
1 

PHYS-505/551�
 Scattering Theory	

Lecture-9!
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Introduction-a!

n  Scattering is a problem 
of motion in the free 
space. In this case the 
energy spectrum is 
continuous. A naive 
graphical 
representation of this 
problem is given by the 
following picture.!
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Introduction-b!

n  The proper tools for describing such a 
problem are the wavefunctions of the 
continuous spectrum (which as you 
remember have a form of plane wave 
exp(ikz)).!

n  The key point here is the choice of a suitable 
boundary (or asymptotic) condition which will 
describe the picture of the previous 
transparency: the scattered wave will be made up 
by waves that are outgoing with respect to the 
scattering center.   !
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Introduction-c!
n  For our study we are going to make also the 

following assumptions:!
1.  Any interaction between the scattered particles 

themselves is neglected.!
2.  Possible multiple scattering processes are 

neglected. A multiple scattering process is a 
process in which a scattered particle can be 
scattered multiple times in the same target range.!

3.  The incident beam width is much larger than a 
typical range of the scattering potential, so that the 
particles will have a well-defined momentum.!
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Introduction-d!

n  The mathematical form of these functions at very 
large distances away from the scattering center will 
assume the form:!

n  The above relation expresses mathematically the 
following physical picture: The outgoing wave is 
made up by two different terms, the first corresponds 
to the incident wave, the second corresponds to the 
scattered wave. !

ψ→ eikz + f θ( ) e
ikr

r
       (9.1)
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Introduction-e!

n  Why the scattered wave has such a form?!
n  Because the scattered wave propagates 

isotropically in all the directions of space. 
Thus, its amplitude must tend to zero as the 
distance from the scattering center gets larger 
and larger. Thus the scattered wave is going 
to have the following asymptotic form:!

ψsc =ψ − e
ikz →
r→∞
f θ( ) e

ikr

r
       (9.2)
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Introduction-f!

n  What about the function f(θ)?	
n  This is called scattering amplitude and it is the basic 

measurable physical quantity of our problem since it 
determines the angular distribution of the scattered 
beam. !

n  The angle θ is measured with respect to the direction 
of the incident beam (taken as the z-axis). The angle φ 
around this axis does not appear in our consideration 
because we have accepted that the scattering 
potential does not depend on this angle and thus the 
problem has a cylindrical symmetry.!
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The differential scattering cross section-a	

dA 

dΩ 

Scattering in a certain solid angle!

particle !
counter!
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The differential scattering cross section-b!

n  If we consider the case of the previous figure then the 
number of particles that arrive at the counter (of 
cross-section dA and solid angle dΩ) per unit time it 
will be proportional to the solid angle dΩ and the 
intensity of the incident beam which is given by the 
probability current         .!

n  This means that the ratio                                       will be 
a characteristic of the scattering potential. !

dN( )sc
∝ dΩ⋅ jinc     (9.3)

  jinc

  
dN( )sc / dΩ⋅ jinc
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The differential scattering cross section-c!

n  If we recall that the quantities                         and their 
units are defined as follows:!

n  Then their ratio will have units of area and is called 
the differential scattering cross-section 

  
dN( )sc ,  jinc

dN( )sc
=

number of particles
second

= sec-1      (9.4)

   jinc =
number of particles
cm2  and per second

= cm-2 ⋅sec-1    (9.5) 
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dσ
dΩ

=
dN( )sc
dΩ⋅ jinc

     (9.6)

The differential scattering cross section-d 

n  The differential scattering cross section 
is defined as follows:!

n  While the total scaterring cross section 
is given by !

σ =
dσ
dΩ
dΩ∫      (9.7)
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The physical content of the scattering 
cross-section!

n  The total scattering cross-section represents the 
“area” that the scattering centre “offers” to the 
incident beam. This means that the part of the beam 
which is inside a cylinder of area σ will be scattered 
out of the beam in different directions.!
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Scattering cross-section and scattering 
amplitude!

n  We can show that the differential 
scattering cross-section and the 
scattering amplitude are related 
through a very simple and elegant 
relation as follows:!

dσ
dΩ

= f θ( )
2
      (9.8)

The proof is shown in the class!

!
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…to be noted!
n  Most scattering experiments are carried out in the 

laboratory (lab) frame in which the target is 
initially at rest while the projectiles are moving. !

n  Calculations of the cross sections are generally 
easier to perform within the center-of-mass (CM) 
frame in which the center of mass of the projectile-
target system is at rest (before and after collision). 
In order to be able to compare the experimental 
measurements with the theoretical calculations, one 
has to know how to transform the cross sections 
from one frame into the other.!
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…to be noted!
n  We should note that the total cross section σ is the same in 

both frames, since the total number of collisions that take 
place does not depend on the frame in which the observation 
is carried out.!

n  On the contrary the differential cross sections dσ(θ,φ)/dΩ, 
they are not the same in both frames, since the scattering 
angles (θ,φ) are frame dependent.  !

n  In the case where the interaction between two particles 
depends only on their relative distance the scattering problem 
reduces to two decoupled problems: one of the CM which 
moves like a free particle of mass M=m1+m2 and which is of 
no concern to us, and another for a fictitious particle  of 
reduced mass m=m1m2 /(m1+m2) which moves in the inter-
particle potential V.!
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Calculation of scattering amplitude at 
high energies: The Born approximation!
n  When the kinetic energy of the incident particles is 

higher than the scattering potential energy we talk 
about weak scattering. In this case the scattering 
potential can be treated as small perturbation to the 
free particle Hamiltonian. The scattered particle is 
approximated by a plane wave.  !

θ k 

k  ́

θ 

k 

k  ́

q 

The geometry of the vectors k and k’ (initial and final) momentum !
and the momentum transfer q= k’-.k!
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Calculation of scattering amplitude at 
high energies: The Born approximation!

In elastic scattering the magnitude of the 
momentum before the scattering is equal to 
the magnitude of the momentum after the 
scattering. !

θ/2  

k 

k  ́

q 
θ/2 

  
q = 2k sin θ / 2( )

  
k = k '
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Calculation of scattering amplitude at 
high energies: The Born approximation!

n  It can be shown that the scattering amplitude in the 
Born approximation is given by:!

n  This is a very simple and physically transparent 
result. The scattering amplitude is related to the 
Fourier transform (with respect momentum transfer 
q) of the scattering potential!  !

fB θ( ) = − m
2π!2

V
~

q( )      (9.9)

V
~

q( ) = e−iq⋅rV (r)d 3r∫       (9.10)
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Calculation of scattering amplitude at 
high energies: The Born approximation!

n  If the scattering potential has a spherical 
symmetry then it can be shown that:!

fB θ( ) = − 2m
q!2

rV (r)sin qr( )dr
0

∞

∫      (9.11)

q = 2k sin θ / 2( )      (9.12)
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Examples of  the Born approximation: 
The Yukawa potential!

n  The Yukawa potential has the form:!

n  It can be shown that  !

V (r) = −g e
−λr

r
      (9.13)

fB θ( ) = 2mg
!2

1

λ 2 + 4k 2 sin2 θ
2

     (9.14)

Detailed discussion will follow in the class!
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Examples of  the Born approximation: 
The Coulomb potential!

n  The Coulomb potential has the form:!

n  It can be shown that!

n  Where E is the kinetic energy of the particle  !

V (r) = − g
r

     (9.15)

fB θ( ) = g
4E

1

sin2 θ
2

     (9.16)

Detailed discussion will follow in the class!
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The Born approximation in one 
dimension: The reflection coefficient!

n  It can be shown that if we consider the 
scattering of a beam of particles from a one-
dimensional potential V(x) (a potential step or 
a potential well as you know from basic 
quantum mechanics) then the reflection 
coefficient is given by: !

R(k) = 1
4k 2

e2ikxU (x)dx
−∞

∞

∫
2

     (9.17)
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The Born approximation in one 
dimension: The reflection coefficient!

n  In (5.17) the quantity U(x) is given by:!

n  The above formula (9.18) is the Born approximation 
for the reflection coefficient and gives very good 
results for energies somehow larger than the “height” 
of scattering potential or the absolute value of the 
“depth” in the case where the scattering potential is a 
well !

U x( ) = 2mV (x) / !2      (9.18)



24 

The Born approximation in one 
dimension: The reflection coefficient!

n  As you can see from (5.17) the reflection 
coefficient is the Fourier transform of the 
potential. In both cases the Fourier variable is 
the momentum transfer.!

n  In a one-dimensional problem the 
momentum transfer can take only two values: 
a) q=0, when the particle goes through the 
barrier and b) q=k-(-k)=2k in the case of 
reflection. !
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Mathematical supplement 
n  In quantum mechanics the probability 

current is given by:!

n  In spherical coordinates:!
    
j = Re ψ * vψ( )( ),       v = p

m
= −

i!
m
∇
"#

   
∇
!"
= r# ∂

∂r
+θ#

1
r
∂

∂θ
+ φ#

1
r sinθ

∂

∂φ


