansion Filling level Force Gradient Hardness Height Length Mass Moment Movement Orientation Pitch Position Pressure Proximity Rotation Roughness Shape Tension Torque Torsion Velocity Vibration Weight

Mechanical, fluids Density Flow direction Flow velocity Level Pressure Rate of flow Viscosity Volume

Thermal Enthalpy Entropy Temperature Thermal capacity Thermal conduction Thermal expansion Thermal radiation Optical

Colour Light polarization Light wavelength Luminance

Reflection

Luminous intensity

Refractive index

Radiation type Chemical Cloudiness Composition Concentration Electrical conductivity Humidity Impurity Ionization degree Moisture Molar weight Particle form

Nuclear radiation

Ionization degree

Mass absorption

Radiation energy

Radiation dose

Radiation flux

Ionization degree Moisture Molar weight Particle form Particle size pH Polymerization degree Reaction rate Redox potential Thermal conductivity Water content Acoustic Sound frequency Sound intensity Sound polarization Sound pressure Sound velocity Time of flight

Magnetic, electrical Capacity Charge Current Dielectric constant Electric field strength Electric resistance Frequency Inductivity Magnetic field strength Phase Pulse duration Signal distortion

Time Time Frequency Duty cycle

21

جـــامــعـــة الملكسعود

AGE 2340

Technical word

KSU

value	القيمة
tendency	اتجاه
variable	متغير
quantitative information	معلومات كمية
actual state	الحالة الفعلية
physical variables	للمتغيرات المادية
Processes	العمليات
Basic input	بيانات الادخال الاساسية
Input signal output signal provide Surroundings	اشارة الادخال اشارة الاخراج يوفر محيط

AGE 2340