
PHYS-454
8 - The continuous spectrum of the
potential wells.



Momentum eigenstates of a free
particle.

 We can easily prove that the wave function

is an eigenfunction of the momentum operator

and describes particles which move with a
specific momentum
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The particle flux density-a
 In physics we know that the flux density of

any physical quantity (mass, charge energy
etc.) which is distribute in space with
density ρ and moves with a velocity v is
given by:

 J = !v



The particle flux density-b

 In an experiment in quantum mechanics we have a
flux of particles which make up a beam. Then the
particle flux density (i.e. the number of particles that
cross per second a unit surface perpendicular to the
flux) will be given by:
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The square potential step: The effect
of reflection-a
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The square potential step: The effect
of reflection-b

 A) The case where
The Schrödinger equation takes the form in the

two regions A and B:
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The square potential step: The effect
of reflection-c

In this case the general solutions of Schrödinger
equations are:

The index + is for the constant of the wave
exp(ikx) which travel to the right and the
index - for the constant of the wave exp(-ikx)
which goes to the left.
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The square potential step: The effect
of reflection-d

 Here there is an important point: The wave
functions of the free particle are everywhere
finite but not square integrable since they are
not zero at infinity!

 Their physical meaning is that they are
proper of describing scattering problems.

 The problem we study here is a scattering
problem.

 This means that in the region B we must have
only particles that go to the right .



The square potential step: The effect
of reflection-e

 The coefficients A determine the
densities of the incident and reflected
beams respectively.

 Since the incident beam is regulated by
us we can chose

 Thus we can chose the following
conditions of scattering from the left

  A+ = 1

  A+ = 1        B! = 0



The square potential step: The effect
of reflection-f

 The general solution takes the form:

 In an experiment we care about the coefficients of
reflection R and transmission T, given by

 where

  ! A = eikx + Ae" ikx ,        ! B = Beik ' x
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J I

,      T =
JT

J I

  

J I = the flux of incident beam

JR = the flux of reflected beam

JT = the flux of transmitted beam



The square potential step: The effect
of reflection-g

 The coefficients of reflection and transmission
satisfy the relation

 We can prove that the coefficients take the form
  R + T = 1
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Graphical solutions of the
eigenvalues-d

 B) The case where
The Schrödinger equation takes the form in the

two regions A and B:
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Graphical solutions of the
eigenvalues-e

In this case the general solutions of
Schrödinger equations are:

 

! A = eikx + Ae" ikx

! B = Be"# x
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Graphical solutions of the
eigenvalues-f

 In this case the coefficients of reflection and
transmission are:

 This is not a surprising result. In region B the
wave function is a decreasing exponential so the
particle has no probability to reach the infinity and
to be detected there.
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Discussion-a
The effect of reflection

 The most exciting aspect of the solution is
the possibility of a particle to be reflected
even if it has the required energy to go
ahead. This is a consequence of the
discontinuity of the potential at x=0.

 It is the analogue of the discontinuity of the
refractive index when an e/m wave passes at
the boundary of two transparent media.



Discussion-b
The transmission coefficient at high energies

 When the energy E is very large  the
coefficient of transmission becomes equal
to 1. This is not a surprise. At high energies
the wavelength of a particle is very small,
so the classical behavior prevails.



Discussion-c
A paradox!

 A very strange result is that the coefficients of
reflection do not depend on Planck’s constant.
This is a paradox since it is a quantum mechanical
result.

 The origin of this paradox is the non-natural
discontinuity of the potential at x=0. The wave
behavior of matter is dominant when the
wavelength is comparable in size with the
discontinuity. But since the discontinuity has a
zero “length” it will be always far smaller of the
particle’s wavelength.


