PHYS-454
8 - The continuous spectrum of the potential wells.

Momentum eigenstates of a free particle.

- We can easily prove that the wave function

$$
\psi=A e^{i k x}
$$

is an eigenfunction of the momentum operator

$$
p=-i \hbar d / d x
$$

and describes particles which move with a specific momentum

$$
p=\hbar k
$$

The particle flux density-a

- In physics we know that the flux density of any physical quantity (mass, charge energy etc.) which is distribute in space with density ρ and moves with a velocity \mathbf{v} is given by:

$$
\mathbf{J}=\rho \mathbf{v}
$$

The particle flux density-b

- In an experiment in quantum mechanics we have a flux of particles which make up a beam. Then the particle flux density (i.e. the number of particles that cross per second a unit surface perpendicular to the flux) will be given by:

$$
J=|\psi|^{2} v=|A|^{2} \frac{\hbar k}{m}
$$

The square potential step: The effect of reflection-a

The square potential step: The effect

 of reflection-b- A) The case where $E>V_{0}$

The Schrödinger equation takes the form in the two regions A and B:

$$
\begin{array}{ll}
A: & \psi_{A}^{\prime \prime}+\varepsilon \psi_{A}=\psi_{A}^{\prime \prime}+k^{2} \psi_{A}=0 \\
B: & \psi_{B}^{\prime \prime}+\left(\varepsilon-U_{0}\right) \psi_{B}=\psi_{B}^{\prime \prime}+k^{\prime 2} \psi_{B}=0 \\
& \varepsilon=\frac{2 m E}{\hbar^{2}}, \quad U_{0}=\frac{2 m V_{0}}{\hbar^{2}} \\
& k^{2}=\varepsilon, \quad k^{\prime 2}=\varepsilon-U_{0}>0
\end{array}
$$

The square potential step: The effect of reflection-c

In this case the general solutions of Schrödinger equations are:

$$
\begin{aligned}
& \psi_{A}=A_{+} e^{i k x}+A_{-} e^{-i k x} \\
& \psi_{B}=B_{+} e^{i k^{\prime} x}+B_{-} e^{-i k^{\prime} x}
\end{aligned}
$$

The index + is for the constant of the wave $\exp (i k x)$ which travel to the right and the index - for the constant of the wave $\exp (-i k x)$ which goes to the left.

The square potential step: The effect of reflection-d

- Here there is an important point: The wave functions of the free particle are everywhere finite but not square integrable since they are not zero at infinity!
- Their physical meaning is that they are proper of describing scattering problems.
- The problem we study here is a scattering problem.
- This means that in the region B we must have only particles that go to the right.

The square potential step: The effect of reflection-e

- The coefficients A determine the densities of the incident and reflected beams respectively.
- Since the incident beam is regulated by us we can chose $A_{+}=1$
- Thus we can chose the following conditions of scattering from the left

$$
A_{+}=1 \quad B_{-}=0
$$

The square potential step: The effect of reflection-f

- The general solution takes the form:

$$
\psi_{A}=e^{i k x}+A e^{-i k x}, \quad \psi_{B}=B e^{i k^{\prime} x}
$$

- In an experiment we care about the coefficients of reflection R and transmission T, given by
- where

$$
R=\frac{J_{R}}{J_{I}}, \quad T=\frac{J_{T}}{J_{I}}
$$

$$
\begin{aligned}
& J_{I}=\text { the flux of incident beam } \\
& J_{R}=\text { the flux of reflected beam } \\
& J_{T}=\text { the flux of transmitted beam }
\end{aligned}
$$

The square potential step: The effect of reflection-g

- The coefficients of reflection and transmission satisfy the relation

$$
R+T=1
$$

- We can prove that the coefficients take the form

$$
\begin{gathered}
R=\left(\frac{k-k^{\prime}}{k+k^{\prime}}\right)^{2}=\left(\frac{\sqrt{E}-\sqrt{E-V_{0}}}{\sqrt{E}+\sqrt{E-V_{0}}}\right)^{2} \\
T=\frac{4 k k^{\prime}}{\left(k+k^{\prime}\right)^{2}}=\frac{4 \sqrt{E\left(E-V_{0}\right)}}{\left(\sqrt{E}+\sqrt{E-V_{0}}\right)^{2}}
\end{gathered}
$$

Graphical solutions of the eigenvalues-d

- B) The case where $E<V_{0}$

The Schrödinger equation takes the form in the two regions A and B:

$$
\begin{array}{ll}
A: & \psi_{A}^{\prime \prime}+\varepsilon \psi_{A}=\psi_{A}^{\prime \prime}+k^{2} \psi_{A}=0 \\
B: & \psi_{B}^{\prime \prime}+\left(\varepsilon-U_{0}\right) \psi_{B}=\psi_{B}^{\prime \prime}-\gamma^{2} \psi_{B}=0 \\
& \varepsilon=\frac{2 m E}{\hbar^{2}}, \quad U_{0}=\frac{2 m V_{0}}{\hbar^{2}} \\
& k^{2}=\varepsilon, \quad \gamma^{2}=U_{0}-\varepsilon>0
\end{array}
$$

Graphical solutions of the eigenvalues-e

In this case the general solutions of Schrödinger equations are:

$$
\begin{gathered}
\psi_{A}=e^{i k x}+A e^{-i k x} \\
\psi_{B}=B e^{-\gamma x} \\
A=\frac{k-i \gamma}{k+i \gamma}, \quad B=\frac{2 k}{k+i \gamma}
\end{gathered}
$$

Graphical solutions of the

eigenvalues-f

- In this case the coefficients of reflection and transmission are:

$$
R=|A|^{2}=\left|\frac{k-i \gamma}{k+i \gamma}\right|^{2}=1 \quad T=0
$$

- This is not a surprising result. In region B the wave function is a decreasing exponential so the particle has no probability to reach the infinity and to be detected there.

Discussion-a
 The effect of reflection

- The most exciting aspect of the solution is the possibility of a particle to be reflected even if it has the required energy to go ahead. This is a consequence of the discontinuity of the potential at $x=0$.
- It is the analogue of the discontinuity of the refractive index when an e/m wave passes at the boundary of two transparent media.

Discussion-b

The transmission coefficient at high energies

- When the energy E is very large the coefficient of transmission becomes equal to 1 . This is not a surprise. At high energies the wavelength of a particle is very small, so the classical behavior prevails.

Discussion-c

 A paradox!- A very strange result is that the coefficients of reflection do not depend on Planck's constant. This is a paradox since it is a quantum mechanical result.
- The origin of this paradox is the non-natural discontinuity of the potential at $x=0$. The wave behavior of matter is dominant when the wavelength is comparable in size with the discontinuity. But since the discontinuity has a zero "length" it will be always far smaller of the particle's wavelength.

