MATH203 Calculus

Dr. Bandar AI-Mohsin

School of Mathematics, KSU

1/5/14

Flux Integrals

Flux Integral of F over S

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d S
$$

This is called the flux integral of a vector field
$\mathbf{F}=M(x, y, z) \mathbf{i}+N(x, y, z) \mathbf{j}+P(x, y, z) \mathbf{k}$ over a surface S, where M, N, and P have continuous first partial derivatives on the surface, \mathbf{n} is a unit normal vector to the surface S at point (x, y, z).

Flux Integrals

There are two distinit sides for orientable surface 1-Upward (upper) unit normal for open surface Or unit outer normal for closed surface

$$
\iint_{S} F \cdot \mathbf{n} d s=\iint_{R_{x y}}\left(-M g_{x}-N g_{y}+P\right) d A
$$

2-Downward (lower) unit normal for open surface Or unit inner normal for closed surface

$$
\iint_{S} F \cdot \mathbf{n} d s=\iint_{R_{x y}}\left(M g_{x}+N g_{y}-P\right) d A
$$

Flux Integrals

Examples: Find $\iint_{S} \mathbf{F} \cdot \mathbf{n} d S$ if \mathbf{n} is a unit upper normal to S.
(1) $\mathbf{F}(x, y, z)=3 x \mathbf{i}+3 y \mathbf{j}+z \mathbf{k} ; S$ is the part half of the graph of $z=9-x^{2}-y^{2}$ with $z \geqslant 0$.
(2) $\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+z \mathbf{k} ; S$ is the upper half of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
(3) $\mathbf{F}(x, y, z)=2 \mathbf{i}+5 \mathbf{j}+3 \mathbf{k} ; S$ is the portion of the cone $z=\left(x^{2}+y^{2}\right)^{1 / 2}$ that is inside the cylinder $x^{2}+y^{2}=1$.
(4) $\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$; S is the first-octant portion of the plane with equation $2 x+3 y+z=6$.

The divergence theorem

The divergence theorem

Let Q be a region in three-dimensions bounded by a closed surface S, and let \mathbf{n} denote the unit outer normal to S at (x, y, z). If \mathbf{F} is a vector function that has continuous partial derivatives on Q, then

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d S=\iiint_{Q} \nabla \cdot \mathbf{F} d V=\iiint_{Q}\left(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial P}{\partial z}\right) d V ;
$$

that is, the flux of \mathbf{F} over S equals the triple integral of the divergence of F over Q.

The divergence theorem

Examples: Use the divergence theorem to find $\iint_{S} \mathbf{F} \cdot \mathbf{n} d S$.
(1) Let Q be the region bounded by the circular cylinder $x^{2}+y^{2}=4$ and planes $z=0$ and $z=3$, let S denote the surface of Q and $\mathbf{F}(x, y, z)=x^{3} \mathbf{i}+y^{3} \mathbf{j}+z^{3} \mathbf{k}$.
(2) Let Q be the region bounded by the cylinder $z=4-x^{2}$ and plane $y+z=5$, and the $x y$ - and $x z$-planes, and let S denote the surface of Q and $\mathbf{F}(x, y, z)=\left(x^{3}+\sin z\right) \mathbf{i}+\left(x^{2} y+\cos z\right) \mathbf{j}+e^{x^{2}+y^{2}} \mathbf{k}$.
(3) $\mathbf{F}(x, y, z)=y^{2} z \mathbf{i}+y^{3} \mathbf{j}+x z \mathbf{k}$, where S is the boundary of the cube defined by $-1 \leqslant x \leqslant 1,-1 \leqslant y \leqslant 1$ and $0 \leqslant z \leqslant 2$.
(4) Let Q be the region bounded by $z=x^{2}+y^{2}$ and the plane $z=1$, let S denote the surface of Q and $\mathbf{F}(x, y, z)=y \mathbf{i}+x \mathbf{j}+z^{2} \mathbf{k}$.

Examples

(1) Find $\iint_{S} \mathbf{F} \cdot \mathbf{n} d S$ if \mathbf{n} is a unit upper normal to S.
(a) $\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+z \mathbf{k} ; S$ is the portion of the plane $3 x+2 y+z=12$ cut out by the planes $x=0, y=0, x=1$ and $y=2$.
(b) $\mathbf{F}(x, y, z)=3 z \mathbf{i}-4 \mathbf{j}+y \mathbf{k} ; S: x+y+z=1$ in the first octant.
(2) Use the divergence theorem to find $\iint_{S} \mathbf{F} \cdot \mathbf{n} d S$.
(a) $\mathbf{F}(x, y, z)=x^{3} \mathbf{i}+y^{3} \mathbf{j}+z^{3} \mathbf{k}$. S is the surface of the region bounded by the cylinder $x^{2}+y^{2}=4$ and planes $x+z=2$ and $z=0$.
(b) $\mathbf{F}(x, y, z)=3 x \mathbf{i}+x z \mathbf{j}+z^{2} \mathbf{k} . S$ is the surface of the region bounded by the parabolid $z=4-x^{2}-y^{2}$ and $x y$-plane.

